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signature based on single-cell
RNA-seq and bulk RNA-seq data

Lianghe Yu1†, Ningjia Shen1†, Yan Shi1†, Xintong Shi1,
Xiaohui Fu1, Shuang Li2*, Bin Zhu1*, Wenlong Yu1*

and Yongjie Zhang1*

1Hepatobiliary Surgery, the third affiliated hospital, Naval Military Medical University, Shanghai, China,
2Bioinformatics R&D Department, Hangzhou Mugu Technology Co., Ltd, Hangzhou, China
Background:Cancer-associated fibroblasts (CAFs) are involved in tumor growth,

angiogenesis, metastasis, and resistance to therapy. We sought to explore the

CAFs characteristics in hepatocellular carcinoma (HCC) and establish a CAF-

based risk signature for predicting the prognosis of HCC patients.

Methods: The signal-cell RNA sequencing (scRNA-seq) data was obtained

from the GEO database. Bulk RNA-seq data and microarray data of HCC were

obtained from the TCGA and GEO databases respectively. Seurat R package

was applied to process scRNA-seq data and identify CAF clusters according to

the CAF markers. Differential expression analysis was performed to screen

differentially expressed genes (DEGs) between normal and tumor samples in

TCGA dataset. Then Pearson correlation analysis was used to determine the

DEGs associated with CAF clusters, followed by the univariate Cox regression

analysis to identify CAF-related prognostic genes. Lasso regression was

implemented to construct a risk signature based on CAF-related prognostic

genes. Finally, a nomogram model based on the risk signature and

clinicopathological characteristics was developed.

Results: Based on scRNA-seq data, we identified 4 CAF clusters in HCC, 3 of

which were associated with prognosis in HCC. A total of 423 genes were

identified from 2811 DEGs to be significantly correlated with CAF clusters, and

were narrowed down to generate a risk signature with 6 genes. These six genes

were primarily connected with 39 pathways, such as angiogenesis, apoptosis,

and hypoxia. Meanwhile, the risk signature was significantly associated with

stromal and immune scores, as well as some immune cells. Multivariate analysis

revealed that risk signature was an independent prognostic factor for HCC, and

its value in predicting immunotherapeutic outcomes was confirmed. A novel

nomogram integrating the stage and CAF-based risk signature was
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constructed, which exhibited favorable predictability and reliability in the

prognosis prediction of HCC.

Conclusion: CAF-based risk signatures can effectively predict the prognosis of

HCC, and comprehensive characterization of the CAF signature of HCC may

help to interpret the response of HCC to immunotherapy and provide new

strategies for cancer treatment.
KEYWORDS

cancer-associated fibroblasts, liver hepatocellular carcinoma, differentially expressed
genes, immunotherapy, nomogram
Introduction

Liver cancer is a lethal disease with high prevalence and

unfavorable outcomes, where liver hepatocellular carcinoma

(HCC) is the primary malignancy of liver cancer, consisting of

75%–85% of cases (1). Although significantly progression in the

treatment of HCC, the average 5- year survival rate remains

below 20% due to the development of recurrence (2, 3). It has

been suggested that several factors such as chronic liver disease,

alcohol addiction, and metabolic syndrome, increasing obesity

rates, contribute to an increased incidence and mortality of HCC

(4). Over the past decades, our understanding of the molecular

pathogenesis of HCC has improved significantly thanks to the

rapid development of omics technology (5, 6). A series of omic

data-derived signatures were generated to predict the clinical

outcomes of HCC (7). Accordingly, more novel multigene

signature are valuable for predicting the outcome and

recurrence of HCC.

The tumor microenvironment (TME) is composed of tumor

cells and stromal cells. The malignant potential of tumors has long

been thought to be entirely due to cancer cells (8). However, the

dynamic crosstalk between cancer cells and stromal cells has been

shown to be involved in cancer progression (9). The stroma

consists of fibroblasts, pericytes, mesenchymal stem cells, and

various types of immune cells, which were surrounded by fibrous

structural proteins in the extracellular matrix (10). Cancer-

associated fibroblasts (CAFs) are important components of the

TME which arise from bone marrow-derived mesenchymal stem

cells, hematopoietic stem cells, adipocytes, and endothelial cells (8,

11), as well as cancer cells (12). CAFs have been observed in a

majority of cancers, such as breast cancer, prostate cancers, and

HCC (13, 14), and its crosstalk with cancer cells has been revealed

to be crucial for tumor progression (15). CAFs secrete a variety of

growth factors and cytokines, and degrade extracellular matrix

proteins, thereby affecting tumor cell proliferation, metastasis and

chemotherapy resistance (16–18). CAFs could be stably
02
maintained the tumor-promoting characteristics even without

