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Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host 

defense and acute and chronic in�ammation. It has been described in �sh, amphibians, 

and mammals but was considered to be absent in the avian genomes. Here, we report 

on the identi�cation and functional characterization of the avian ortholog. The chicken 

TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its 

mammalian counterpart 45% homology in the extracellular part displaying the charac-

teristic TNF homology domain. Orthologs of chTNF-α were identi�ed in the genomes of 

12 additional avian species including Palaeognathae and Neognathae, and the synteny 

of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the 

crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for 

homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly 

induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone 

marrow macrophages, and signi�cantly upregulated in splenic tissue in response to 

i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α 

expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, 

we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. 

Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-

luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data 

provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor sys-

tem in birds thus �lling a gap in our understanding of the evolution of cytokine systems.

Keywords: tumor necrosis factor-α, chicken, avian, tumor necrosis factor-α receptors, missing gene, biological 

activity

INTRODUCTION

Work in mammals over the last 40 years identi�ed members of the tumor necrosis factor (TNF)/ 
TNF receptor (TNFR) superfamilies as critical regulators of diverse biological functions, such as 
in�ammation, immune defense, tissue development, and lymphocyte homeostasis (1–3). �e 
founding member of this family was initially described as a serum factor induced by lipopolysac-
charide (LPS) which caused hemorrhagic necrosis of induced �brosarcomas, hence named TNF 
(4). Today, more than 40 members of the TNF/TNFR superfamilies have been described (5). TNF 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00605&domain=pdf&date_stamp=2018-04-17
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00605
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:elleder@img.cas.cz
mailto:kaspers@lmu.de
https://doi.org/10.3389/fimmu.2018.00605
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00605/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00605/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00605/full
https://loop.frontiersin.org/people/185889
https://loop.frontiersin.org/people/512427
https://loop.frontiersin.org/people/504395
https://loop.frontiersin.org/people/499826


2

Rohde et al. Chicken TNF-α

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 605

family members are type II transmembrane proteins which form 
trimers either as membrane bound proteins or as soluble factors 
released from the cell membrane a�er proteolytic cleavage (6, 7). 
TNF-ligands bind to one or several receptors of the TNFR family, 
which are type I transmembrane proteins characterized by their 
cysteine-rich domains (5, 8, 9).

�e identi�cation, cloning, and functional characterization 
of avian cytokines and their receptors have been hampered by 
their low sequence homology with their mammalian orthologs, 
the lack of cross-reactivity of diagnostic tools and of suitable 
bioassays. Progress was made when the �rst chicken genome 
sequence was released (10, 11). Since then several cytokine and 
cytokine receptor families have been identi�ed mainly in chick-
ens (12) and to some extend in other avian species (13). �e �rst 
comprehensive analysis of the chicken TNF/TNFR superfamilies 
identi�ed numerous members but indicated a reduced complex-
ity in comparison with the mammalian system (12). Several 
functionally important members of this superfamily seemed to 
be absent from the avian genome as previously observed for other 
avian cytokine and chemokine families. Most notably, neither 
TNF-α nor lymphotoxin-α (LTα) or LTβ in birds were found 
despite their essential roles in immune defense and lymphoid 
organ development in mammals (11). Despite signi�cant e�orts 
using conventional database analysis and EST database screening 
(12) as well as expression cloning approaches a chicken TNF-α 
(chTNF-α) ortholog could not be identi�ed. Furthermore, while 
the mammalian TNF-α gene is located within the MHC class III 
region in a cluster with LTα and LTβ, the syntenic region is absent 
from the chicken MHC locus (14). TNF-α-like biological activi-
ties in conditioned media have been reported repeatedly (15–18) 
but none of these activities could be further characterized and 
clearly attributed to a TNF-α-like protein. �ese observations led 
some authors to conclude that TNF-α is indeed lacking in birds 
and arguments were put forward that other TNF family members 
such as TNF-like ligand 1A might at least partially substitute for 
its absence (11, 19) as discussed for other missing genes (20).

However, TNF-α homologs have been described in the geno-
mes of several teleosts including Japanese �ounder, rainbow trout, 
and common carp (21–23). Functional studies demonstrated 
homo logs biological activities to mammalian TNF-α (23, 24)  
and characterized �sh TNF-α as a potent inducer of in�amma-
tory cytokines and antimicrobial peptides (25). These find-
ings would predict that TNF-α is a phylogenically “old” cytokine 
which might have been lost during the evolution of avian species 
(20) or translocated in the genome due to extensive reassortment 
as observed in the chicken MHC locus and thus escaped identi-
�cation as a consequence of incomplete shotgun sequences (12). 
Evidence in favor of the latter hypothesis comes from the identi�-
cation of orthologs of the two mammalian TNF-α receptors in the 
chicken genome. In mice and man, TNFR1 is expressed on most 
cells and binds TNF-α in its membrane bound and soluble forms. 
Expression of TNFR2 is largely restricted to immune cells and 
endothelial cells and primarily binds to transmembrane TNF-α 
(5, 26). Likewise, the chicken TNFR1 ortholog is expressed in a 
wide variety of tissues (27, 28). By contrast, the chicken TNFR2 
ortholog, which was identi�ed through a suppressive subtractive 
hybridization approach in LPS stimulated spleens, is primarily 

expressed in lymphoid tissues (29). �is receptor shows 31 and 
28% homology with its human and murine counterparts, respec-
tively. Using reciprocal BLAST analysis and examination of 
conserved syntenic regions Kaiser et al. con�rmed the presence 
of a TNFR2 ortholog in the chicken genome (12).

Recently, other “missing” genes were identi�ed in the chicken 
genome including cytokines, such as erythropoietin (30) and 
leptin (31, 32) by making use of the increasing number of avian 
genome sequences and advanced data mining technologies. 
It turned out that these newly identi�ed genes were highly 
GC-rich, which for technical reasons caused their absence from 
genome assemblies and other genetic databases (30). Such genes 
with high GC content and long GC-rich stretches are very hard 
to amplify by PCR and are also extremely underrepresented in 
next generation sequencing data. �us, based on our previous 
success with EPO and leptin we set out to search for avian TNF-α. 
Independently, another group recently reported partial sequence 
homologous to chTNF-α (33). Here, we report on the assembly 
of a full-length gene resembling chTNF-α and provide functional 
evidence that the identi�ed gene is indeed the avian ortholog of 
mammalian TNF-α. �us, our study closes a long existing gap in 
avian cytokine research and in the evolutionary tree of the TNF 
family.

