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Two-dimensional periodic arrays of noble metal nanospheres support a variety of optical phenomena, including
bound and leaky modes of several types. The scope of this paper is the characterization of the modal dispersion
diagrams of planar arrays of silver nanospheres, with the ability to follow individual modal evolutions. The metal
spherical nanoparticles are described using the single dipole approximation technique by including all the
retarded dynamic field terms. Polarizability of the nanospheres is provided by theMie theory. Dispersion diagrams
for both physical and nonphysical modes are shown for a square lattice of Ag nanospheres for the case of lossless
and lossy metal particles, with dipole moments polarized along the x, y, and z directions. Though an array with
one set of parameters has been studied, the analysis method and classification are general. The evolution of modes
through different Riemann sheets and analysis of guidance and radiation are studied in detail. © 2011 Optical
Society of America

OCIS codes: 160.3918, 250.5403, 260.2110.

1. INTRODUCTION

The plasmonic properties of noble metal nanoparticles (for

example, nanospheres composed of gold or silver) have re-

cently been studied and adopted extensively at infrared and

optical frequencies because they offer a new range of possible

applications, such as the enhancement of Raman spectra [1,2],

their use for biosensor devices [3,4], and their potential apti-

tude to produce artificial magnetism [5–11]. Furthermore, per-

iodic arrangements of metal nanoparticles present peculiar

properties that could be applied to produce enhancement

of evanescent fields in subwavelength regions [12–18], among

other innovative applications. All the above possible applica-

tions require, as a first step, a good understanding of mode

propagation through periodic arrangements of plasmonic

nanoparticles in both two dimensions (2D periodic planar

arrays), which is the main goal of the present investigation,

and one dimension (linear chains, waveguides, 1D periodic).

This knowledge is fundamental to fully control and associate

determinate characteristics with a particular set of excitation

wavelengths.

In recent years, mode propagation and other related

phenomena in 2D periodic arrays of nanospheres have been

the subject of study by different groups from the analytical,

computational, and experimental points of view [19–24].

Broader analyses of 2D periodic arrays of both nanospheres

and isotropic nanoscatterers have been carried out in

[11,25–28]. Likewise, mode propagation in 1D periodic arrays

of nanospheres has been analyzed in [21,29–35], and broader

analyses of 1D periodic arrays of isotropic nanoscatterers and

radiators in [36–40]. A review of the state of the art of linear

and planar arrays of plasmonic nanospheres has recently been

presented in [41]. Despite these extensive studies, several dif-

ficulties are still encountered in the analysis and, especially,

the interpretation and the characterization of mode propaga-

tion in periodic plasmonic structures composed of metal

nanospheres. In particular, though it is feasible to determine

modes in 1D and 2D periodic arrays, information from pre-

viously published works does not provide the knowledge of

which mode is physical (i.e., that can be excited) and which

one is not, and often also when a mode is proper or improper

(proper/improper modes decay/grow away from the array,

respectively; this concept is clarified in Section 2). Moreover,

it also has been problematic to distinguish the evolution of

different modes in the so-called dispersion diagram k − β,

where β is the wavenumber of the traveling wave and k is the

host medium wavenumber (proportional to the frequency).

Thus, to the authors’ knowledge, a complete physical modal

characterization of 2D periodic arrays of metal nanospheres,

understanding mode evolution in the dispersion diagram for

complex traveling waves, has never been done. The ultimate

goal of this work is, then, the characterization of the complex

modes in a 2D periodic array of plasmonic nanospheres, with

particular focus in the physical waves that can be excited, i.e.,

launched into the array by a source in proximity of the array, a

defect or a truncation.

Different methodologies have been followed in the analysis

of this kind of problem. Thus, for the study of the optical prop-

erties and resonances of a 2D periodic array of noble metal
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nanospheres on a dielectric slab, the authors of [22] imple-

mented the spherical-wave expansion and solved boundary

conditions problems that are applicable to nanoparticles with

either real or complex dielectric values. A semianalytical

description of traveling waves on 2D and 3D periodic arrays

of lossless magnetodielectric spheres has been presented in

[19,20]. There, a spherical-wave and scattering-matrix formu-

lation has been adopted, although the analysis was limited to

the dispersion relation of traveling waves propagating along

the array axes. The authors of [19,20] considered a lossless

array of scatterers made of a perfect electric conductor or sil-

ver metal, and they provided dispersion relations for the long-

itudinal and transverse modes. In [20], Mie theory was applied

to the computation of the dispersion relation diagram, kd − βd,

of 2D arrays of lossless scatterers, providing plots of the

dispersion diagram for the longitudinal and transverse waves

with respect to the axes of the array for perfect electric con-

ductor, silver, and diamond nanospheres embedded in either

vacuum or glass. Modal analysis of 2D periodic systems of

nanospheres has also been investigated in [23], where a

point-dipole description was used for each nanoparticle after

introducing the concept of effective polarizability to obtain

the dispersion relation that describes the frequency response

of the array with respect to the excitation wavenumber. A lim-

ited discussion of leaky waves was also given in that paper.

