
Research Article

Characterization of Class F Fly Ash Using STXM: Identifying
Intraparticle Heterogeneity at Nanometer Scale
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Chemical and physical characterization of 	y ash particles were conducted using scanning transmissionX-raymicroscopy (STXM).
Compositional and spatial investigation and correlation among the main elemental constituents of 	y ash (Al, Si, and Fe) were
conducted based on microscopic and NEXAFS spectral analysis. Homogeneous oxidation and coordination state of Al and Fe
were observed whereas Si shows spatial variation in its chemical state. We also identi
ed that Si and Al are spatially correlated at
nanometer scale in which high concentration of Si and Al was concurrently and consistently observed within the 30 nm resolution
whereas Fe distribution did not show any speci
c correlation to Al and Si. Results of this study indicate that 	y ash chemical
composition has heterogeneous distribution depending on the elements which would determine and result in the di�erences in the
reactivity.

1. Introduction

�e manufacturing process for Ordinary Portland Cement
(OPC) emits a large amount of green-house gas, producing
between 800 and 1000 kg of carbon dioxide per ton ofOPC. In
fact, themanufacturing of OPC is estimated to be responsible
for around 8% of all carbon dioxide emissions worldwide
[1]. Because of the chemical composition of 	y ash, which
contains quartz and amorphous silica, 	y ash has emerged as
a good substitute for the raw materials in cement production
since 	y ash can serve as pozzolan in producing cementitious
materials [2]. In addition to its compositional advantage, the
spherical shape as well as particle size distribution of 	y ash
further makes it a good construction material because of the
low water demand and high particle packing [3, 4]. Hence,
in an e�ort to recycle the industrial waste byproducts and to
reduce global CO2 production, numerous studies have been
done on 	y ash application to construction materials [5–8].
With the annual production of 	y ash in the United States
alone mounting to approximately 63 million tons per year

from coal combustion in power plants, more opportunities
are awaiting for using 	y ash for di�erent applications
including cement production [9, 10]. In particular, recent
development and advancement in cement industry has iden-
ti
ed that high-volume 	y ash (HVFA) substituted materials
(a.k.a. geopolymers or green cement) have potential to serve
as useful and e�ective construction materials due to their
durability and strengths without releasing carbon dioxide in
the air during their manufacturing process [11, 12].

Despite the wide applications and increasing demands
of recycling 	y ash, relatively a small number of studies
have been done on characterization of 	y ash due to the
inherent chemical and physical complexity of the materials.
In the past, compositional heterogeneity has been identi
ed
as the spherical glass phase and the crystalline phase are
simultaneously present in 	y ash. Extensive X-ray di�raction
(XRD) studies, compositional analysis such as X-ray 	uo-
rescence (XRF) measurements, and thermal analysis using
thermogravimetric analyzer (TGA) were carried out to study
correlation between the glassy phases and crystalline phases
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Table 1: Percent (%) of elemental composition of Class F 	y ash based on XRF analysis.

wt. % Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO MnO Fe2O3
Fly ash 0.54 1.21 16.62 63.24 0.359 1.39 3.13 0.86 0.05 6.41

in determining the reactivity of 	y ash [13–18].However,most
of the studies to date on 	y ash properties lack the sensitivity
to probe the intrinsic heterogeneous nature of 	y ash because
they are done mostly on bulk materials. Conventional ana-
lytical techniques have limitations on providing structural
and chemical details such as coexistence of di�erent glassy
phases in a single particle of 	y ash.�e spatial heterogeneity
of the elemental composition on 	y ash particles has been
especially neglected due to the lack of proper experimental
and analytical techniques.