RESULTS

Identi�cation of chTNF-α
We were able to identify chTNF-α using BLAST searches and 
manual assembly from Illumina sequence datasets available at 
the Sequence Read Archive (SRA) of the National Center for 
Biotechnology Information (NCBI) (see Materials and Methods). 
According to our previous experience with the discovery of 
novel chicken GC-rich genes, the key requirement for successful 
assembly is the use of very large Illumina sequence datasets. �is 
compensates for the extreme underrepresentation bias of these 
GC-rich regions in the data. �e entire coding sequence obtained 
in silico was veri�ed by RT-PCR ampli�cation from chicken RNA. 
Since GC-rich sequences are hard to amplify, the PCR was carried 
out in �ve overlapping shorter fragments that cover the entire 
chTNF-α coding sequence. �e resulting chTNF-α sequence was 
submitted to GenBank under accession number MF000729. It 
is predicted to encode a protein of 285 amino acids (Figure 1). 
Comparison with available sequences from di�erent reptiles 
and amphibian reveals an extended intracellular domain and a 
relatively well-conserved extracellular domain. �e extracellular 
domain is well alignable with human (45% similarity) and other 
vertebrate domains and contains the TNF superfamily motif.

Phylogenetic Analysis of TNF-α From 

Chicken and Other Birds
We next used the chTNF-α sequence as a probe in BLAST 
searches of NCBI SRA datasets from additional avian species. 
We were able to assemble full or partial TNF-α sequences from 
a wide variety of avian species (Figure S1 in Supplementary 
Material) including members of the suborders of Palaeognathae 
and Neognathae (with several Galloanserae and Neoaves).  
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FIGURE 1 | Alignment of tumor necrosis factor (TNF)-α amino acid sequences from chicken and other vertebrates. The positions of predicted protein domains and 

of the TNF superfamily motif are indicated above the alignment. The transmembrane domain of the chicken protein was predicted using the THMM 2.0 server 

(http://www.cbs.dtu.dk/services/TMHMM/). The GenBank accession numbers of the TNF-α proteins are the following: green anole (Anolis carolinensis; 

XP_008103955), king cobra (Ophiophagus hannah; ETE57607), American alligator (Alligator mississippiensis; XP_006258274), painted turtle (Chrysemys picta bellii; 

XP_008175031), African clawed frog (Xenopus tropicalis; NP_001107143), human (Homo sapiens; AAA61198), and house mouse (Mus musculus; AAB65593).
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As in the previous examples of GC-rich avian “missing” genes, 
all avian TNF-α sequences have a high GC content, in contrast 
to their various non-avian vertebrate orthologs (Figure S2 in 
Supplementary Material).

Phylogenetic analysis clearly shows the expected relationship 
of all newly identi�ed avian TNF-α sequences, re�ecting the 
evolutionary relationship of the species (Figure  2). �e avian 
sequences form a distinct cluster away from �sh, reptile, mam-
malian TNF-α, and the mammalian LT-α and LT-β. We were not 
able to identify orthologs of LTs in the available avian genomes 
and other sequence data.

To con�rm the identity of both chicken TNF receptors, we 
performed phylogenetic analysis of these two genes with the 
receptors from other vertebrates. Both chicken candidate TNFR1 
and TNFR2 (Figure  3) receptors cluster with high bootstrap 
support with the corresponding TNF receptors from reptiles and 
mammals (29, 34).

TNF-α Has Been Translocated in the Avian 

Genome With Large Genomic Region 

From the MHC Locus
We attempted to analyze the location of avian TNF-α in broader 
genomic context. We were not able to assemble the genomic 
region surrounding the chicken gene. However, in another avian 
genome, a newly released assembly of the crow (35), we suc-
ceeded in the identi�cation of an 80-kb contig (accession number 
MVNZ01000346) that contained a clear match to our identi�ed 
avian TNF-α sequence. Importantly, this contig also contained 
nine additional genes, the orthologs of which lie close to human 
TNF-α in the MHC locus (Figure 4). Most of the nine genes do 

not have annotations in any avian genome, to date. �is con-
served synteny suggests that possibly a chromosomal fragment 
containing several genes of the MHC complex, including TNF-α, 
was displaced to a new location in the avian ancestor. �e veri�-
cation of this hypothesis and determination of the chromosomal 
position would require much more complete genomic assemblies 
from multiple avian species. �e crow genomic sequence also 
allowed us to determine that the TNF-α gene of this species has 
the same four-exon structure as in other vertebrates (data not 
shown).

chTNF-α Is Induced in Cultured 

Macrophages, CD4+ T-Lymphocytes,  

and Spleen Tissue
To gain insight into the expression of chTNF-α, we �rst 
performed in  vitro experiments with LPS activated monocyte-
derived macrophages. Macrophages are well known from the 
mammalian system as primary producers of TNF-α. Chicken 
monocyte-derived macrophages were cultured in the presence of 
10 µg/ml or 100 ng/ml of LPS for up to 24 h, lysed and tested for 
cytokine expression by quantitative RT-PCR. A strong induction 
of chTNF-α message was observed within 4 h a�er LPS stimula-
tion with 100 ng/ml being more potent than 10 µg/ml (data not 
shown). �erefore, subsequent experiments were performed 
with a �nal concentration of 100 ng/ml LPS. Monocyte-derived 
macrophages (>92% KUL01+) (Figure  5A) showed signi�cant 
transcription of chTNF-α (three independent experiments) 
within 1 h of stimulation and maximal response a�er 2 h. mRNA 
levels rapidly declined a�er 8 h and were at background levels at 
24  h. Splenic macrophages (containing >  90% KUL01 positive 
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FIGURE 3 | Chicken tumor necrosis factor-α receptors 1 and 2 (TNFR1 and TNFR2) phylogeny. Maximum likelihood tree was constructed using sequences of  

TNFR proteins from chicken and other vertebrates. The TNFR1 sequences include chicken (NP_001025950), American alligator (XP_019331863), painted turtle 

(XP_008170508), house mouse (NP_035739), and human (NP_001056). The TNFR2 sequences include chicken (NP_989770), painted turtle (XP_005292860), 

American alligator (XP_006264541), house mouse (NP_035740), and human (NP_001056). The human TNFRS11A (NP_003830) member of the TNFR superfamily 

was used as an outgroup. The scale bar indicates the number of substitutions per site.

