
Characterization of Collective Gaussian Attacks and Security
of Coherent-State Quantum Cryptography

Stefano Pirandola,1 Samuel L. Braunstein,2 and Seth Lloyd1,3

1Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA
2Computer Science, University of York, York YO10 5DD, United Kingdom

3Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
(Received 5 June 2008; published 14 November 2008)

We provide a simple description of the most general collective Gaussian attack in continuous-variable

quantum cryptography. In the scenario of such general attacks, we analyze the asymptotic secret-key rates

which are achievable with coherent states, joint measurements of the quadratures and one-way classical

communication.
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During recent years, quantum systems with infinite di-
mensional Hilbert spaces have become the object of in-
creasing interest within the quantum information
community [1]. These systems are generally called
continuous-variable systems, and their standard prototype
is given by the bosonic modes of the radiation field. In
ordinary experiments in quantum optics, bosonic modes
are generated in states with Gaussian statistics [2], and
these statistics are commonly preserved during subsequent
optical manipulation. Further, the Gaussian statistics can
be preserved at the end of quantum communication lines
(e.g., optical fibers), where noisy transformations of the
state are induced by the interaction with an external envi-
ronment. From a theoretical point of view, the standard
model for this kind of transformation is represented by the
one-mode Gaussian channel. This is a completely positive
trace-preserving (CPT) map that transforms Gaussian
states into Gaussian states, without creating any kind of
correlation among the various bosonic modes. The mathe-
matical structure of this map is relatively simple and has
been further simplified in Ref. [3] via the introduction of
canonical forms.

In the context of continuous-variable quantum key dis-
tribution (cvQKD), one-mode Gaussian channels can be
interpreted as the effect of collective Gaussian attacks.
Starting from this consideration, here we extend the results
of Refs. [3,4] to provide a full characterization of the most
general collective Gaussian attack in cvQKD. Recall that
collective Gaussian attacks have been recognized as the
most powerful collective attacks in cvQKD with Gaussian
resources [5]. Furthermore, under suitable conditions [6],
collective attacks have been recently proven to bound the
most general attacks (coherent attacks) against cvQKD
protocols. Using our general characterization of collective
Gaussian attacks, we then analyze the security of a cvQKD
protocol, where coherent states are used to generate secret
correlations. Such a protocol is a simple generalization of
the nonswitching protocol of Ref. [7], where further post-
processing of the classical data is also used to compensate
possible squeezing and rotation of the output quadratures.

Let us consider a single bosonic mode, whose quadra-
tures x̂T :¼ ðq̂; p̂Þ satisfy ½x̂; x̂T� ¼ 2i�, where the matrix
� is defined by the entries �11 ¼ �22 ¼ 0 and �12 ¼
��21 ¼ 1. Every Gaussian state � [2] of the system is
characterized by a displacement vector �x :¼ Trðx̂�Þ and a
covariance matrix V :¼ Trf½x̂x̂T þ ðx̂x̂TÞT��g=2� �x �xT .
In a quantum communication scenario, this kind of state
can be used by a sender (Alice) to transmit classical
information to a receiver (Bob) through a noisy quantum
channel. Usually, Alice chooses �ð �x;VÞ from an ensemble
of signal states A :¼ fpð �xÞ; �ð �x;VÞg encoding a classical
variable X :¼ fpð �xÞ; �xg. This variable describes the modu-
lation of the displacement �x via some probability distribu-
tion pð �xÞ. The signal states are then sent to Bob, in
independent uses of the quantum channel. At the output,
Bob gets a noisy ensembleB, whose (incoherent) detection
gives a classical variable Y which is correlated to X (see
Fig. 1, step 1). In this scenario, the standard model for the
noise process is represented by the one-mode Gaussian
channel. By definition, this channel is a CPT map G acting
on a single bosonic mode and preserving the Gaussian
statistics of the input state. The mathematical description
of this channel is fully contained in a triplet fT;N;dg,
where d is an R2 vector and T, N are 2� 2 real matrices
[8]. Explicitly, the action of GðT;N;dÞ on a Gaussian state
�ð �x;VÞ corresponds to the simple transformations