However, it is important to identify the spatial correlation
between the amorphous and crystalline phase as well as the
elemental compositional correlation in 	y ash particles at
nanometer scale in order to identify the governing factor
of determining the reactivity of 	y ash. For example, when
	y ash reacts with alkaline solution in cement production,
surface chemistry of the 	y ash determines the dissolution
pathways which will then ultimately determine the following
precipitation reaction pathways and reaction byproducts [19–
21]. It has been shown that the key parameter in determining
the overall reactivity of 	y ash has been the glass contents in
the materials [22–25]. Having the amorphous glassy phase
buried within the spherical morphological feature of the 	y
ash can possibly slow down the kinetics of the reactions
compared to the ones with the amorphous phase exposed on
the surface of the 	y ash particles. It is also possible that 	y ash
with more iron atoms at the surface of particles has higher
reactivity compared to the ones with more silicon atoms at
the surface. �erefore, identifying the glass phases and the
intercalated chemical states of the mixed phases is important
in characterizing 	y ash since the distribution and concentra-
tion of di�erent phases ultimately control the reactivity of the
materials and their applicability to construction materials.

Studies have suggested that most of the glassy con-
stituents in 	y ash are aluminosilicates but no further details
with respect to the concomitant existence of glassy phases
and the crystalline phases have been reported to date [26–28].
Current model for 	y ash particles is expected to be the hol-
low particles with amorphous walls which frequently contain
crystalline matter such as mullite while the glass phase itself
may be homogeneous [29–33]. Despite the e�orts and recent
advances in experimental approaches by using a combination
of vibrational spectroscopy, chemical separation methods,
NMR, and XPS, challenges still remain in identifying the
structure of 	y ash particles [34–36].

In this study, we used a novel approach in characterizing
	y ash particles by using synchrotron based scanning trans-
mission X-ray microscopy (STXM) to investigate the spatial
distribution of di�erent elements and phases at nanometer
scale. Two-dimensional map at spatial resolution of 30 nm
was obtained by STXM to get the compositional and mor-
phological information on 	y ash particles while concurrent
measurements of near edge X-ray absorption 
ne structure

(NEXAFS) provided chemical speciation of the samples. To
our knowledge, this is the 
rst work on characterizing 	y ash
particles using STXM work to resolve the current challenge
in studying 	y ash particles.

2. Experimental Approach

2.1. Materials and Sample Preparation. Class F 	y ash parti-
cles are obtained from Bridger plant (Northern California)
of Headwaters Resources. �e American Society for Testing
and Materials (ASTM) speci
es two types of 	y ash, Class
F ash and Class C ash, for use as a pozzolan or mineral
admixture in concrete. Class F ash is normally produced
from burning anthracite or bituminous coal. Samples of
Class F 	y ash from combustion of bituminous coal at
electric power plants were examined in this study. XRF
analysis was conducted atUniversity of California at Berkeley,
XRF Laboratory, to identify the chemical composition using
Phillips PW2400X-ray 	uorescence (XRF) spectrometer.�e
major and minor element compositions are given in Table 1.
�e sample contains Si, Al, and Fe as the major constituents
with approximately 63% Si, 17% Al, and 6% Fe. �e Ca
concentration was approximately 3%. XRD analysis indicates
that hematite (�-Fe2O3), mullite (Al2[Al2+2�Si2−2�]O10−2�),
and quartz (SiO2) are the main crystalline phases occurring
in the bulk samples of Class F 	y ash.

For STXM measurements, samples were studied in pol-
ished cross section in order to examine the internal structure
and composition of individual particles. A representative
portion of 	y ash sample was impregnated with epoxy,
allowed to harden, and then polished using ion milling
techniques. Sample was characterized by randomly selecting
3-4 
elds of view and examining all the 	y ash particles
observed within the selected 
elds to obtain a statistical
representation of the sample.

2.2. STXMMeasurements. STXM is a transmissionmicroscopy
using a monochromated X-ray beam produced by syn-
chrotron radiation. X-ray absorption edges occur when an
incident photon energy exceeds the binding energy needed to
remove an electron completely from an orbital shell. Di�erent
near edge absorption bands are observed depending on the
absorbing atoms and these bands are sensitive indicators of
the local chemical bonding environment surrounding the
atom of interest. In addition to obtaining the chemical spe-
ciation information, STXM allows identifying heterogeneity
within the samples on a particle-by-particle basis. Using the
scanning transmission X-ray microscopy (STXM) together
with concurrentmeasurements of near edgeX-ray absorption

ne structure (NEXAFS) spectra, it is possible to examine
sample compositions and spatial heterogeneities.

