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Abstract 

Layered transition metal dichalcogenides (TMDs) are ideal systems for exploring the effects of 

dimensionality on correlated electronic phases such as charge density wave (CDW) order and 

superconductivity. In bulk NbSe2 a CDW sets in at TCDW = 33 K and superconductivity sets in at Tc = 

7.2 K.  Below Tc these electronic states coexist but their microscopic formation mechanisms remain 

controversial. Here we present an electronic characterization study of a single 2D layer of NbSe2 by 

means of low temperature scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved 

photoemission spectroscopy (ARPES), and electrical transport measurements. We demonstrate that 

3x3 CDW order in NbSe2 remains intact in 2D.  Superconductivity also still remains in the 2D limit, 

but its onset temperature is depressed to 1.9 K. Our STS measurements at 5 K reveal a CDW gap of  

= 4 meV at the Fermi energy, which is accessible via STS due to the removal of bands crossing the 

Fermi level for a single layer. Our observations are consistent with the simplified (compared to bulk) 

electronic structure of single-layer NbSe2, thus providing new insight into CDW formation and 

superconductivity in this model strongly-correlated system. 
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Many-body electronic ground states can be quite sensitive to the spatial dimensions of a 

material1, 2, 3, 4. In transition metal dichalcogenide materials, for example, significant differences are 

expected in charge density wave and superconducting (SC) phases as dimensionality is reduced from a 

bulk 3D material to a single-layer 2D material5, 6, 7.  NbSe2 is a model system in this regard, as it has 

been predicted to preserve its CDW order in the single-layer limit, although with significantly 

shortened CDW wavevector (qCDW)5. A metal to semi-metal transition has also been predicted for 

NbSe2 when it is reduced to the 2D limit 5, 6, 8. Previous work has shown that the superconducting 

transition temperature for NbSe2 decreases from its bulk value of TC = 7.2 K as the thickness is 

reduced9, 10, 11, but no experimental studies have yet been performed that explore the interplay between 

NbSe2 superconductivity and CDW formation in the extreme 2D limit. 

  CDW behavior in the 3D limit of NbSe2, on the other hand, has been well studied, although the 

origin of the bulk CDW transition at TCDW = 33K remains controversial. Recent experiments suggest 

that electron-phonon coupling plays a dominant role in triggering the CDW phase12, 13, 14, 15, 16, 17, 18, 

thus casting doubt on mechanisms involving Fermi-surface nesting19, 20, 21, 22 and saddle-point 

singularities23, 24. Critical experimental parameters associated with the CDW, namely the magnitude 

and location of the energy gap also remain unclear. Previous STS measurements on bulk NbSe2 in the 

CDW phase have revealed an unexpectedly large gap-like structure having width 2 70 meV25, 26. In 

contrast, low-temperature ARPES measurements performed on bulk NbSe2 show an anisotropic CDW 

energy gap at EF with a width of only a few meV15.  In general, it is expected that a weak-coupling 

CDW derived from Fermi surface nesting should open a small gap on the Fermi surface, while a strong 

coupling CDW caused by electron-phonon coupling should open a larger gap away from the Fermi 

surface. 
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Here we report new measurements on the electronic structure of single-layer NbSe2 using a 

combination of STM/STS, ARPES, and electronic transport techniques. This allows us to directly 

probe the electronic ground state of NbSe2 in the 2D limit, enabling interrogation of the effects of 

dimensionality and interlayer coupling in this layered material. We observe a reduction in the number 

of Fermi-level-crossing bands from three (for bulk) to one in the single-layer limit. Despite this change 

in electronic structure, CDW order in single-layer NbSe2 remains unchanged compared to the bulk 

case. The simplified bandstructure of single-layer NbSe2, however, allows unprecedented access to the 

NbSe2 CDW energy gap via STS (observed here to be 2 = 8 meV centered at EF). Superconductivity 

in NbSe2, on the other hand, is significantly suppressed in the 2D limit, showing an onset of 

superconducting fluctuations at 1.9 K and a broadened superconducting transition with a midpoint at 

0.65 K consistent with a Kosterlitz-Thouless transition. The one Nb antibonding band5 that remains in 

the Fermi surface of single-layer NbSe2 thus appears to play a critical role in the NbSe2 CDW state, 

while the absent bands have a stronger influence on NbSe2 superconductivity15. These results provide a 

new window into the electronic structure of single-layer NbSe2 and help to clarify the longstanding 

debate over NbSe2 CDW formation. 