FIGURE 2 | Phylogenetic relationship of avian tumor necrosis factor (TNF)-α proteins with other members of the TNF superfamily. The maximum likelihood tree  

was generated from avian TNF-α proteins for which full-length sequences were obtained in this study, together with selected vertebrate TNF-α proteins and 

representatives of lymphotoxin-α (LT-α) and lymphotoxin-β (LT-β) families. TNF-α proteins include the representatives presented in Figure 1, along with avian 

sequences from this study (turkey, Meleagris gallopavo; house �nch, Haemorhous mexicanus; white-throated sparrow, Zonotrichia albicollis; crow spp., Corvus 

spp.; great tit, Parus major) and �sh sequences: red seabream (Pagrus major; AAP76392), European seabass (Dicentrarchus labrax; AAZ20770), common carp 

(Cyprinus carpio; CAC84641), and channel cat�sh (Ictalurus punctatus; NP_001187101). LT-α sequences include human (NP_000586) and house mouse 

(NP_034865), LT-β include human (NP_002332) and house mouse (NP_032544). Bootstrap support values are shown for each node. The scale bar  

indicates the number of amino acid substitutions per site.
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cells) (Figure  5B) showed similar kinetics with strong induc-
tion of chTNF-α message 2, and 4 h a�er LPS treatment and a 
reduction at 8  h (three independent experiments). Finally, 
macrophages differentiated from bone marrow (BM) precur-
sors by colony-stimulating factor 1 (CSF-1) treatment (36) 
responded equally to LPS but with a slightly delayed onset 
(Table 1).

In addition to macrophages, we tested lymphocytes for their 
capability to produce chTNF-α. Lymphocytes isolated from 
spleen tissue were subjected to crosslinking of the α/β T-cell 
receptor (TCR α/β) for 14 h which proved to induce high levels 
of chIFN-γ mRNA in previous experiments (37) and let to strong 
induction of chTNF-α message as shown here (Table 1). To iden-
tify the chTNF-α producing T-cell subpopulation we sorted in 
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FIGURE 5 | Relative expression of chicken TNF-α (chTNF-α) mRNA in lipopolysaccharide (LPS) stimulated monocyte derived and splenic macrophages. 

Macrophages isolated either from blood monocytes (A) or spleen tissue (B) by plastic adherence were stimulated with LPS (100 ng/ml) for the indicated periods. 

Control macrophages remained unstimulated. Relative expression levels of chTNF-α were analyzed by qRT-PCR. Data represent three independent experiments, 

signi�cant differences between controls and stimulated cells are indicated (*p ≤ 0.05; **p < 0.01; Student’s t-test).

FIGURE 4 | Comparison of syntenic gene order in human and crow tumor necrosis factor (TNF)-α loci. A schematic representation of the crow (upper) and human 

(lower) chromosomal regions containing TNF-α is shown. The genes are depicted as arrows, approximately to scale, pointing in the direction of transcription. The 

positions in the human genomic locus correspond to the numbering in the genome release hg38. The candidate orthologous genes from human and crow are 

connected with dotted lines. The identity of the crow genes was determined by BLAST analysis, in which the corresponding human gene scored as best BLAST  

hit to the crow sequence.
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an independent experiment CD4+ and CD8+ lymphocytes from 
spleen by FACS sorting to >99% purity and subjected these cells 
to TCR α/β crosslinking. Strikingly, no response was observed 
in the CD8+ population while T-helper cells transcribed both 
chTNF-α and chIFN-γ mRNA.

We next injected LPS i.v. into white leghorn hens at a dose 
of 10 µg/kg BW and collected liver and spleen tissues 3 h a�er 
treatment. To compare the chTNF-α response with that of other 
in�ammatory cytokines described in chickens, we quanti�ed 
chicken interleukin-6 (chIL-6) mRNA in parallel (Figure 6). In 
liver samples, IL-6 was upregulated 30-fold within 3 h con�rm-
ing the induction of an acute-phase response in the birds. By 
contrast, no signi�cant di�erence was observed for chTNF-α 
message in liver tissue between non-stimulated control birds and 
birds treated with LPS. Spleen tissue showed an even stronger 
induction of chIL-6 mRNA with a 350-fold increase at the same 
time point. We observed chTNF-α induction in the same samples 
but to a much lower level with only fourfold upregulation relative 
to the controls.

Collectively the expression data con�rm a rapid induction of 
chTNF-α in response to toll-like receptor (TLR)-4 ligation both 
in vitro and in vivo identifying this cytokine as a typical acute-
phase protein.

Recombinant chTNF-α Is Biologically 

Active
Finally, we intended to investigate if the newly identi�ed cytokine 
is biologically active. �erefore, chTNF-α was synthesized a�er 
codon optimization to avoid GC-rich regions for expression in 
HEK 293 cells and cloned into the expression vector pcDNA3.1 
for transient expression. Cell culture supernatants from chTNF-α 
transfected cells and non-transfected cells were harvested a�er 
12–16 h and added to the quail CEC-NFκB-luciferase reporter 
cells at a 1:25 dilution. �ese cells were initially established as 
reporters for chIL-1 bioactivity. �erefore, supernatants from 
HEK293 cells transfected with a chIL-1 expression construct 
served as positive controls. As shown in Figure 7A, rec. chTNF-α 
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TABLE 1 | Relative expression of chTNF-α and chIFN-γ mRNA.

Cell type Stimulated  

with

rel. Expression  

chTNF-α

rel. Expression  

IFN-γ

Lymphocytes Control 2.4 0.5

TCR-2 37.5 179.8

CD4+ cells Control 1.1 1.1

TCR-2 45.7 176.7

CD8+ cells Control 0.6 1.0

TCR-2 1.1 0.1

Macrophages (BM) 2 h control 2.4

2 h LPS 3.0

4 h control 0.8

4 h LPS 44.4

8 h control 1.0

8 h LPS 38.2

Lymphocytes were obtained from chicken spleen and either stimulated as a  

mixed population or after FACS sorting to obtain >99% pure CD4+ or CD8+ T-cells 

preparations. Cells were stimulated by crosslinking of the α/β-TCR with the monoclonal 

antibody TCR-2 for 14 h. chIFN-γ mRNA expression was used as a positive control. 