exposure to cancer cells (19). Therefore, it has become a

potential strategy to shut down the downstream effects of CAFs

or inhibit CAF-secreted factors that facilitate tumor development

and progression for HCC intervention.

Although many studies focusing on CAF have been carried

out in HCC, the systematic CAF characteristics and its

relationship with HCC prognosis and immunotherapy response

remain poorly understood. Herein, we obtained HCC single-cell

RNA-sequencing (scRNA-seq) data and transcriptome data from

accessible databases. We distinguished CAFs subclusters and

identified CAF-based risk signature for HCC. Clinical relevance

of the CAF-based signature was determined, and the immune

landscaoe and responsiveness to immunotherapy underlying the

CAF-based signature were further analzyed. Finally, we developed

a novel nomogram combining the CAF-based risk signature and

clinicopathological features to facilitate the clinical application of

CAF features in the prognosis of HCC. It may provide new

insights into the pathophysiology of HCC, leading to more

tailored treatments and improved outcomes for patients

with HCC.
Materials and methods

Data acquisition and processing

ScRNA-seq data of GSE149614 was downloaded from the

Gene Expression Omnibus (GEO) database, including 10

samples of primary tumors, 2 samples of portal vein tumor

thrombi, 1 sample of metastatic lymph node, and 8 samples of

non-tumor liver. For scRNA-seq data, single cells were firstly

screened with each gene expressing in at least 3 cells and each

cell expressing at least 250 genes. Then PercentageFeatureSet

function in Seurat R package was conducted to evaluate the

proportion of mitochondria and rRNA. The single cells were
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further screened by setting each cell expressing at least 6000

genes with UMI > 100. Finally, a total of 69145 cells were

remained. The transcriptome data, single-nucleotide variant

(SNV) and copy number variants (CNV) data of Masked

Copy Number Segment, and corresponding clinical

information of HCC were obtained from The Cancer Genome

Atlas (TCGA) database. For transcriptome data, the samples

without survival data and outcome status were removed, and

eventually, 360 tumor samples and 50 para-cancerous samples

were included. GSE76427 cohort with 115 HCC samples was

downloaded from the GEO database as a validation cohort after

the removal of normal tissue samples and tumor samples

without follow-up and outcome status information. Ten

cancer-related pathways (Cell Cycle, HIPPO, MYC, NOTCH,

NRF1, PI3K, TGF-Beta, RAS, TP53, and WNT) were retrieved

from the literature (20).
Definition of CAF

We re-analyzed the scRNA-seq data of HCC using the

Seurat package (21) to comprehensively characterize the CAF

signature. Firstly, we removed the cells with over 6000 or below

250 expressed genes, followed by log normalization of expressed

genes. The batch effects for 21 samples were eliminated using the

FindIntegrationAnchors function. The non-linear dimensional

reduction was conducted using the uniform manifold

approximation and projection method, with 15 principal

components and a resolution at 0.2. Single cells were clustered

into different subgroups by using the functions of

FindNeighbors and FindClusters (dim = 40 and resolution =

0.2).Then t-distributed stochastic neighbor embedding (TSNE)

dimensional reduction was conducted using the RunTSNE

function. Fibroblasts were annotated with 4 marker genes,

including ACTA2, FAP, PDGFRB, and NOTCH3. The

fibroblasts were re-clustered with the same algorithm of

FindNeighbors and FindClusters funct ions . TSNE

dimensionality reduction was further performed on fibroblasts

clusters. Marker genes of each CAF cluster were identified using

FindAllMarkers function by comparing one cluster with other

clusters with logFC = 0.5, minpct = 0.35, and adjusted p-

value<0.05. Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis on the marker genes of CAFs

clusters using the clusterProfiler package (22), and the CNV

characteristics among the CAFs clusters were analyzed using the

CopyKAT R package to differentiate between tumor cells and

normal cells in each sample (23).
Identification of hub genes of CAF

Firstly, the differentially expressed genes (DEGs) between

the tumor and normal tissue were screened out via limma
Frontiers in Immunology 03
package with a false discovery rate (FDR)<0.05 and |log2(Fold