Our experiments were carried out on high-quality submonolayer NbSe2 films grown on 

epitaxial bilayer graphene (BLG) on 6H-SiC(0001), as sketched in Fig. 1a. The large-scale STM image 

in Fig. 1b shows the typical morphology of our single-layer NbSe2 samples. Black regions correspond 

to the BLG substrate while the NbSe2 layer is purple. The temperature dependence of the electronic 

ground state of single-layer NbSe2 was measured via STM and electrical transport.  Fig. 1c-e show 

STM topographic data for selected temperatures from T = 45 K to T = 5 K.  At T = 45 K, well above 

the critical transition temperature for bulk NbSe2 (TCDW = 33 K), only the undistorted crystal structure 

is observed (Fig. 1c). At a lower temperature of T = 25 K, weak and spotty signatures of a superlattice 
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are apparent (Fig. 1d). Here small CDW patches surrounded by non CDW regions can be seen.  This is 

reminiscent of STM images of bulk NbSe2 at temperatures close to the CDW transition temperature.17 

At T = 5 K, the 3 x 3 CDW superlattice is fully and uniformly developed for single-layer NbSe2 (Fig. 

1e). Fig. 2 shows the temperature-dependent electrical resistance of single-layer NbSe2 on BLG, 

acquired using a 4-probe low-excitation dc method (see SI).  A downturn in the resistance begins at T 

= 1.9 K, indicative of the onset of superconducting fluctuations, while the superconducting transition 

midpoint is at 0.65 K and the zero resistance point at 0.46 K, as shown inset. This data indicate that the 

trend of reduced superconducting transition (Tc) with decreasing layer number in NbSe2
11, 12 continues 

down to the single layer limit. 

Fig. 1e shows that the 3 x 3 CDW superlattice is aligned with the 1 x 1 atomic arrangement for 

single-layer NbSe2, similar to what has been seen previously in STM images of bulk NbSe2
16, 17, 27. The 

3 x 3 superlattice remains unchanged in our STM images regardless of the orientation between the 

NbSe2 layer and the BLG (see STM and LEED data in the SI). This rules out the possibility that the 3 x 

3 superlattice observed here in single-layer NbSe2 is a moiré pattern (moiré patterns have been 

observed in MoSe2/BLG28). A 3 x 3 moiré pattern formation requires a quasi-commensurate match 

between overlayer and substrate atomic lattices, which does not occur here since NbSe2 has a much 

larger unit cell than graphene. The rotational disorder we find in single-layer NbSe2 with respect to the 

BLG substrate indicates weak coupling between them (similar weak coupling has been demonstrated 

for epitaxial graphene grown on different metal substrates29). 

We experimentally determined the electronic structure of single-layer NbSe2 through a 

combination of STS and ARPES. Fig. 3a shows a typical STM dI/dV spectrum of single-layer NbSe2 

taken over a large bias range. In the positive bias (empty state) region the most pronounced feature is 

the peak labeled C1 at Vs = 0 .5 V.  For negative bias (filled states) we observe a very shallow 
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asymmetric peak near Vs = -0.2 V (labeled V1), below which the local density of states (LDOS) 

flattens out and does not rise again until the peak labeled V2 at Vs = -0.8 V. This behavior is very 

different from previous STS results obtained for bulk NbSe2, which show much higher LDOS in the 

region -0.8 V < V < 0 V17. Fig. 3b shows the ARPES data obtained from the same type of single-layer 

NbSe2 sample as in Fig. 3a using sp-mixed polarized light. The measured electronic dispersion is 

energetically aligned with the dI/dV spectrum for comparison. Due to rotational misalignment within 

the NbSe2 layer, the ARPES dispersion reflects a mixture of states with dominant intensity coming 

from the high symmetry directions Γ-M and Γ-K. Two dispersive features can be seen crossing EF 

(highlighted by the orange dashed lines). The ARPES spectrum also shows an energy gap over the 

range -0.8 eV < E < -0.3 eV, and below this several dispersive bands merge at the Γ-point. In 

comparison, the ARPES spectrum for 5ML–NbSe2 (see SI) displays an additional Nb-derived band 

crossing the same energy range that is gapped for single-layer NbSe2. 