CSF-1 expanded BM-derived macrophages were stimulated with 100 ng/ml LPS  

for 2, 4, and 8 h. Relative expression was calculated using 18S rRNA as reference.

chTNF-α, chicken TNF-α; LPS, lipopolysaccharide; CSF-1, colony-stimulating factor 1; 

BM, bone marrow.
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activated the reporter with a similar potency as rec. chIL-1. �is 
activity was largely eliminated when samples were heated to 80°C 
for 5 min thus excluding the possibility that the observed activ-
ity is due to contaminating LPS. �e presence of recombinant 
chTNF-α in the culture supernatant was determined by mass 
spectrometry measurements (see Materials and Methods). �ree 
unique peptides from the chTNF-α protein were detected, with 
sequence coverage 10.2, MaxQuant Score 83.5 and Q-value (false-
positive probability) equal to zero (Figure S3A in Supplementary 
Material).

In addition, we expressed chTNF-α in E. coli as a full-length 
version and as a version encompassing only the extracellular 
domain and puri�ed them by Ni-chelate chromatography. Proper 
expression of the extracellular portion was con�rmed by Western 
blotting identifying a His-tagged protein band at the correct 
molecular size (Figure S3B in Supplementary Material). As shown 
in Figure 7B, the full-length chTNF-α strongly induced the lucif-
erase reporter. �is e�ect was not due to LPS contamination since 
LPS added at high (10 µg/ml) and low (10 ng/ml) concentrations 
to the cells did not lead to reporter induction (Figure 7B). In addi-
tion, LPS concentrations in our cytokine preparations were found 
to be 0.7 ng/ml at maximum as quanti�ed by Limulus amebocyte 
lysate (LAL) assay and thus well below those concentrations 
tested on the reporter cells. Finally, the activity was completely 
abrogated by heating to 80°C for 5 min (Figure 7C). Likewise, the 
extracellular version of chTNF-α highly signi�cantly activated the 
reporter cells. �is biological activity was completely abrogated 
if chTNF-α was heat treated prior to addition to the cell culture 
(Figure 7D).

DISCUSSION

TNF-α is a pleiotropic cytokine essential to control intracel-
lular bacteria, such as Listeria monocytogenes, Mycobacterium 

tuberculosis, and Salmonella typhimurium as shown in TNF 
receptor 1 de�cient mice (2). It is also known to be an important 
endogenous mediator of acute (39) and chronic in�ammatory 
(40) responses and is successfully targeted to treat rheumatoid 
arthritis in humans (41, 42). While orthologs of TNF-α were 
identi�ed in many mammalian species, amphibian, and teleost 
�sh (25, 43, 44), it seemed to be absent in avian species. Using 
very large Illumina sequence datasets, we were able to assemble 
a gene which showed signi�cant homology to TNF-α and to 
further characterize it as a true ortholog by its genomic structure 
and its biological properties.

Chicken TNF-α, like other “missing genes” in avian species, 
escaped from earlier identi�cation due to its GC richness and 
the absence of readily identi�able syntenic regions. A most 
recently published study newly described 137 genes classi�ed 
as “missing” including a sequence with homology to TNF-α. 
�e published chTNF-α sequence (33) shows almost complete 
identity across most of the length with the sequence obtained 
in this study. However, the Bornelov et  al. sequence is miss-
ing 216 nucleotides at the 5′ end and contains an insertion 
of 55 consecutive G nucleotides near the 3′ end (Figure S4 in 
Supplementary Material). �ese are, in our opinion, sequence 
assembly artifacts caused by the extremely high GC content. 
While only a small part of the sequence from the Bornelov 
et  al. study was experimentally veri�ed, we have con�rmed 
the complete chTNF-α sequence by RT-PCR and sequencing. 
�e chicken cytokine has an extended intracellular domain 
with unknown function at this point, as well as a conserved 
transmembrane sequence and displays the characteristic TNF 
superfamily motif in its extracellular part. �e extracellular 
portion is 45% similar at the amino acid level to human TNF-
α which is much higher than observed with other chicken 
cytokines, e.g., the interferons with only 20–25% similarity 
(12). �e sequence of the intracellular domain is very distant to 
corresponding sequences of non-avian vertebrates and is quite 
variable even among avian species. We identi�ed full or partial 
sequences with high homology to chTNF-α in 12 avian spe-
cies including Palaeognathae and Neognathae supporting the 
concept that this cytokine is phylogenetically conserved across 
avian species. In mammals, the extracellular portion of TNF-α 
is cleaved by metalloproteinases such as TNF-α converting 
enzyme between the alanine76 and valine77 residues to release 
the soluble and biologically active form (45). �is precise 
cleavage site is not present in the chicken sequence, while the 
relatively high overall sequence similarity points at an identical 
biology. To address this assumption, we cloned and expressed 
the extracellular part of chTNF-α and con�rmed its biological 
activity using the NFκB-reporter assay (46) indicating that an 
alternative cleavage site should be present in the avian protein.

Phylogenetic analysis clustered the newly identi�ed protein 
within the TNF-α family next to amphibian TNF-α and close to 
the human gene but more distant to the mammalian lymphotoxin 
genes and the �sh TNF-α homologs. Earlier studies reported 
that TNF-α is missing in the chicken MHC locus (14) pointing 
at a translocation event of either the TNF-α gene or the entire 
syntenic locus. Screening of avian genome databases identi�ed a 
contig in the recently published crow genome harboring the avian 
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FIGURE 6 | Relative expression of chicken TNF-α (chTNF-α) and chicken interleukin-6 mRNA in liver and spleen of lipopolysaccharide (LPS) treated and control 
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TNF-α sequence next to nine thus far mostly unknown genes, 
whose orthologs are ascribed to the mammalian MHC locus. 
Importantly, this contig did not contain LTα and LTβ orthologs as 
it would be expected based on synteny with mammalian genomes 
(47). �is observation con�rms the translocation of the TNF-α 
locus from the MHC region to a thus far unknown genomic 
location in birds and provides further evidence to the hypothesis 
that critical immune genes may be present in birds but have not 
been identi�ed as a consequence of translocation events and the 
high GC contents. In this context, it should be noted that the 
lymphotoxins might be an exception and may indeed be absent 
in species without lymph nodes as suggested by others (12).