Change)|>1 (24). Then, we assessed the correlations between the

DEGs and CAF clusters, and identify the key CAF-related genes

with p<0.001 and cor>0.4. The prognosis-related genes were

further identified using univariate Cox regression analysis in

survival package with p<0.05 (https://rdocumentation.org/

packages/survival/versions/2.42-3). To compress the gene

number, we performed the least absolute shrinkage and

selection operator (lasso) cox regression analysis, followed by

multivariate Cox regression analysis with a stepwise regression

method. According to the results of the multivariate Cox model,

we constructed a risk signature with the following formula: risk

score=Sbi*Expi. Where i is the gene in risk signature, expi

represents the expression of the gene i, and bi represents the

coefficients of gene i in multivariate Cox model. The patients

were divided into the high- and low-risk groups after zero-mean

normalization. The receiver operating characteristic curve

(ROC) analysis was performed using the timeROC package

(https://cran.r-project.org/web/packages/timeROC/index.html)

to analyze the predictive performance of the risk signature.

Similar analyses were conducted in the validation cohort.
Immune landscape analysis

The proportions of 22 immune cell subtypes in the TCGA

cohort were evaluated by the CIBERSORT algorithm (25), a tool

for assessing immune cell infiltration, and the immune and

stromal scores were calculated using the ESTIMATE algorithm

(https://sourceforge.net/projects/estimateproject/) to further

explore the TME.
Construction of a risk signature
and nomogram

To construct a nomogram model for clinical use, we first

perform the univariate and multivariate Cox regression analysis

on clinicopathological and risk signature. The variables with

p<0.05 in the multivariate Cox model were used to construct a

nomogram for the prediction of HCC prognosis using the rms

package (26). The calibration curve was generated to evaluate the

predictive accuracy of the model. The reliability of the model was

evaluated using decision curve analysis (DCA).
Responsiveness to immune
checkpoint blocks

We downloaded the transcriptomic, and matched clinical

data of patients with HCC treated with an anti-PD-L1 agent

(atezolizumab) (27) from IMvigor210 cohort (http://research-

pub.gene.com/IMvigor210CoreBiologies). Meanwhile,
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GSE78220 cohort comprised of transcriptomic data from pre-

treatment melanomas receiving anti-PD-1 checkpoint inhibition

therapy (28), and also download for the determination of the

potential value of the risk signature score in the prediction of

responsiveness to immune checkpoint blocks (ICB).
Statistical analysis

All statistical analyses were performed using the R software

(v3.6.3). The correlation matrices were conducted using Pearson

or Spearman correlation. Wilcoxon test was conducted for the

comparisons between the two groups. Survival differences were

compared using K–M curves with a Log-rank test. P-value < 0.05

was considered statistical significance.
Results

Screening the CAFs in scRNA-seq
samples

The flow chart of this study was shown in Figure 1. A total of

69145 cells were obtained from the scRNA-seq data after initial

screening (Table 1). The detailed results of data preprocessing

were shown in Figure S1. After log-normalization and

dimensionality reduction, 15 subpopulations were obtained, and

9 CAF populations were identified based on four marker genes,

including ACTA2, FAP, PDGFRB, and NOTCH3 (Figures S2A,

B). The cells of 9 CAF populations were extracted for further

clustering and dimensionality reduction. The CAF populations

were further clustered by using the same clustering algorithm and

four CAF clusters were identified (Figures S2C, D). The epithelial

cell specific gene was not expressed in all four CAF clusters,

supporting the accuracy of CAF identification (Figure S3).
Frontiers in Immunology 04
Figure 2A showed the TSNE plot of 21 sample distributions. As