�x ! T �xþ d;V ! TVTT þN: (1)

In particular, for N ¼ 0 and T :¼ S symplectic (i.e.,
S�ST ¼ �), the channel represents a Gaussian unitary.
This means that we can set GðS; 0;dÞ :¼ UðS;dÞ where
U: � ! Û�Ûy with Û a unitary operator.
Remarkably, the mathematical structure of GðT;N;dÞ

can be further simplified thanks to recent results of
Ref. [3]. In fact, every GðT;N;dÞ can be decomposed as
G ¼ UB � C �UA, where fUA;UBg are Gaussian uni-
taries, while the map C, called the canonical form, repre-
sents a Gaussian channel with d ¼ 0 and Tc, Nc diagonal.
The explicit expressions of Tc and Nc depend on three
symplectic invariants of the channel: the generalized trans-
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mission � :¼ detT (ranging from �1 to þ1), the rank
r :¼ ½rkðTÞrkðNÞ�=2 (with possible values r ¼ 0, 1, 2), and
the temperature �n (which is a positive number related to
detN [9]). These three invariants f�; r; �ng completely char-
acterize the two matrices Tc, Nc and, therefore, the corre-
sponding canonical form C ¼ Cð�; r; �nÞ. In particular, the
first two invariants f�; rg determine the class of the form
[3]. The full classification is explicitly shown in the follow-
ing Table

� r Class Form Tc Nc

0 0 A1 Cð0; 0; �nÞ 0 ð2 �nþ 1ÞI
0 1 A2 Cð0; 1; �nÞ IþZ

2 ð2 �nþ 1ÞI
1 1 B1 Cð1; 1; 0Þ I I�Z

2

1 2 B2 Cð1; 2; �nÞ I �nI
1 0 B2ðIdÞ Cð1; 0; 0Þ I 0
(0, 1) 2 CðAttÞ Cð�; 2; �nÞ ffiffiffi

�
p

I ð1� �Þð2 �nþ 1ÞI
>1 2 CðAmpÞ Cð�; 2; �nÞ ffiffiffi

�
p

I ð�� 1Þð2 �nþ 1ÞI
<0 2 D Cð�; 2; �nÞ ffiffiffiffiffiffiffi��

p
Z ð1� �Þð2 �nþ 1ÞI

In this Table, the values of f�; rg in the first two columns
specify a particular class A1, A2, B1, B2, C, and D [10].
Within each class, the possible canonical forms are ex-
pressed in the third column, where also the third invariant �n
must be considered. The corresponding expressions of Tc,
Nc are shown in the last two columns, where Z :¼
diagð1;�1Þ, I :¼ diagð1; 1Þ and 0 is the zero matrix.

Thus, an arbitrary one-mode Gaussian channel
GðT;N;dÞ can be expressed by a unique canonical form
Cð�; r; �nÞ up to a pair of input-output Gaussian unitaries
fUA;UBg. Now, it is known that every quantum channel
can be represented by a unitary interaction coupling the
signal system to an environment, prepared in some initial
state �E. When �E is pure, such a dilation is called a
‘‘Stinespring dilation’’ and is unique up to partial isome-
tries [11]. By extending the results of Ref. [4], we easily
construct the Stinespring dilations of all the canonical
forms. In detail, a generic Cð�; r; �nÞ can be dilated to a
three-mode Gaussian unitary corresponding to a symplec-
tic transformation L ¼ Lð�; rÞ [12]. This transformation
mixes the input state �A with a two-mode squeezed vac-
uum (TMSV) state jwiE of variance w ¼ 2 �nþ 1 (see
Fig. 1, step 2). Compactly, we denote by fLð�; rÞ; jwig
the Stinespring dilation of a generic canonical form
Cð�; r; �nÞ. For particular choices of the class f�; rg, this
dilation corresponds to well-known Gaussian models of
interaction. In particular, for f�; rg ¼ f1; 2g, it corresponds
to a universal Gaussian cloner [13], while for 0< �< 1
and r ¼ 2, it describes an entangling cloner [14], i.e., a
beam splitter of transmission � mixing the signal with one
mode of the TMSV state jwi.