This experimental data is consistent with the changes in band structure that are predicted to 

occur when NbSe2 is thinned down to a single layer.5 The bulk NbSe2 band structure (Fig. 3c) has three 

bands crossing EF (two Nb-derived bands and one S-derived band), and exhibits no bandgap 

throughout our experimental energy range. Single-layer NbSe2, on the other hand, has a much simpler 

predicted electronic structure (Fig. 3d) that consist of just one Nb-derived band crossing EF away from 

the -point, as well as a band gap from -0.4 eV to -0.8 eV and valence bands below that. These 

predicted features can be seen in our experimental ARPES dispersion (Fig. 3b) which shows that (i) 

states right below EF are located away from the-point, (ii) there exists an energy gap between -0.3 eV 

and -0.8 eV, and (iii) there exists several valence bands below -0.8 eV. Our dI/dV spectroscopy (Fig. 

3a) is also consistent with the predicted single-layer band structure. For example, the peak at C1 is 

consistent with the high DOS associated with the top of the Nb-derived band at Γ above EF. We can 
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also associate the shallow peak at V1 with the Nb band right below EF. The flat dI/dV region seen 

between V1 and V2 is consistent with the predicted bandgap (the fact that the dI/dV does not reach zero 

is due to residual tunneling into the BLG substrate), and the peaks at V2 and V3 are consistent with the 

lower-energy valence bandstructure5, 30. Overall, these features are very different from previous STS 

spectra obtained for bulk NbSe2, which show much higher LDOS below EF and no signs of a bandgap 

in the filled-state regions17. This is due to the additional electronic bands and resulting DOS expected 

in this energy range for bulk NbSe2 as compared to single-layer NbSe2 (Figs. 3c-d). This is also 

reflected in the additional band that can be seen in the ARPES spectrum of 5ML–NbSe2 (SI), which 

corresponds to a Nb bonding band (the blue band in Figs. 3c-d). The Se-derived band (green band in 

Figs. 3c-d) is typically not observed in ARPES due to the high kz dispersion. 

In order to better understand the collective ground states of single-layer NbSe2, we 

experimentally probed its low-energy electronic structure near EF via STS. Fig. 4 shows a typical low-

bias dI/dV spectrum obtained for single-layer NbSe2. This spectrum exhibits a striking energy gap 

feature centered at EF that is not present in the calculated bandstructure of single-layer NbSe2 (Fig. 3d). 

This feature, which is also not observed experimentally in bulk NbSe2
16, 25, 26, exhibits a sharp dip at EF 

bounded by two narrow peaks that sit on top of an asymmetric background.  The dip at EF does not 

reach all the way to zero, suggesting that it is not a full gap in the electronic structure. These STS 

features (including both wide-bias and low-bias spectra) were observed consistently for hundreds of 

dI/dV curves measured on several samples using a variety of different tip apexes. However, the width 

(2Δ) of the low-bias gap feature was found to exhibit some spatial variation, likely due to 

heterogeneity induced by the presence of defects at the NbSe2/graphene interface (see Fig. 5c). 

Statistical analysis of data (257 curves) obtained at many different locations for T = 5 K yields an 

average gap value of  = 4.0 mV with a standard deviation of 1 mV (the gap magnitude is defined as 
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half the energy distance between the two peaks bracketing the gap). This value is in agreement with 

anisotropic gap-opening observed previously by low-temperature ARPES15 at the Fermi surface near 

the K point in the band that is predicted to remain in the 2D single-layer limit of NbSe2 (orange band in 

Fig. 3d). 