a result, four CAF clusters were finally generated and used for

subsequent analysis (Figure 2B). A total of 211 DEGs among the 4

CAF clusters were identified and the expression of the top 5 DEGs

(determined as the marker genes of CAF clusters) in the 4 clusters

was shown in Figure 2C. The proportion of the 4 clusters in each

cohort were illustrated in Figure 2D. As shown in Figure 2E, the

results of KEGG analysis demonstrated that these DEGs were

enriched in multiple pathways, including vascular smooth muscle

contraction, focal adhesion, oxytcosin signaling pathway, PPARG

signaling pathway, etc. In addition, the 4 CAF clusters consist of

1533 tumor cells and normal cells according to the CNV

characteristics (Figure 2F).
The expression of cancer-related
pathways in CAF

To elucidate the associations between the CAF clusters and

tumor progression, we investigated the characteristics of ten

tumor-related pathways in the four CAF clusters. The GSVA

scores of the ten tumor-related pathways in different CAF clusters

were shown in Figure 3A. The ratio of malignant cells in CAF_0

cluster was significantly higher than that in the other three clusters

(Figure 3B). However, there were no significant differences among

the CAF_1, CAF_2, and CAF_3. Furthermore, we analyzed the

GSVA scores of the ten tumor-related pathways between

malignant and non-malignant cells in each CAF cluster, with

slight differences observed (Figures 3C-F).

To determine the associations between the CAF clusters and

prognosis, we first calculated the ssGSEA score of the marker

genes (the top 5 DEGs of CAF clusters defined in Figure 2C) of

each CAF cluster based on the TCGA cohort. The results

demonstrated that the CAF_2 cluster had a significantly higher
FIGURE 1

The flow chart of this study.
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score in tumor samples than in normal samples, whereas the other

CAF clusters had an opposite trend, with a higher score in normal

samples than in tumor samples (Figure 4A). The HCC samples of

TCGA dataset were separated into the high- and low-CAF score

groups according to the optimal cut-off value analyzed by

survminer R package. The samples in the high-CAF score group

had a better prognosis in the CAF_0, CAF_1, and CAF_2 clusters

than those in the low-CAF score group, whereas the CAF_3 was

not associated with the prognosis of HCC (Figures 4B-E). The

above results suggested that CAF_3 cluster may contribute little in

the HCC progression although CAF_3 enrichment was

differential in HCC and normal samples.
Identification of hub genes associated
with CAF

To construct a risk signature, we firstly screened out DEGs

between the tumor and normal tissues. As shown in Figure 5A, a

total of 2349 DEGs were obtained, with 462 up-regulated DEGs

and 1887 down-regulated DEGs. Among them, there are 423

genes that showed significant correlations with those prognosis-

related CAF clusters. Furthermore, the prognostic value of each

gene was assessed via univariate Cox regression analysis, with

234 genes exhibiting prognostic values (Figures 5A, B). Lasso

Cox regression analysis was performed to narrow down the

number of genes, with 11 genes left as lambda=0.047
Frontiers in Immunology 05
(Figures 5C, D). Finally, we included 6 genes, including HMG-

box containing 3 (HMGXB3), GCN1 activator of EIF2AK4

(GCN1), LUC7 like 3 pre-mRNA splicing factor (LUC7L3),

ADAMTS like 2 (ADAMTSL2), solute carrier organic anion

transporter family member 2A1 (SLCO2A1), and CD4 molecule

(CD4), in the risk signature after multivariate Cox

regression analysis with stepwise regression method

(Figure 5E). The final 6-gene signature formula is as follows:

RiskScore = -0.088*ADAMTSL2 - 0.121*SLCO2A1 - 0.217*CD4

+ 0.249*GCN1 + 0.345*HMGXB3 + 0.271*LUC7L3. We

calculated the risk score for each sample and divided them

into the high- and low-risk groups after z-mean normalization.

The AUC values of the model for 1- to 5-year survival range

from 0.68 to 0.76 in the TCGA cohort and range from 0.65 to 0.7

in the GEO cohort (Figures 5F, G). Kaplan-Meier survival

analyses revealed that high-risk patients had significantly

poorer survival outcomes compared with low-risk patients in

the TCGA cohort, as well as in the GEO cohort (Figures 5H, I).
Mutation and pathway analysis of the
hub genes

Next, we checked out the SNV mutations of the six genes of

the risk signature. It showed that ADAMTSL2, SLCO2A1,

HMGXB3, LUC7L3, and CD4 have SNV mutations in more
TABLE 1 Cell counts before and after filtration of samples.