Thus, every one-mode Gaussian channel GðT;N;dÞ can
be uniquely represented by the Stinespring dilation
fLð�; rÞ; jwig, up to Gaussian unitaries fUA;UBg on the

channel and isometries on the environment ~E. By assum-
ing an environment which is bounded in Euclidean space
(i.e., a finite box), the total set of environmental modes is

countable. In such a case, the action of an isometry on ~E is

equivalent to a unitary ÛE involving the two output ancillas
~E and all the remaining ancillas e ¼ feig1i¼1 of the environ-
ment (prepared in the vacuum state). In other words,
GðT;N;dÞ can be represented by the maximal
Stinespring dilation fLð�; rÞ � Ie; jwi � j0ieg, up to
Gaussian unitaries fUA;UBg on the channel and unitaries

ÛE on the environment f~E; eg (see Fig. 1, step 3) [15].
Let us now consider the standard cryptographic sce-

nario, where the whole environment is under control of a
malicious eavesdropper (Eve). For each signal state, Eve

can store the corresponding output ancillas f~E; eg in a
quantum memory, detectable by a coherent measurement
ME at any time of the quantum communication. For

infinite uses of the channel, the output ancillas f~E; eg will
provide an output ensemble of states E. Such an ensemble

FIG. 1. The general scenario in five steps. (1) Quantum com-
munication. Alice randomly picks signal states � from an
ensemble A encoding a classical variable X. At the output of
the channel, Bob detects the states via a quantum measurement.
The corresponding outcomes define an output classical variable
Y correlated to X. (2) One-mode Gaussian channel. A one-mode
Gaussian channel G corresponds to a canonical form C up to a
pair of Gaussian unitaries UA (at the input) and UB (at the
output). The central canonical form C can be dilated to a
symplectic interaction L involving two ancillary modes E :¼
fE1; E2g prepared in a TMSV state jwiE. The dilation of the form
is unique up to isometries acting on ~E :¼ f ~E1; ~E2g. (3) Maximal
dilation. By assuming Eve is in a finite box, the dilation can be
extended (via an identity) to the remaining modes e ¼ feig1i¼1 of

the environment (prepared in vacua). This maximal dilation of C
is now unique up to unitaries ÛE acting on f~E; eg. (4) Collective
Gaussian attack. All the output ancillas f~E; eg provide an en-
semble E, which Eve can detect to estimate X or Y. By using an
entropic bound for Eve’s accessible information, the extra an-
cillas and the extra unitary (dashed boxes in the figure) can be
neglected. As a consequence, only the set G :¼
fLð�; rÞ; jwi;UA;UBg (solid boxes in the figure) is needed to
characterize the attack. (5) Coherent-state protocol. Alice’s
signal states � are coherent states j�i whose amplitudes encode
a Gaussian variable (X ¼ �). Bob’s measurement is a hetero-
dyne detection retrieving the output amplitudes (Y ¼ �).
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can be expressed in terms of Alice’s variable X or Bob’s
variable Y. In other words, there always exist two coherent
measurements, MEðXÞ and MEðYÞ, which are optimal in
the estimation of X and Y, respectively. This scenario
represents the most general description for a collective
Gaussian attack. Luckily, this description can be greatly
simplified if we adopt a suitable ‘‘entropic bound’’ to
restrict Eve’s accessible information on her output en-
semble E. This bound can be provided by the Holevo
information, but also by the quantum mutual information
or, more generally, by the von Neumann entropy. On the
one hand, this bound enables us to ignore the details of the
quantum measurement ME. On the other, since the bound

is unitarily invariant, the environmental unitary ÛE and the
extra ancillas ‘‘e’’ can be also neglected. As a conse-
quence, the attack’s description can be reduced to the set
G :¼ fLð�; rÞ; jwi;UA;UBg, where f�; r; wg are the chan-
nel symplectic invariants and fUA;UBg the input-output
Gaussian unitaries (see Fig. 1, step 4). In particular, the
Gaussian unitaries fUA;UBg are equivalent to a pair of
displacements fdA;dBg and a pair of symplectic matrices
fMA;MBg. These matrices may be written as MA ¼
ða1; a2ÞT and MB ¼ ðb1;b2Þ, where fa1; a2;b1;b2g are
R2 column-vectors. The scalar products of these vectors
define three important parameters f�; �A; �Bg, which con-
tain the basic information about the noninvariant action of
the attack. Explicitly, these parameters are � :¼
ja1j2jb1j2 þ 2ða1 � a2Þðb1 � b2Þ þ ja2j2jb2j2, �A :¼
ja1j2 þ ja2j2 and �B :¼ jb1j2 þ jb2j2. Using the Euler
decomposition [2] of the symplectic matrices, we can
prove the lower bounds [16]