In order to better understand the origin of the EF gap feature of Fig. 4, we performed spatially-

resolved dI/dV mapping of single-layer NbSe2 at different bias voltages near EF. Figs. 5a and 5b show 

dI/dV conductance maps of the same region taken at bias voltages outside (Vb = -26 mV) and inside 

(Vb = 3 mV) the low-bias gap region (Fig. 5c shows STM topography for this same region).  The dI/dV 

conductance map taken at an energy outside of the gap (Fig. 5a) clearly shows the 3 x 3 CDW pattern, 

but the conductance map measured at an energy inside of the gap (Fig. 5b) shows no sign of the CDW. 

We Fourier analyzed dI/dV maps taken at different voltages in order to obtain a more quantitative 

understanding of the energy dependence of CDW electronic features.  Fig. 5d shows the relative 

intensity of the resulting 3 x 3 peaks (I3x3) in the FFTs normalized to the intensity of the 1 x 1 Bragg 

peaks (IBragg).  This ratio (I3x3/IBragg(E)) is a measure of the strength of the CDW modulation on the 

density of states. As seen in Fig. 5d, I3x3/IBragg has large amplitude at energies far from EF, but shows a 

decrease of nearly two orders of magnitude very close to EF. Fig. 5e shows a higher-resolution plot of 

the dip in I3x3/IBragg at EF (boxed region in Fig. 5d). The decrease in the ratio I3x3/IBragg is seen to follow 

the energy dependence of the low-bias gap-feature observed in dI/dV spectroscopy. This correlation of 

CDW intensity with gap energy dependence suggests that the gap is the result of CDW order. In 

particular, the diminishing CDW intensity for in-gap energies suggests that the residual LDOS within 

the gap arises from a portion of the Fermi surface that is not gapped by CDW order.  

Our results allow us to draw some conclusions regarding different models of CDW formation 

in NbSe2. First, we rule out recently proposed dimensionality effects on the CDW phase that were 
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predicted for single-layer NbSe2 but that are not observed here. This includes a predicted reduction of 

the CDW wave vector in the 2D limit5. We also rule out proposed Fermi surface nesting mechanisms17, 

19, 20, 22 involving the inner pockets around  and K (blue band in Fig.3c) since these bands are not 

present in the single-layer limit and the CDW remains unchanged. Since saddle-point-based 

mechanisms of CDW formation21, 24 involve the Fermi pockets that are still present in the single-layer 

limit, we cannot rule them out based on fermiology. However, these mechanisms predict a CDW gap 

centered at an energy tens of meV away from EF, and thus are inconsistent with our observation that 

the CDW gap is centered at EF.  

 Our data also brings out some puzzling features concerning the CDW in NbSe2. On the one 

hand, our observations that the gap is tethered to the Fermi energy, that is rather small, and that it 

correlates with the CDW amplitude are all consistent with the notion that the gap is the result of Fermi 

surface nesting. On the other hand, our observation that the CDW modulation is observed in the LDOS 

at biases far exceeding the gap edges suggests that the CDW order is not a weak coupling phenomenon 

arising from Fermi surface nesting. This dual nature of the CDW gap imposes stringent constraints on 

any future theory of CDW formation in NbSe2. 

The suppression of the superconducting onset temperature in single-layer NbSe2 is consistent 

with the trend previously observed9, 10, 11, namely that the superconducting transition temperature 

decreases with sample thinning. Possible reasons for this include enhancement of thermally driven 

superconducting phase fluctuations, as well as weakening of the strength of Cooper pairing in 2D.  

Additional factors that may contribute to this weakening are the reduced screening of the Coulomb 

interaction10 and the reduction of DOS at EF for single-layer NbSe2 arising from band reduction. It is 
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likely that the electronic bands that are absent in single-layer NbSe2 play a key role for thicker NbSe2 

films15. 