Samples raw_count clean_count Percentage(%)

HCC01T 3368 3297 97.89

HCC02T 4101 3817 93.07

HCC03N 2601 2601 100

HCC03T 4825 4822 99.94

HCC04N 3396 3380 99.53

HCC04T 3501 2812 80.32

HCC05N 4656 4654 99.96

HCC05T 3353 3250 96.93

HCC06N 4465 4459 99.87

HCC06T 4308 4273 99.19

HCC07N 3740 3739 99.97

HCC07P 1829 1817 99.34

HCC07T 510 507 99.41

HCC08N 4795 4792 99.94

HCC08P 4142 3100 74.84

HCC08T 4833 4657 96.36

HCC09N 1962 1961 99.95

HCC09T 2816 2726 96.8

HCC10L 2843 2742 96.45

HCC10N 3072 3070 99.93

HCC10T 2799 2669 95.36
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samples, while no SNV mutation was observed in GCN1 (Figure

S4A). We analyzed the co-occurrence probability of these key

genes and the 10 most mutated genes. As revealed in Figure S4B,

there was no significant probability of co-occurrence of the

mutations in these 5 genes, but LUC7L3 presented a

significant probability of co-occurrence with ABCA13

mutation. In the 6 genes, it was found that only a very small

number of samples had gain/loss of CNV (Figure S4C). To

further elucidate the associations between the risk genes and

HCC, we analyzed the correlations between these genes and

several molecular signatures of HCC. The results demonstrated

that SLCO2A1 had significantly negative correlations with

Aneuploidy Score, Homologous Recombination Defects,

Fraction Altered, Number of Segments, and Nonsilent

Mutation Rate, whereas HMGXB3, LUC7L3, and GCN1

showed significantly positive correlations with Homologous

Recombination Defects and Fraction Altered (Figure S4D). In

addition, we analyzed the potential pathways associated with

each risk gene. As shown in Figures 6A, B, a total of 39 pathways
Frontiers in Immunology 06
were significantly correlated with these six genes, including

angiogenesis, apical junction, apoptosis, etc.
Relationship between hub genes
and immunity

Our data demonstrated that ADAMTSL2, SLCO2A1, and

CD4 presented significantly positive correlations with the

stromal score, immune score, and estimate score, while

LUC7L3 showed significantly negative correlations with the

stromal, immune, and estimate scores. However, there was no

significant correlations observed between the three scores and

the other genes (GCN1 and HMGXB3) (Figure S5A). After

grouping according to the median value of expression of each

gene, we compared the three scores in different expressed

groups. The results showed that, with regard to the

ADAMTSL2, SLCO2A1, and CD4 genes, the three scores of

the high expression group were significantly higher than those of
B

C

D E F

A

FIGURE 2

The identification of CAF clusters based on scRNA seq data of HCC patients. (A) tsne plot of the distribution of 21 samples; (B) tsne plot of the
distribution of four fibroblasts after clustering; (C) dot plot of the top 5 marker gene expression of subgroups; (D) subgroups in cancer tissue
and Proportion and cell number of adjacent tissue; (E) kegg enrichment analysis of 4 fibroblast subsets; (F) tsne distribution map of malignant
and non-malignant cells predicted by copykat package.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1009789
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.1009789
the low expression group (Figure S5B). Correlation analysis

revealed that ADAMTSL2, SLCO2A1, and CD4 presented a

significantly negative correlation with the majority of T cells.

Additionally, LUC7L3, GCN1, and HMGXB3 significantly

positively correlated with M0 macrophages and neutrophils

(Figure S5C). Moreover, we also observed significant

differences between the high and low expression groups of risk

genes in several immune cells (Figure S5D).
The responsiveness of risk signature to
PD-L1 blockade immunotherapy

T-cell immunotherapy has emerged as an anticancer

treatment with synergistic survival benefits (29). Therefore, we
Frontiers in Immunology 07
assessed the prognostic value of risk signature for immune-

checkpoint therapy in the IMvigor210 and GSE78220 cohorts.