� � 2; �A � 2; �B � 2: (2)

Notice that we may call ‘‘canonical’’ the attacks of the
form C :¼ fLð�; rÞ; jwi;IA; IBg, where I is the ideal
channel (i.e., the identity map). For this kind of attack it
is easy to prove the minimal condition � ¼ �A ¼ �B ¼ 2.

Let us now analyze the security of a cvQKD protocol,
which is a direct generalization of the nonswitching pro-
tocol of Ref. [7]. In this protocol, Alice prepares a coherent
state j�i whose complex amplitude � is randomly modu-
lated by a Gaussian distribution with zero mean and vari-
ance �. Then, Alice sends j�i to Bob, who decodes a
conditional amplitude �j� by heterodyne detection. Such
a process is repeated many times, with Bob getting an
output random amplitude � (see Fig. 1, step 5). At the
end of the quantum communication, part of the data f�;�g
is publicly disclosed by Alice and Bob. This step allows
them to realize quantum tomography of the Gaussian
channel GðT;N;dÞ, which completely discloses T, N,
and d. In fact, from the analysis of the first and second
statistical moments, they can fully retrieve the two trans-
formations of Eq. (1). Thanks to this information, Bob is
able to process his classical data � in order to make an
optimal estimation of Alice’s signal �. Such a classical

post-processing is equivalent to inverting the displacement
transformation in Eq. (1), which generally involves squeez-
ing and rotation of the two quadratures. Alternatively,
Alice can exploit Eq. (1) to process her data � and estimate
Bob’s variable �. The first situation corresponds to direct
reconciliation, where � is the reference variable, decoded
by Bob with the help of one-way classical communication
(CC) from Alice. By contrast, the second situation corre-
sponds to reverse reconciliation [14], where � is the
reference variable, decoded by Alice with the help of
one-way CC from Bob. In both cases, the classical mutual
information of Alice and Bob is given by Ið�:�Þ ¼
Hð�Þ �Hð�j�Þ, where Hð� � �Þ is the Shannon entropy
for bivariate Gaussian variables [17].
The Gaussian channel GðT;N;dÞ between the users is

the effect of a collective Gaussian attack. Bounding Eve
with the Holevo information, this attack can be fully
characterized by the set G :¼ fLð�; rÞ; jwi;UA;UBg. In
this description, the Holevo information Ið�:EÞ of Eve on
the reference variable � ¼ �, � can be computed from the

restricted set of ancillas ~E (see Fig. 1). The secret-key rate
R of the protocol is then equal to R ¼ maxf0; Rð�Þ; Rð�Þg,
where Rð�Þ :¼ Ið�:�Þ � Ið�:EÞ is the rate with respect to
Alice’s variable � ¼ � (direct reconciliation) or Bob’s
variable � ¼ � (reverse reconciliation). Let us consider
the asymptotic secret-key rate R1 :¼ lim�R that can be

reached in the limit of high modulation (� ! þ1). Here,
we consider all the values of the transmission � with the
exception of � ¼ 1. The asymptotic rate R1 can be easily
proven to be zero for every � 	 0 [16]. By contrast, in the
positive region 0< � � 1, the explicit formula of R1 is
extremely hard to compute. For this reason, we provide a
lower bound B1 	 R1 which has the nontrivial advantage
of further simplifying the description of the attack.
Therefore, we only consider the positive range 0< � � 1
in the remainder of the Letter. It is easy to prove that the
mutual information of Alice and Bob has the asymptotic
expression lim�Ið�:�Þ ¼ logð�=�Þ, where