Previous work indicated the presence of orthologs of both 
receptors of chTNF-α (29, 34). We followed up on this work 
and obtained full sequences for both genes. Both receptors very 
closely cluster with their reptile orthologs and show close relation 

to the human and mouse receptors. Collectively, these studies 
show that the TNF-α/TNF-α receptor genes are encoded in the 
chicken and many avian genomes and might thus display similar 
biological functions.

In mammals, macrophages stimulated by TLR ligands are 
known to be the primary source for TNF-α (4). Likewise, chicken 
monocyte derived macrophages rapidly respond to LPS treat-
ment with the induction of the TNF-α gene. Transcripts reached  
peak abundance within 2  h a�er stimulation and were at 
background levels at 24  h a�er treatment. �is kinetic feature 
is similar to that reported in mice (48). �e observed response 
pattern was independent of the macrophage source since splenic 
and BM-derived macrophages showed nearly identical kinetics. 
In mammals, T-lymphocytes are known as an additional source 
of TNF-α (49). �erefore, we isolated splenic lymphocytes, 
activated the cells through TCR α/β crosslinking and observed 
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FIGURE 7 | Biological activity of chicken TNF-α (chTNF-α). The full-length TNF-α gene was expressed in HEK293 cells and concentrated cell culture supernatants 
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strong chTNF-α expression. �is response was restricted to the 
CD4+ T-helper cell population which is in full agreement with 
results obtained in mouse and man (50). Next, we treated birds 
with LPS to con�rm our in vitro observations. TNF-α mRNA was 
signi�cantly induced in spleen but not in liver 3 h a�er treatment, 
while IL-6 was induced in both tissues and too much higher 
levels at this single time point. �e lack of chTNF-α expression 
in the liver may be explained by its state of active tolerance to 
LPS which is constantly delivered from the gut via the portal 
vein as reviewed in Ref. (51). However, the comparatively weak 
induction of chTNF-α in splenic tissue was surprising taken into 
account that the murine spleen responds to LPS within 2–6  h 
with strong TNF-α induction (48). However, these observations 
are in line with earlier work by several groups who unsuccess-
fully attempted to induce high levels of chTNF-α like activity in 
chicken macrophages su�cient for puri�cation to homogeneity 
and further molecular characterization (17, 52). Likewise, oral 
treatment of chickens with the TLR-7 ligand S-28463 induced a 

strong cytokine response in spleens with interferon, chemokine, 
and IL-6 mRNA expression, while expression of a TNF-α like 
message was not observed (53). �e failure to identify a TNF-α 
ortholog in chickens prior to the availability of large genomic 
sequence databases may partially be due to comparatively low 
expression levels or inadequate stimuli used in earlier studies. 
Using the information provided here, more detailed analysis of 
the chTNF-α biology will now be possible including extended 
in vitro and in vivo induction studies and more detailed analysis 
of the induction kinetics.

Finally, we generated recombinant chTNF-α in eukaryotic 
and prokaryotic expression systems to demonstrate its biological 
activity. Upon binding to TNFR1, the cytokine induces a com-
plex signaling cascade which ultimately leads to activation of 
the classical NFκB pathway (26) and NFκB induction (54). In 
a previous study, we established a reporter assay based on the 
quail �broblast cell line CEC-32 by stably transfecting the cells 
with an NFκB-luciferase reporter. �is cell line rapidly responds 
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to rec. chIL-1 (46) which led us to assume that it may also be 
responsive to chTNF-α. As expected, full-length chTNF-α 
expressed in HEK 293 cells induced the reporter to the same 
level as rec. chIL-1. �is e�ect was cytokine speci�c since (1) cell 
culture supernatants from mock transfected cells did not induce 
the reporter, (2) heat treatment abrogated the activity, and (3) 
LPS, as a potential contaminant to the culture supernatant, did 
not lead to a response over a concentration range from 0.1 ng/ml  
to 10 µg/ml. �e reporter cell line used in this study is a quail cell 
line (55) which may not express TLR-4 in contrast to chicken 
primary macrophages, macrophage cell lines, and heterophils 
and may therefore be unresponsive to LPS (56). An identical 
response pattern was observed with E. coli expressed full-length 
chTNF-α and the extracellular domain of the cytokine in a series 
of independent experiments.

Based on the genomic and functional data presented in this 
study, we provide strong evidence for the existence of a true 
ortholog of TNF-α in birds. �is work lays the foundation to gain 
new insights into the response of avian hosts to infection and 
in�ammatory stimuli. �us far, research on the in�ammatory 
response in birds has mainly focused on the analysis of IL-1 and 
IL-6 (38, 53, 57, 58). Both cytokines are known to be induced 
by TNF-α (59, 60) in myeloid cells and, on the other hand, are 
capable of inducing this cytokine (61). �e regulation of this 
intricate network could not be investigated in avian species to 
date but may help to understand unique responses of birds to 
pathogens. �e availability of biologically active rec. chTNF-α 
provides a basis for functional studies in  vitro and in  vivo. 
Technologies such as in  vivo overexpression or functional 
inhibition by retroviral vector-mediated gene transfer have been 
used successfully in previous research into the avian TNF family 
(62) and the type I IFN system (63, 64) and can be explored 
to further understand the chTNF-α/TNFR system. In addition, 
this work opens new avenues to investigate immunomodulatory 
properties of avian pathogens targeting the TNF family as shown 
in particular for herpes and pox viruses in mammals (65) and 
as previously studied for IFN modulatory factors in the chicken 
system (66, 67).

MATERIALS AND METHODS

Animals
All chickens were hatched and housed at the Institute of Animal 
Physiology (University of Munich, Germany). Commercial diet 
and water were provided ad libitum. For LPS treatment, Lohmann 
Selected Leghorn (LSL) chickens obtained from LSL Rhein-Main 
(Berglern, Germany) were used at an age of 6 weeks. Six birds 
were i.v. treated with 10 µg LPS in PBS/kg BW. Control animals 
received PBS only. �ree hours a�er injection animals were 
euthanized, liver and spleen tissues were obtained and stored 
in RNAlater (Sigma Aldrich, USA). Animal experiments were 
approved by the Government of Upper Bavaria, License number 
55.2-1-54-2531-121-09.