The 348 patients in the IMvigor210 cohort showed varying

degrees of response to anti-PD-L1 receptor blockers, including

complete response (CR), partial response (PR), stable disease

(SD), and progressive disease (PD). SD/PD patients presented

higher risk scores than CR/PR patients (Figure 7A). In the high-

risk group, the percentage of SD/PD was higher than that in the

low-risk group (Figure 7B). We observed that in the IMvigor210

cohort, patients in the low-risk group showed significant clinical

benefits and a significantly longer overall survival as compared

with those in the high-risk group (Figure 7C, p=0.0053).

Specifically, there were significant survival differences in Stage

I+II patients between the different risk groups (Figure 7D,

p=0.0017), but not in Stage III+IV patients (Figure 7E, p=0.5).
B C D

E F

A

FIGURE 3

The characteristics of tumor-related pathways in CAF clusters. (A) Heatmap of 10 tumor-related pathway scores enriched in CAF cells; (B)
Comparison of CAF clusters in malignant and non-malignant cells; Comparison of GSVA score of each pathways between malignant and non-
malignant cells in CAF_0 (C), CAF_1 (D),CAF_2 (E), and CAF_3 cluster (F). (wilcox.test, *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001).
ns, not significant.
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It suggested that the risk score is more sensitive in early-stage

patients. In the GSE78220 cohort, we also found a significantly

longer overall survival of patients in low-risk group than in high-

risk group (Figure 7F, p=0.036). Meanwhile, the percentage of

SD/PD in the high-risk group was higher than that in the low

risk group (Figure 7G).
Identification of independent risk factors
and nomogram developing

To optimize the predictive performance of the risk signature,

we integrated the clinicopathological characteristics and risk score

via univariate and multivariate Cox regression analysis.

Multivariate analysis demonstrated that risk signature was the

most significant independent prognostic factor of osteosarcoma

[hazard ratio (HR) = 1.77, 95% confidence interval (CI): 1.42 -

2.13, P < 0.001], followed by metastatic status (HR = 1.74, 95%CI:

1.22 - 2.46, P = 0.002) (Figures 8A, B). Therefore, a nomogram

combining stage and risk score was constructed, as shown in

Figure 8C. The calibration plot demonstrated that the nomogram

can effectively forecast the actual survival outcomes (Figure 8D).

Moreover, DCA revealed a better discriminative ability of the

nomogram in recognizing patients at high risk than the risk score

and stage, as shown in Figure 8E. TimeROC analysis showed that

the AUC of the risk score and nomogram was higher than that of

other indicators in the TCGA cohort (Figure 8F).
Frontiers in Immunology 08
Discussion

Accumulating evidence has demonstrated the dynamic

crosstalk between tumor cells and the stromal cells

contributes to tumor progression (9), As CAFs have been

confirmed to be involved in tumor prol i fera t ion ,

angiogenesis, metastasis, as well as chemotherapy resistance

via releasing various factors into the TME (30). In the present

study, we concentrated on the diversity of CAFs and performed

a systematic characterization and classification of CAFs of

HCC based on scRNA-seq data. Eventually, we identified

four CAF clusters with distinct properties, which might

contribute to the regulation of different aspects of the biology

of the TME. Accumulating evidence has confirmed the

prognostic value of CAF-secreted factors or CAF-related

gene signature in HCC (31). Consistently, our data revealed

three of the clusters with a significant association with HCC

prognosis, which were determined using a score derived from

DEGs across the four clusters. Interestingly, we observed the

differences in HIPPO and MYC among the CAF clusters might

may partially contribute to the prognostic value of CAF.

Hepatic Hippo signaling inhibits development of HCC (32),

and the MYC-mediated axis has been confirmed as a dominant

part of HCC in terms of proliferation, migration, invasion, and

drug resistance (33).

Given the prognostic values of three CAF clusters, we

established a CAF-based risk signature with 6 genes. It
B C

D E

A

FIGURE 4

The associations between the four CAF cluster and prognosis of HCC patients. (A) Comparison of four CAF scores in cancer and normal tissues;
K-M curves of the high and low CAF score groups in the CAF_0 cluster (B), CAF_0 cluster (C), CAF_0 cluster (D), and CAF_0 cluster (E). **P <
0.01, ****P < 0.0001.
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consisted of three protective genes (ADAMTSL2, SLCO2A1, and

CD4) and three risk genes (HMGXB3, GCN1, and LUC7L3). In

our study, SNV mutations were observed in ADAMTSL2,

SLCO2A1, HMGXB3, LUC7L3, and CD4 without significant

co-occurrence probability. Sense SNV mutations affect protein

activity or function, leading to HCC development or affecting

HCC progression (34). Although there are no independent

studies linking SNV mutations in these risk genes to HCC

progression, our data also suggest a potential role of SNV

mutations in these genes in HCC progression. A recent study

constructed a genomic instability-derived genes signature, which

contains SLCO2A1, for the prediction of HCC prognosis (35).