Methods 

Single-layer NbSe2 was grown by molecular beam epitaxy (MBE) on epitaxial BLG on 6H-

SiC(0001) at the HERS endstation of beamline 10.0.1, Advanced Light Source, Lawrence Berkeley 

National Laboratory (the MBE chamber had a base pressure of ~ 2 × 10-10 Torr). We used SiC wafers 

with two different resistivities,  ~ 300 Ωcm (STM and ARPES experiments) and  > 108 Ωcm 

(transport and STM experiments). The morphology of the single-layer NbSe2 was the same in both 

cases. The epitaxial BLG substrate was prepared by following the procedure detailed in refs. [31] and 

[28]. High purity Nb and Se were evaporated from an electron-beam evaporator and a standard 

Knudsen cell, respectively. The flux ratio of Nb to Se was controlled to be ~ 1:30. The growth process 

was monitored by in-situ RHEED and the growth rate was ~17 minutes per monolayer. During the 

growth the substrate temperature was kept at 600 K, and after growth the sample was annealed to 670 

K. Low energy electron diffraction (LEED) patterns were routinely taken after the growth to determine 

the quality of the sample (See SI). Subsequent characterization by ARPES and core-level spectroscopy 

was performed in the analysis chamber (base pressure ~3 × 10-11 Torr) of the 10.0.1 beamline. To 

protect the film from contamination and oxidation during transport through air to the UHV-STM 

chamber, a Se capping layer with a thickness of ~10 nm was deposited on the sample surface after 

growth. For subsequent STM and transport experiments the Se capping layer was removed by 

annealing the sample to ~ 600 K in the UHV STM system for 30 minutes. STM imaging and STS 

experiments were performed in a home-built UHV-STM operated at T = 5 K. STM differential 

conductance (dI/dV) spectra were measured at 5 K using standard lock-in techniques. To avoid tip 
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artifacts the STM tip was calibrated by measuring reference spectra on the graphene substrate28. 

STM/STS data were analyzed and rendered using WSxM software32.  

Four-probe contacts for transport measurements were placed on the sample by electron beam 

evaporation of 6.5 nm Ti and 100 nm Au through a shadow mask onto exposed graphene portions of 

the NbSe2 sample (with a Se capping layer, see SI). The Se capping layer was then removed in UHV 

and resistance measurements were subsequently performed either in-situ inside the STM chamber, or 

in a Quantum Design PPMS dilution refrigerator (employing a rapid transfer from the UHV chamber 

to the inert gas/vacuum PPMS chamber). Measurements were made using a Keithley 2602A source-

measure unit and a Keithley 181 nanovoltmeter with a current bias of 100nA. At each temperature 

point the voltage was measured at both 100nA and -100nA to remove thermoelectric voltages induced 

by the temperature difference between the sample and measurement electronics. The heating rate 

during measurement ranged from 1 K/hr to 60 K/hr.  
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Figure 1. Structure of single-layer NbSe2 on bilayer graphene. a, Top and side view sketches of 

single-layer NbSe2, including the substrate. b, Large-scale STM image of 0.9 ML of NbSe2/BLG (Vs = 

- 100 mV, It = 3 nA, T = 5 K). Atomically-resolved STM images of single-layer NbSe2 are shown for 

different temperatures: c, T = 45 K (Vs = + 95 mV, It = 53 pA), d, T = 25 K (Vs = - 120 mV, It = 70 

pA) and e, T = 5 K (Vs = - 4 mV, It = 50 pA). The FFT of the STM image of e is shown in the inset.  
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Figure 2. Superconductivity in single-layer NbSe2 on bilayer graphene. 4-point probe measurement 

of the temperature-dependent resistance of single-layer NbSe2/BLG on insulating SiC(0001). Inset 

shows expanded view of R vs. T between 0.05 K and 4 K. 

 

 

4-Point Measurement of Resistance in Single-Layer NbSe2 
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Figure 3. Electronic structure of single-layer NbSe2 on bilayer graphene. a, Wide-bias STM dI/dV 

spectrum acquired on single-layer NbSe2/BLG showing several electronic features: V1-3 in the filled 

states and C1 in the empty states (f = 403 Hz, It = 100 pA, Vrms = 5 mV, T = 5 K). b, Second-derivative 

sp-polarized ARPES dispersion of single-layer NbSe2/BLG (T = 300 K) aligned in energy with the 

STM dI/dV curve shown in a. The dispersion exhibits angular integration due to the intrinsic rotational 

misalignment of NbSe2 domains on the BLG substrate. The dotted and dot-dashed orange curves 

indicate bands from the Γ-K and Γ-M directions, respectively. The different predicted bandstructures 

and Fermi surfaces of bulk NbSe2 and single-layer NbSe2 are shown in c and d, respectively. The 

calculated bandstructures (DFT) have been adapted from ref [5]. 
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Figure 4. CDW gap of single-layer NbSe2. Low-bias STM dI/dV spectrum acquired on single-layer 