Two di�erent types of results were collected at the
STXM beamline. First, image contrast data is obtained from
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Figure 1: STXM images of Class F 	y ash for Al K-edge taken at (a) 1550 eV; (b) 1570 eV; (c) image map of samples by taking a contrast
between (a) and (b); (d) image map of the smaller area shown as a white rectangular region in (c) for spectral analysis.

di�erential absorption of X-rays depending on the chemical
composition of the sample. Second, image stacks or line scan
data are obtained by scanning the sample in the x-y direction
(image stack) energy increments of 0.1 eV over the energy
range of interest. Normalization and background subtraction
of the spectra were performed by dividing each spectrum
from the sample by the spectrum of the sample-free location.
Elementalmaps of the samples can be obtained by subtracting
the image obtained from below the absorption energy level
and the image obtained above the absorption energy. Axis
2000 so�ware (version 2.1) [37] was used to align image
stacks and extract NEXAFS spectra from image stack or line
scan measurements. In this study, the STXM results were
collected at the Advanced Light Source (ALS) branch lines
11.0.2.2. and 5.3.2. with the synchrotron storage ring operating
at 1.9 GeV and 200–400mA stored current. More details on
experimental approach and data analysis can be found in
previous STXM work on cement samples [38, 39].

3. Results and Discussions

Figure 1 shows STXM image of Class F 	y ash particles at
below and above Al K-edge. As described in the experimental
section, image contrast measurements, a.k.a. imagemapping,

identify a concentrated area of the element of interest by
taking the pixel intensity before the absorption edge of the
element and subtracting it from the same image taken above
the absorption edge. Figure 1(a) is the area of clustered 	y
ash particles taken at 1555 eV, which is below the absorption
edge of Al. �is image is subtracted from image of the same
location taken above the Al absorption edge (1570 eV) as
shown in Figure 1(b).�e
nal results, that is, imagemapping,
are shown in Figure 1(c) where the high concentrated Al
area is identi
ed as bright white locations. Once it was
con
rmed that there was element of interest, then a smaller
area of the image is selected and magni
ed to observe

ne features of samples and to measure NEXAFS spectra
from various locations to identify possible heterogeneity in
chemical species within the samples at spatial resolution up
to 25∼30 nm. 10 �m × 10 �mof smaller region was chosen for
detailed investigation shown as a small rectangular region in
Figure 1(c).

Al K-edge NEXAFS spectra are taken from various
locations within the single particle of 	y ash as shown
in Figure 2(a). As shown in Figure 2(b), no signi
cant
changes in the peak positions and features in the Al K-
edge spectra were observed suggesting that no changes in
oxidation state or coordination environments occur with
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Figure 2: (a) STXM image map of Class F 	y ash for Al K-edge. Numbers indicate the corresponding spectra from which the NEXAFS Al
K-edge spectra are taken within the dotted enclosed region; (b) NEXAFS Al K-edge spectra of sample; (c) NEXAFS Al K-edge spectra of
reference compounds.