We further found that the six genes were significantly correlated
Frontiers in Immunology 09
with 39 pathways, while protective genes and risk genes clearly

had different pathway signatures. For example, the protective

genes were significantly positively associated with allograft

rejection, myogenesis, complement, interferon-gamma

response, whereas risk genes were significantly connected with

fatty acid metabolism, xenobiotic metabolism, and adipogenesis.

The alterations of fatty acid metabolism plays an important role

in HCC and the prognostic value of fatty acid metabolism-

related genes in HCC has also been revealed (36).

Polymorphisms in xenobiotic metabolism-related genes were

suggested to increase the risk of developing HCC (37).

Adipogenesis is an indication of the development of obesity

and is associated with multiple cancers (38). Hence, these data
B C

D E F

G H I

A

FIGURE 5

Identification of the hub predictive genes to construct a risk signature. (A) Volcano plot of differentially expressed genes of cancer and normal
tissues in TCGA cohort; (B) Volcano plot of prognosis-related genes identified from univariate Cox regression analysis; (C) The trajectory of
each independent variable with lambda; (D) Plots of the produced coefficient distributions for the logarithmic (lambda) series for parameter
selection (lambda); (E) The multivariate Cox coefficients for each genes in the risk signature. (F) and (G) ROC curves of risk model constructed
by 6 genes in TCGA cohort and GEO cohort; (H) and (I) K-M curves of risk model constructed by 6 genes in TCGA cohort and GEO cohort.
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B C D
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A

FIGURE 7

The responsiveness of risk score to PD-L1 blockade immunotherapy in IMvigor210 cohort. (A) Differences in risk scores among immunotherapy
responses in the IMvigor210 cohort; (B) Distribution of immunotherapy responses among risk score groups in the IMvigor210 cohort; (C)
Prognostic differences among risk score groups in the IMvigor210 cohort; (D) Prognostic differences between risk score groups in early stage
patients in the IMvigor210 cohort; (E) prognostic differences between risk score groups in advanced patients in the IMvigor210 cohort; (F)
prognostic differences in risk score groups in the GSE78220 cohort; (G) Distribution of immunotherapy responses among risk score groups in
the GSE78220 cohort. ****P < 0.0001.
BA

FIGURE 6

Identification of pathways that the risk genes involved in. (A) Gene-pathway correlation heatmap; (B) Enrichment score heatmap for key
pathways. *P < 0.05, **P < 0.01, ***P < 0.001.
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provide us with the direction to further study the regulation of

these risk genes in HCC.

Recent evidence suggests that the interaction of CAFs and

the tumor immune microenvironment (TIME) can promote

tumor progression (39). In our study, three predictive genes were

significantly positively correlated with immune score, while a

risk gene was negatively associated with the immune score.

These data indicated the potential crosstalk between these

genes with TIME in HCC and implied the potential values of

these genes as therapeutic targets of HCC. Various immune

cells in tumor islets make up the TIME and synergistically

determine the antitumor immunological state in the TME.

CAFs can interact with these immune cells to form a

immunosuppressive TME, thereby enable tumor cells to evade

the surveillance of the immune system (40). In the risk signature,

multiple types of T cells were negatively associated with the

predictive genes. T cells are involved in tumor progression and

the potential of T cell-derived therapies, including checkpoint

blockade and chimeric antigen receptors T (CAR-T) cell

therapy, has been confirmed (41).