NbSe2/BLG showing the CDW gap (Δ) at EF (f = 871 Hz, It = 100 pA, Vrms = 0.6 mV, T = 5 K). The 

dashed lines indicate the position of the CDW coherence peaks.  
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Figure 5. Spatially and energetically resolved CDW phase in single-layer NbSe2. Experimental 

conductance maps taken at (a) Vs = - 26 mV and  (b) Vs = + 3 mV (f = 871 Hz, It = 40 pA, Vrms = 0.6 

mV, T = 5 K). The FFT of each conductance map is shown as an inset, allowing identification of 

Bragg (1x1) and CDW (3x3) peaks. c, STM topograph of the same region where the conductance maps 

in a and b were acquired (Vs = - 17 mV, It = 40 pA, T = 5 K). d, Logarithmic plot of the intensity of 

the 3 x 3 peaks (I3x3) in the FFT of the different conductance maps normalized by the Bragg peak 

intensity (IBragg) as a function of bias voltage. e, Zoom-in of the boxed region in d.  
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1. ARPES characterization of the monolayer and 5ML- NbSe2  

The in-situ angle-resolved photoemission spectroscopy (ARPES) measurements were performed 

at the HERS endstation of beamline 10.0.1 at the Advanced Light Source, Lawrence Berkeley National 

Laboratory. Samples were cooled to ~60K during measurement. The size of the beam spot on the 

sample was ~150 μm × 200 μm, and the photon energy was 50 eV with energy and angular resolution 

of 25 meV and 0.1o, respectively. Figure S1a shows the geometry of the ARPES measurement. Two 

types of photon polarizations were used. In one polarization the photon electric field was perpendicular 

to the plane of incidence (i.e. s-polarization). In the other polarization, the photon electric field was 20° 

out of the plane of incidence (a mixture of s-polarization and p-polarization referred to as sp-mixed 

polarization). 

Figure S1b shows the hexagonal 2D Brillouin zone (black dotted hexagon) and a schematical 

drawing of the Fermi surface (orange dotted lines) for single-layer NbSe2, with a near-hexagon pocket 

at the Γ point and a near- triangle pocket at each of the six K points. Figures S1c and S1d show Fermi 

surface maps taken with s-polarized photons and sp-mixed polarized photons, respectively. We found 

that the NbSe2 films contain randomly rotated domains with two dominant, preferred orientations. The 

two dominant orientations, separated by a 30o difference, are depicted in figures S1c and S1d as dotted 

orange hexagons, in good overall agreement with the Fermi surface mapping data. The randomly 

rotated domains were also observed in the scanning tunneling microscopy (STM) measurements (see 

fig. S2). 

Even though the ARPES spectra along Γ-M and Γ-K directions were mixed due to the randomly 

rotated domains, we still can distinguish the Γ-M and Γ-K bands by using different photon 

polarizations1. Figs. S1e and S1g are the ARPES spectra of a monolayer NbSe2 film taken with s-
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polarization and sp-mixed polarization, respectively. The corresponding second-derivative spectra are 

provided for enhanced visibility (figures S1f and S1h). Using s-polarized photons, only the Γ-M band 

(depicted by the orange dotted line) can be observed in figs. S1e and S1f; using sp-mixed polarized 

photons, both the Γ-M band and the Γ-K band (depicted by dotted and dot-dashed orange lines, 

respectively) can be observed in figs. S1g and S1h. Importantly, we found only one band crossing the 

Fermi level for single-layer NbSe2, which agrees well with recent theoretical calculations (fig. S1k).2 