Blood was collected from the jugular vein of 3–4  months 
old white leghorn chickens (line M11) obtained from the 
Institute of Farm Animal Genetics (Federal Research Institute 
for Animal Health, Neustadt, Germany), and experiments were 

approved by the Government of Upper Bavaria, License number 
55.2-1-542532.0-60-2015.

Cell Culture
HEK293T and HEK293  cells were cultured in RPMI 1640 
(Biochrom, Germany) supplemented with 10% FBS (Biochrom, 
Germany) (standard medium) at 37°C and 5% CO2. Cells 
were transfected using ViaFect transfection reagent (Promega, 
Germany) according to the manufacture protocol. Supernatant 
was collected 48  h post-transfection and concentrated using 
an Amicon Ultra-15 Centrifugal Filter Units according to the 
manufacturer (Merck, UK).

CEC–NFκB–LUC cells (46) were cultured in Iscove’s basal 
Medium (Biochrom, Germany) supplemented with 8% FBS 
(Biochrom, Germany), 2% chicken serum (�ermo Scienti�c, 
Germany), 1% penicillin/streptomycin at 40°C, and 5% CO2.

Isolation and Cultivation of Primary 

Chicken Macrophages
60  ml blood was collected into syringes containing 200  µl 
Li-Heparin (500  IU/ml in RPMI 1640, Biochrom, Germany). 
Peripheral blood mononuclear cells were separated by density 
gradient centrifugation over Biocoll (1,077, Biochrom, Germany) 
at 200  ×  g for 20  min. Cells were washed twice with PBS and 
1 × 108 cells in 10 ml standard medium were plated in cell culture 
treated Petri dishes (ϕ 9 cm) and incubated at 40°C and 5% CO2. 
A�er 72 h, plates were washed three times with PBS to remove 
non-adherent cells. Spleen macrophages were isolated according 
to the procedure described (68). BM macrophages were gener-
ated as described by Garceau et al. (36) using rec. chicken CSF-1 
to di�erentiate BM precursors into macrophages. Macrophages 
adherent to cell culture Petri dishes were stimulated with LPS 
as indicated for the indicated periods. Purity of macrophage 
preparations was assessed by staining with monoclonal antibody 
KUL01-PE (SouthernBiotech, Birmingham, AL, USA) at a 1:100 
dilution and live-dead cell discrimination was obtained with 
�xable viability dye eFluor® 780 (�ermo Fisher Scienti�c) fol-
lowed by analysis using a BD FACSCanto II (Becton Dickinson, 
Heidelberg, Germany) and FACS Diva so�ware.

Isolation of Lymphocytes and Cell Sorting
Leukocytes were isolated from spleen tissue as described (37) 
and either activated without further separation or as puri �ed 
CD4+ or CD8+ cell preparations. Puri�cation was achieved 
by cell sorting with a BD FACSAriaIIIu (Becton Dickinson, 
Heidelberg, Germany). Monoclonal antibodies reacting with 
chicken CD8α (clone 3-298) (69) or chicken CD4 (CT4, 
SouthernBiotech, Birmingham, AL, USA) were used as FITC or 
RPE conjugates, respectively, to directly label T-cell subpopu-
lations. Lymphocyte activation was achieved by TCR cross-
linking as described (37).

mRNA Isolation, cDNA Synthesis,  

and PCR Ampli�cation
Total RNA was isolated using TRI reagent (Sigma-Aldrich, St. Louis, 
MO, USA) from lung tissue of Brown Leghorn chicken. Reverse 
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transcription was performed using the SMART RACE (Clontech, 
Palo Alto, CA, USA) procedure, 1 µg RNA, and Moloney murine 
leukemia virus reverse transcriptase (NEB, Ipswich, MA, USA). 
To amplify the highly GC-rich TNF-α gene, previously reported 
conditions were used (31): a 1:200 mixture of Deep Vent and 
Taq polymerases (both from NEB) and long (5–10 min) exten-
sion times. �e TNF-α cDNA was divided into �ve overlapping 
short amplicons, which cover the entire coding sequence. �e 
primer pairs used were 5′-CCATATGACCACGCTCTTTCCGT 
and 5′-AGCAGCAGCAGCAGCAGAGC, 5′-GTGGGCGGTG 
CGGCCATA and 5′-ACGTCGTTCTGAGCGGAGCTGT, 5′-GG 
GGAGAGGACCCCACAGCTC and 5′-CCTTCTCAGCACCA 
CGCCGTTA, 5′-GTCCTCTCAGCCCGGCTCGTT and 5′-GGT 
CAGGAGGGGGACGTCTTTG, 5′-CCGGGACGGCCTTTACT 
TCGTA and 5′-CTAATTTAATCCACTCCCACCACCC. �e 
PCR products were directly sequenced following isolation from 
agarose gel electrophoresis.

For gene expression studies, total RNA was isolated from  
LPS treated and non-treated macrophages using Trifast (peq-
GOLD TriFast, Peqlab, Germany) according to the manufac-
turer’s protocol. Tissues were homogenized using a Precellys® 
tissue homogenizer (Peqlab, Germany) prior to RNA isolation. 
1 µg total RNA was treated with DNase I, RNase-free-kit (�ermo 
Scienti�c, Germany) to remove genomic DNA. cDNA was syn-
thesized from 400  ng digested RNA using GoScript™ Reverse 
Transcription System kit as recommended by the manufacturer 
(Promega, Germany).

Cloning chTNF-α Expression Construct
�e chTNF-α nucleotide sequence was codon optimized for 
expression in human cell lines to avoid GC-rich regions using the 
online tool provided by GeneArt (�ermo Scienti�c, Germany). 
�e codon-optimized sequence was used to synthesize chTNF-α 
and to clone it into the expression vector pcDNA3.1. Gene 
synthesis and cloning were done using GeneArt. �e plasmid 
sequence was con�rmed by sequencing.

�e chTNF-α sequence from the expression vector pcDNA3.1 
was cloned into pET-45b(+) (Novagen®, Merck, UK) using 
Q5® High-Fidelity DNA Polymerase (NEB, Germany) and the 
following overhang primers: full length forward (5′-CACCAC 
CACCATCACGTGGGTACCGGTACCACCCTGTTCCCT 
TGC), full length reverse (5′-AGCGGTTTCTTTACCAGACT 
CGAGTCAATCCACTCCCACGAC), extracellular domain  
forward (5′-TCACCACCACCATCACGTGGGTACCGGTCCT 
TGGGGCGAGGATCCT), and extracellular domain reverse  
(5′-CAGCGGTTTCTTTACCAGACTCGAGTCAATCCACT 
CCCACGACTC).