Nevertheless, most of the patients show innate or acquired

resistance to immunotherapies (42). Our data found that the risk

signature was capable to distinguish patients who were more

likely to benefit from immunotherapies. Additionally, it was

reported that CAF-expressed endosialin regulated macrophage

recruitment and polarization in HCC (43). In the defined

signature, the risk genes were positively correlated with M0
Frontiers in Immunology 11
macrophages and negatively correlated with M2 macrophages,

indicating the potential involvement of the risk genes in the

macrophage polarization. It was demonstrated that CAFs

regulated neutrophil survival, activation, and function in HCC

via the IL6-STAT3-PDL1 signaling cascade (44). Meanwhile,

our data showed that CAF-based signature could predict the

responsiveness to anti-PD-L1 immunotherapy. There data

provided novel clues of the role of CAF in remodeling the

cancer niche and immune status in TME. However, it requires

more experiments to explore the role of CAF-TIME

communication in HCC and its potential value in

HCC immunotherapy.

Nevertheless, several limitations in our study should be

acknowledged. First, the CAF clusters and CAF-based risk

signature was generated using retrospective data from public

databases. Therefore, it should be validated in more prospective

and multi-center HCC cohorts in the future. Second, we only

investigated the potential prognostic value of the CAF-based risk

signature, so further studies are required to explore the

underlying mechanisms of the signature in the development

of HCC.
Conclusion

In summary, this study systematically characterized the CAF

populations in HCC and generated four CAF clusters with
B

C

D E F

A

FIGURE 8

The development of a nomogram for predicting the prognosis of HCC. (A, B) Univariate and multivariate Cox analysis of risk score and
clinicopathological characteristics; (C) Nomogram model integrating the risk score and stage was constructed; (D) Calibration curves for 1, 3,
and 5 years of nomogram; (E) Decision curve for nomogram; (F) Comparison of predictive capacity of clinicopathological features and the
nomogram using time-ROC analysis. ***P < 0.001
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distinct diversity. The DEGs among the four clusters were

enriched in vascular smooth muscle contraction, focal

adhesion, oxytcosin and PPARG signaling pathway, etc. Three

of the cluster were significantly associated with HCC prognosis,

and used to construct a CAF-based prognostic risk signature

with 6 genes. The CAF-based gene signature was observed to be

connected with the immune landscape and could be used for the

prediction of the responsiveness to PD-L1 blockade

immunotherapy. Finally, a novel nomogram integrating the

risk signature and clinicopathological features were developed,

which provided a favorable predictive performance in the

clinical outcome of patients with HCC.
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SUPPLEMENTARY FIGURE 1

The results of re-process of scRNA-seq data of LIHC. (A): The relationship
between mitochondrial genes and the amount of UMI/mRNA, the

relationship between UMI and the amount of mRNA; (B) The

relationship among mRNA, UMI, mitochondrial content, and rRNA
content of each sample before filtering; (C) The relationship among

mRNA, UMI, mitochondrial content, and rRNA content of each sample
after filtering; (D) The sample distribution map of PCA dimensionality

reduction and the anchor point map of PCA.

SUPPLEMENTARY FIGURE 2

The clustering of CAF populations and dimensionality reduction. (A)
Distribution of subpopulations after clustering of all cells; (B) TSNE map

of fibroblast marker gene expression; (C) Distribution of subpopulations
after re-clustering of fibroblasts; (D) TSNE diagram.of marker expression

in four CAF clusters.

SUPPLEMENTARY FIGURE 3

The expression of EPCAM in four CAF clusters.

SUPPLEMENTARY FIGURE 4

The characteristics of mutations of the genes included in the risk
signature. (A) Waterfall diagram of SNV mutations of 6 key genes; (B)
Colinearity and mutual exclusion analysis of key genes and the 10 most
mutated genes in tumors; (C) CNV mutations (gain, loss, none) of 6 key

genes; (D) Correlation heatmap of 6 key genes with Aneuploidy Score,
Homologous Recombination Defects, Fraction Altered, Number of

Segments, and Nonsilent Mutation Rate.

SUPPLEMENTARY FIGURE 5

The relationship between the risk genes and immune landscape. (A) The
correlation matric of the risk genes and stromal score, immune score, and

estimate score. (B) Comparison of high and low expression of key genes

and immune score (wilcox.test); (C) Correlation between key genes and
immune cell score predicted by CIBERSORT analysis; (D) Comparison of

high and low expression of key genes with 22 immune cell scores
(wilcox.test). *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001.
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