respect to Al atoms in this sample. Concentration variation
was observed since areas with relatively less Al contents
were found within the nm range of the spatial resolution
(see spectra 1–3 in Figure 2(b)). Studies have shown that a
clear distinction can be made between the XANES spectra
of tetrahedrally coordinated Al and octahedrally coordinated
Al. Absorption band occurring at 1566 eV is characteristic of
tetrahedral compounds whereas peaks at 1568 and 1572 eV
are characteristic of octahedral compounds [40]. Comparing
the sample spectra to the reference Al containing mineral
spectra as shown in Figure 2(c), we conclude that the
single peak at 1566 eV in our 	y ash sample is due to
the tetrahedrally coordinated Al. Our sample spectra are
similar to previously reported Al K-edge NEXAFS spectra
of mordenite-type aluminosilicate containing Al atoms in

the zeolite framework or mullite [41]. Based on our STXM
and NEXAFS analysis, we conclude that only tetrahedrally
coordinated Al is present and its concentration varies within
a single particle of 	y ash. Other studies have also identi
ed
tetrahedrally coordinated Al in cementitious materials using
various other experimental approaches [42, 43], but our work
is the 
rst of the kind in suggesting the special heterogeneity
of the Al coordination in 	y ash sample.

Figures 3(a) and 3(b) show Fe LII,III-edge and Si K-edge
image maps of the same sample site as Al K-edge image map
was taken. We observed spatial heterogeneity with di�erent
elements by comparing the image maps of all three di�erent
elements. For example, areas 4, 5, 6, and 7 have relatively
high concentration of both Si and Al based on the NEXAFS
spectral analysis. Areas 1, 2, and 3 all contain relatively low
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Figure 3: STXM image map of Class F 	y ash at (a) Fe L
II,III-edge; (b) Si K-edge. NEXAFS spectra of sample taken from various regions as

shown in the image map for (c) Fe L
II,III-edge; (d) Si K-edge.

concentration of both Si and Al. �is con
rms that there is
fairly strong chemical correlation between Si and Al. STXM
also con
rms that spatial variation in terms of elemental
concentration exists within the 	y ash particles. On the other
hand, Fe concentration and spatial distribution did not have
strong correlation with Si nor Al. For example, relatively low
concentration of both Si and Al was found in area 2 whereas
high concentration of Fe was found in area 2. Area 7 was
found to contain high concentration of Si and Al, yet it had
relatively low amount of Fe. We cannot conclude that there
is an inverse correlation either since area 6 contains relatively
high concentration for all three elements. We would like to
note that this conclusion is based on examination of at least
three di�erent sites on di�erent particle samples to enhance
our statistical con
dence in conclusion.

Based on the spectral features and their comparison to
previous Fe LII,III-edge NEXAFS spectra, we conclude that it

is dominantly oxidized Fe (i.e., Fe3+) in the 	y ash sample as
shown in Figure 3(c). Unlike Al and Fe, Si K-edge NEXAFS
spectra showed spatial variations as shown in Figure 3(d).
For example, spectrum taken from area 4 has its major peak
at 1846.8 eV whereas the one from area 7 has its peak at
1858.3 eV. Previous work has demonstrated that Si K-edge
NEXAFS spectrum can serve as 
ngerprints of local struc-
tural variations in silicate. For example, a four-oxygen coordi-
nated Si, such as in quartz, has a Si K-edge absorption edge at
around 1846.8 eV whereas six-oxygen coordinated Si, such as
in stishovite, has its absorption edge at around 1858.3 eV [44].
Hence, we conclude that Si has intra- and interparticle spatial
variation with respect to its coordination environment.
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4. Conclusions

In summary, we have observed homogeneous oxidation and
coordination state of Al as shown in Al K-edge NEXAFS
spectra with heterogeneity in its spatial distribution. We
also identi
ed that Si and Al are spatially correlated at
nanometer scale in which high concentrations of Si and
Al were concurrently and consistently observed within the
30 nm resolution. However, Fe distribution did not show any
speci
c correlation to Al and Si and mostly oxidized form of
Fe based on Fe LII,III-edge NEXAFS spectra. Unlike Al and Fe
where no variation in chemical oxidation and coordination
was observed, Si showed spatial inter- and intraparticle
variations in polymerization. Our work suggests that spatial
heterogeneous distribution of elements exists in the 	y ash
sample. Future work on examining the overall reactivity of
the 	y ash and relating it to nanometer range elemental
distribution and chemical compositions will further enhance
our understanding of 	y ash.
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