�e DNA was puri�ed using the Wizard® SV Gel and PCR 
Clean-Up System (Promega, Germany) according to the manu-
facturer instructions.

Puri�ed DNA fragments and pet45b vector cut with AgeI 
and XhoI (�ermo Scienti�c, Germany) and assembled using 
NEBuilder® HiFi DNA Assembly Master Mix (NEB) according 
to the manufactures protocol. �e �nal constructs were then 
transformed into E. coli NEB5alpha cells using a 42°C heat-shock 
for 30 s. Properly transformed cells were selected over ampicillin 
resistance. �e plasmids were isolated using the PureYield™ 

Plasmid Miniprep System Technical Bulletin (Promega, 
Germany) and were veri�ed by sequencing.

Expression of Recombinant chTNF-α
To express recombinant chTNF-α, we transformed the pet45b 
vector including either the full length or the extracellular chTNF-α 
into E. coli BL21 (DE3) competent cells using the manufacturers 
protocol (Biolabs, USA). Shortly, BL21 cells were thawed on ice, 
the plasmid DNA was added and transformed by heat-shock 
for 10 s at 42°C. A�er successful selection, the protein was pro-
duced from 2 l bacteria suspension a�er induction of chTNF-α 
expression with 50  µM IPTG. Cells were centrifuged and the 
resulting cell pellet was suspended in ultrasonic bu�er (300 mM 
NaCl, 50 mM Na2HPO4, 1 mM DTT, pH 7.8). Cells were lysed 
by ultrasound seven times for 30 s while kept on ice. Cells were 
again centrifuged and the pellet was suspended in lysis bu�er 
(6 M guanidine-HCl, 100 mM NaH2PO4, 10 mM Tris–HCl, 1 mM 
DTT, pH 8.0), centrifuged and the supernatant collected. Ni-NTA 
Agarose (Qiagen, Germany) was washed once with water and once 
with the lysis bu�er and mixed with the supernatant for overnight 
rotation at 4°C. �e mixture was added to a column and washed 
with lysis bu�er and subsequently with washing bu�er 1 (8  M 
urea, 100 mM Na2HPO4, 10 mM Tris–HCl, 1 mM DTT, pH 8.0) 
and washing bu�er 2 (2 M urea, 1 M NaCl, 100 mM Na2HPO4, 
10 mM Tris–HCl, 1 mM DTT, pH 8.0). To eluate the protein, two 
elution bu�ers with di�erent pH were used. First bu�er contained 
50 mM Na-acetate, 1 M NaCl, 2 M urea, 10 mM Tris–HCl, 1 mM 
DTT, pH 6.5, added to the column and let �ow through until 3 ml 
were le�. �en the second elution bu�er (50 mM Na-acetate, 1 M 
NaCl, 2 M urea, 1 mM DTT, pH 3.6) was added and the protein 
was eluted with pressure and collected in several fractions. All 
fractions were then tested for the speci�c biological activity using 
the luciferase bioassay.

Quantitative RT-PCR
Quantitative RT-PCR was performed using either SYBRGreen 
(GoTaq® qPCR Master MixPromega, Germany) or TaqMan 
(Biolabs, USA) chemistry. Target gene expression was normal-
ized to the expression of 18S rRNA as previously described (70). 
For qPCR analysis, the following primers were used: 18S rRNA:  
5′-CATGTCTAAGTACACACGGGCGGTA and 5′-GGCGCTG 
CTGGCATGTATTA; chTNFα: 5′-CGCTCAGAACGACGTCAA 
and 5′-GTCGTCCACACCAACGAG; chIL-6: 5′-GCTTCGAC 
GAGGAGAAATGC and 5′-GCCAGGTGCTTTGTGCTGTA; 
chIFN-γ: 5′-TGGCGTGAAGAAGGTGAAAGA and 5′-TCCG 
CAGCTGGAAAAAGTG. ChTNF-α primers were designed 
using Primer 3 So�ware (71) and all primers were purchased  
from Euro�ns (Germany). �e reactions were performed using 
a 7300 Real Time PCR System (Applied Biosystems, �ermo 
Scienti�c).

Bioassay for chTNF-α and LPS 

Quanti�cation
CEC–NFκB–LUC cells were seeded into 96-well plates at a 
density of 1 × 105 cells per well and incubated for 12–16 h. A�er 
washing the cells with PBS, concentrated cell culture supernatant 
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containing chTNF-α or Ni-Agarose puri�ed TNF-α was added 
to each well and cultures were incubated for another 6  h. �e 
following steps including cell lysis and analysis were performed 
according to the manufacturer’s protocol (Luciferase Assay sys-
tem, Promega, Germany). Samples were measured on a Glomax 
96 microplate luminometer (Promega, Germany).

Lipopolysaccharide concentrations in chTNF-α preparations 
were quanti�ed by LAL assay as described by the manufacturer 
(�ermo Scienti�c, Germany).

Mass Spectrometry Analysis
Stably transfected HEK293T cells, cultivated as mentioned above, 
were washed six times with serum-free RPMI medium. B&S 
serum-free medium (Bio&Sell, Germany) was applied for 6  h 
and supernatant was collected and concentrated using Amicon 
Ultra-15 Centrifugal Filter Units. Protein aliquots (1 mg) were 
solubilized using sodium deoxycholate [1% (w/v) �nal conc.], 
reduced with TCEP [tris(2-carboxyethyl)phosphine], alkylated 
with MMTS (S-methyl methanethiosulfonate), digested sequen-
tially with trypsin and extracted with ethylacetate saturated with 
water as described (72). Samples were desalted on OPTI-TRAP 
Macro (Optimize Technologies, Oregon City, OR, USA), dried 
in Speedvac and dissolved in 20 mM ammonium formate + 2% 
acetonitrile. About 1 mg of peptide digests were separated on C18 
column (Kinetex 1.7 µm, EVO C18), with linear gradient from 0% 
A (of 20 mM ammonium formate, 2% acetonitrile pH = 10) to 
50% B (of 20 mM ammonium formate, 80% acetonitrile pH = 10) 
in 32  min, �ow 300  µl/min. 32 fractions were collected and 
pooled into 8 fractions (73); the resulting fractions were dried 
and resuspended in 20 µl of 1% tri�uoroacetic acid. About 2 µg of 
peptide from each fraction were separated on 50-cm C18 column 
using 2.5  h elution gradient and analyzed in a DDA mode on 
Orbitrap Fusion Tribrid (�ermo Scienti�c) mass spectrometer. 
Resulting raw �les were processed in MaxQuant (v. 1.5.8.3) (74). 
Searches were performed against latest version of human Uniprot 
reference database, sequence of protein of interest, and common 
contaminant database. Downstream analysis and visualization 
was performed in Perseus (v. 1.5.5.3) (75).