We also grew and characterized thicker NbSe2 films. Unfortunately, we noticed that the quality of 

few-layer NbSe2 reduces gradually with the number of layers. Figs. S1i and S1j are the ARPES spectra 

and second-derivative spectra of a 5 ML NbSe2 film. The ARPES spectra of this 5 ML NbSe2 film 

became significantly more blurred than those of the single layer. However, we still can clearly observe 

a second band crossing the Fermi level in the second-derivative spectrum (depicted by the blue curve 

in figs. S1i and S1j). Comparison of this data with theoretical calculations for the bulk NbSe2 band 

structure2 allows us to conclude that the additional band in 5 ML NbSe2 is the Nb-derived band of bulk 

NbSe2, shown in blue in fig. S1k. We did not observe the theoretically predicted Se-derived band from 

bulk NbSe2 shown in green in fig. S1k. However, our ARPES results indicate that single-layer NbSe2 

has distinctly different band structure from 5 ML NbSe2. 
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Figure S1: ARPES spectra of NbSe2 films on BLG. a, Schematic drawing of the geometric setting in 

ARPES measurement. b, 2D Brillouin zone (dotted hexagon) and Fermi surface sketch map (orange 

dotted lines) of single-layer NbSe2. c, and d, Fermi surface mapping of single-layer NbSe2 film by 

using s-polarization photon and sp-mixed polarization photon, respectively; the dotted lines depict the 

Brillouin zone (black) and Fermi surface (orange) for the two dominantly rotated lattice orientations, 

respectively. e, ARPES spectra and f, the second-derivative spectra of monolayer NbSe2 film taken 

with s-polarization photon. g, ARPES spectra and h, the second-derivative spectra of single-layer 

NbSe2 film taken with sp-mixed polarization photon. The dotted and dot-dashed orange curves indicate 

bands from the Γ-K and Γ-M directions, respectively. i, ARPES spectra and j, the second-derivative 

spectra of 5 ML NbSe2 film taken with sp-mixed polarization photon. k) Theoretical calculations of the 

band structures for monolayer and bulk NbSe2 (ref. 2). 
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2. Rotational misalignment of single-layer NbSe2 on bilayer graphene 

Consistent with our ARPES measurements, domains with multiple rotational alignments with 

respect to the underlying BLG are seen in the STM images of ML NbSe2. Figs. S2a and S2b show 

STM images taken on domains with 14o and 22o angles between the NbSe2 atomic lattice and the BLG 

lattice, respectively. The black arrows lie along the NbSe2 lattice while the red arrows lie along the 

BLG lattice. Fig. S2c shows an atomically-resolved STM image of the bare BLG substrate, with the 

atomic lattice directions indicated by red arrows. The LEED pattern for a ML NbSe2 film is shown in 

fig. S2d. The outer dots, circled in red, correspond to the BLG substrate and show well-defined 

rotational alignment across the sample. The features corresponding to the NbSe2, however, appear as a 

smeared-out circle. This circle is not completely isotropic and displays increased intensity 

approximately every 30o. This is consistent with the ARPES measurements, which indicate two 

dominant rotational domains separated by 30o. The observed rotational disorder is a consequence of 

the weak interaction between the NbSe2 and the underlying BLG substrate and has been observed in 

other monolayer TMD films grown on BLG. 
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Figure S2: Rotational orientation of single-layer NbSe2 on BLG. Atomically resolved STM images 

(40 x 40 Å2) of two domains of the NbSe2 monolayer showing a rotational misalignment of the atomic 

lattice (black arrow) of a. 14° (Vs = - 20 mV, It = 1000 pA) and b. 22° (Vs = + 50 mV, It = 50 pA) 

with respect to the graphene lattice (red arrow). c. STM image of the BLG substrate indicating the 

orientation of the atomic lattice (40 x 40 Å2, Vs = + 0.1 mV, It = 50 pA). d. LEED pattern of 

monolayer NbSe2 showing the two preferred orientations of NbSe2 (O1 and O2) and their large angular 

extension defined by the green-blue and green-yellow lines, respectively.  
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3.  Transport measurements 

The dc electrical resistance of the sample was measured using a 4-probe contact configuration as 

shown in Fig. S3.  

 

Figure S3: Four-probe configuration for transport measurements. Sketch of the 4-probe contact 

configuration used in the transport experiments. Graphene (G) layer is shown in grey and NbSe2 in 

purple. The insulating SiC(0001) substrate is not shown. 
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