� :¼1

�
½1þ�2þð1��Þ2w2þ��þj1��jwð��Aþ�BÞ�1=2:

The latter quantity� represents the total noise affecting the
quantum communication. It depends on the two invariants
f�; wg plus the three noninvariant parameters f�; �A; �Bg
coming from fUA;UBg. Let us now bound the Holevo
information Ið�:EÞ of Eve. In direct reconciliation,
Ið�:EÞ can be bounded using the condition �A � 2 [16],
while, in reverse reconciliation, Ið�:EÞ can be bounded by
the quantummutual information. As a consequence, we get
the following bound on the secret-key rate R1 � B1 :¼
maxf0; B1ð�Þ; B1ð�Þg, where

B1ð�Þ¼ log

�
2

ej1��j�
�
�gðwÞþgð�þj1��jwÞ; (3)

and
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B1ð�Þ ¼ log

�
2

ej1� �j��
�
� gðwÞ; (4)

with gðxÞ :¼ ½ðxþ 1Þ=2� log½ðxþ 1Þ=2� � ½ðx� 1Þ=2��
log½ðx� 1Þ=2�. Notice that these asymptotic rates de-
pend only on the three parameters f�; w; �g. In other words,
the significant information about the Gaussian attack G is
fully contained in the triplet f�;w; �g, where � and w are
symplectic invariants of the channel, while � includes the
noninvariant effect of the input-ouput unitaries fUA;UBg.
Such a triplet is completely known to the honest users
thanks to the tomography of the channel; therefore, the
corresponding value of B1 can be easily derived.

It is now interesting to analyze the performances of the
canonical attacks in terms of the asymptotic rate B1. It is
easy to show that, for fixed invariants � and w, canonical
attacks are the less perturbative and less powerful attacks.
In fact, for a canonical attack, we have � ¼ �A ¼ �B ¼ 2,
so that the total noise � takes the minimum value

� ¼ 1þ 1

�
þ j1� �j

�
w :¼ �cð�; wÞ: (5)

Then, since B1 is monotonic in � [according to Eqs. (3)
and (4)], the minimization of � is equivalent to the max-
imization of B1 (for fixed � and w). By contrast, we can
easily prove that the canonical attacks are the most power-
ful Gaussian attacks for fixed transmission � and total noise
�. In other words, for every Gaussian attack, with triplet
f�; w; �g, there always exists a canonical attack, with triplet
f�; w0 � w;�g, such that B1ð�; w0; �Þ 	 B1ð�; w; �Þ. The
proof is very easy. The noise � of an arbitrary Gaussian
attack G with f�; w; �g is minimized by the noise �cð�;wÞ
of a canonical attack C with f�; w; �cð�; wÞg. Now, let us
increase w while keeping � fixed in f�;w; �cð�; wÞg. From
Eq. (5), we see that �cð�; wÞ increases in w, and, therefore,
we can choose a value w0 � w such that �cð�; w0Þ ¼ �.
Then, we get a new canonical attack C0 with triplet
f�; w0; �g. But now, also the two quantities gðwÞ and
gðwÞ�gð�þj1��jwÞ are increasing in w. Therefore, for
fixed � and �, the condition w0 � wminimizes the rates of
Eqs. (3) and (4), which concludes the proof. By combining
the previous results on the asymptotic rate B1ð�;w; �Þ, we
deduce that canonical attacks can be seen as extremal
Gaussian attacks, since they provide upper bounds for fixed
f�; wg and lower bounds for fixed f�; �g.

In conclusion, we have given a simple and compact
description of a completely general collective Gaussian
attack. Using such a characterization, we have derived
the asymptotic secret-key rates that are reachable by a
protocol using coherent states, joint measurements of the

quadratures, and one-way classical communications. In
particular, the secret-key rates can be bounded by relatively
simple quantities depending on three channel parameters
only. In terms of these bounds, a particular class of attacks
(canonical attacks) can be considered as extremal. Finally,
this work paves the way for completely general security
analyses of cvQKD protocols, where explicit derivations of
secret-key rates can be made without any assumptions on
the eavesdropper’s interaction.
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