Western Blot Analysis
Puri�ed chTNF-α, diluted 1:6 into Lämmli bu�er containing 
additional 0.5 µl 1 M DTT (�ermo Scienti�c, USA), was sepa-
rated on a 10% SDS-PAGE gel and transferred to a nitrocellulose 
membrane (Amersham Protran® 0.2 µm, GE Healthcare Europe 
GmbH, Germany) using the Mini Trans-Blot Electrophoretic 
Transfer Cell (BioRad, Germany) at 100 V for 1 h. �e membrane 
was blocked with 4% skim milk (Applichem, Germany) for 1 h, 
washed three times with PBS-T and incubated with an anti-
His-antibody (0.2  mg/ml, Dianova, Germany) 1:1,000 diluted 
in PBS-T for 1  h. A�er three washings, Goat-Anti-Mouse IgG 
(H + L)-HRPO (©Jackson ImmunoResearch, USA) at a 1:10,000 
dilution was added for 1 h and membranes were subsequently 
washed six times. Membranes were developed with Luminol 
reagent (Sigma Aldrich, USA) for 1 min and images were taken 
using the Image Quant Capture 300 device (GE Healthcare 
Europe GmbH, Germany). An irrelevant HIS-tagged protein was 
used as a control.

Computational Analysis of Avian 

Sequences From SRA
To assemble the chTNF-α sequence, several large datasets 
from the NCBI SRA were used (mainly Illumina RNA-seq 
studies ERP003988, SRP026393, SRP033603, and SRP014719). 
Sequences of non-avian vertebrate TNF-α genes were used as 
probes in BLAST searches of the SRA datasets. �e sequences 
obtained were downloaded and assembled manually either 
with CLC genomics workbench 8.0.1 (www.clcbio.com) or 
with Lasergene 10.0.0 (DNASTAR, Madison, WI, USA). �e 
resulting short contigs were used as probes in subsequent 
rounds of BLAST searches against SRA datasets, until the full 
open reading frame was completed. To obtain TNF-α from 
other avian species, the chicken gene was used as a probe to 
interrogate by BLAST the SRA RNA-seq or genomic datasets 
from the particular species. In some cases, the coverage of the 
TNF-α gene was not su�cient to assemble the complete coding 
sequence.

Sequence Alignment and Phylogenetic 

Inference
Amino acid sequences were aligned using the MAFFT so�ware 
v7.271 with L-INS-i algorithm (76). Prior to the phylogenetic 
inference, columns with more than 80% of gaps were discarded. 
Maximum likelihood phylogeny was generated using MEGA 6 
so�ware (77). WAG + F model with gamma distribution (six cat-
egories) of rates among sites was used as a best-�tting substitution 
model (according to the Akaike Information Criterion calculated 
in Smart Model Selection module of PhyML so�ware). �e SPR 
operations in an optimized BioNJ starting tree were used for 
searching of the �nal tree. Bootstrap support for each node was 
evaluated with 1,000 replicates.

Statistical Analysis
Statistics were performed using SPSS 24 (IBM, USA) calculating 
either the Student’s t-test or Mann–Whitney U-test.
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FIGURE S1 | Alignment of TNF-α amino acid sequences from various avian 

species. In some avian species, only partial TNF-α sequence could be obtained 

from the available National Center for Biotechnology Information Sequence Read 

Archive data. In such cases, the 5′ and/or 3′ regions are �lled with blue “X” 

letters in the alignment to indicate the missing parts. In addition to the avian 

species mentioned in Figure 2, the following species are included: rock pigeon 

(Columba livia), golden eagle (Aquila chrysaetos), mallard (Anas platyrhynchos), 

swan goose (Anser cygnoides), African ostrich (Struthio camelus), brown kiwi 

(Apteryx mantelli), and white-throated tinamou (Tinamus guttatus). The protein 

domain positions and the TNF superfamily motif are shown above the alignment.

FIGURE S2 | Comparison of GC content and the presence of GC-rich stretches 

in avian and non-avian TNF-α genes. The GC content is plotted against the 

average length of GC-rich stretch, which is de�ned as an uninterrupted sequence 

of at least three consecutive G or C nucleotides. For comparison with the bulk  

of the chicken genes (all approximately six thousand chicken RefSeq coding 

sequences longer than 299 nucleotides), a histogram of the distribution of 

GC-rich stretches in the chicken RefSeq gene category is shown as a grey line. 

The TNF-α genes from the following species were included: avian species shown 

in the tree in Figure 2; non-avian species shown in the alignment in Figure 1; 

channel cat�sh and common carp.

FIGURE S3 | Mass spectrometry and Western blot analysis of the recombinant 

chicken TNF-α (chTNF-α). Spectra of three unique peptides of the recombinant 

chTNF-α protein produced in HEK293 cell supernatant. The peptide sequence is 

shown below each diagram (A). Western blot analysis to detect the extracellular 

chTNF-α (line 2) at the assumed level of 21 kDa. The Protein weight was 

calculated using the Editseq software (DNASTAR®, USA). Line 1 shows the 

HIS-tagged protein which was used as a positive control for the Tag (B).

FIGURE S4 | Pairwise alignment of a previously published chicken TNF-α 

(chTNF-α) nucleotide sequence with the sequence reported in this study. The  

full coding sequences of chTNF-α from this study and from the work of Bornelov 

et al. (33) were used in the alignment. The predicted transmembrane domain  

is shown in a gray box. The extent of sequence con�rmed by RT-PCR and 

sequencing in the Bornelov et al. study is depicted by blue line.
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