The most comprehensive review of the computational and

analytical methods for modeling 1D, 2D, and 3D periodic ar-

rays of magnetodielectric nanospheres using polylogarithmic

functions was done in [21]. In that work, the analytical study

provided equations that relate β to the corresponding free-

space wavenumber k of the traveling waves with real and

complex wavenumbers, including all proper and improper

waves (though without providing a distinction between them)

in the direction parallel to a specified array axis. Moreover,

the authors of [21] clearly stated the difficulty of finding all

possible modal solutions, which may result in missing some

branches of the dispersion diagram. Indeed, their objective

was primarily to display a representative selection of kd − βd

diagrams without providing information on the proper/

improper and physical/nonphysical properties of the found

modes. As a matter of fact, the physical set of waves is a sub-

set of all the possible waves of the system. The authors of [32]

focused instead on some general properties of 1D periodic

arrays and on the determination of the required polarizability

of each nanoparticle (not necessarily nanosphere) to have a

certain dispersion diagram.

In [21,32,38], polylogarithmic functions were been used to

provide an analytic continuation of the propagation wave-

number β into the complex domain. However, as previously

discussed, that analytical approach, as used in those papers,

provides modal solutions without giving any condition to dis-

tinguish between physical from nonphysical and proper from

improper wave solutions. Moreover, the dispersion diagrams

presented in those works are made of a single continuous

curve.

In contrast to what has been done previously, in the present

work, we are able to follow single mode evolution in such a

way that the dispersion diagram is given as a comprehensive

superposition of the evolution of all the modes in the system.

As shown here, in some cases, varying frequency, an improper

mode could become proper or, vice versa, a proper mode

could become improper, transitioning from a physical to a

nonphysical one, for example. For this purpose, an analytical

formulation in the spectral-wavenumber domain is presented,

useful to obtain all the possible modes (real and complex)

existing in a 2D periodic array of nanospheres. We use a

standard Floquet-wave (space harmonic) expansion [42] that

makes use of the single dipole approximation [43] (summar-

ized in [29]) and Mie theory [43] to describe the nanosphere

polarizability. Comprehensive numerical results of the disper-

sion diagrams of real/complex modes are provided for trans-

verse and longitudinal polarizations with respect to the array

axes. Following the general classification of the modes in the

periodic structures summarized in [42,44], we provide a full

characterization of the modes in terms of their direction of

propagation (forward/backward), in terms of their guidance

and radiation properties (bound/leaky), in terms of the

position of the wave vector on the Riemann sheets (proper/

improper), and also in terms of their actual physical excitation

in the structure (physical or nonphysical modes). In this way,

we are capable of identifying the subset of physical modes

that are allowed in the array as well as all the subset of non-

physical ones. Given the knowledge of which modes can be

excited, we also discuss which one can be used for guiding

and radiating purposes. It is noteworthy that this method

can as well be applied successfully to 1D periodic arrays of

nanoscatterers using a periodic Green’s function (GF) that

can be extended analytically for a complex β, as that in [45].

This paper is organized as follows. Section 2 introduces the

problem studied and the structure under analysis. Section 3

provides the mathematical formulation and assumptions

needed to perform the modal study. A discussion on the phys-

ical validity of the different modes is given in Section 4. Then,

results of the mode analysis in a lossless 2D periodic array

with square lattice are shown in Section 5 (without loss of gen-

erality, the numerical results are restricted to complex modes

traveling along the principal axes). The lossy case is analyzed

in Section 6, and the results are compared with those of the

lossless case. A discussion regarding the applicability of the

lossless model for β − k diagrams in place of the lossy one

is briefly provided as well. A summary of descriptions, reason-

ing, and interpretations of the obtained results is reported in

Section 7, regarding the guidance and radiation properties of

such a structure. Some brief conclusions are then given in

Section 8.

2. STATEMENT OF THE PROBLEM

In this analysis, a time dependence of the type expð−iωtÞ is
assumed and suppressed throughout this paper. Moreover,

in the following equations, bold letters refer to vector quanti-

ties, a caret on top of a bold letter refers to unit vector quan-

tities, and a bar under a bold letter refers to dyadic quantities.

Our goal in this paper is the study of the plasmonic wave

dispersion in a 2D periodic array of metal nanospheres. For

this purpose, let us consider a 2D array of metal nanospheres

that are periodically located in a homogeneous medium along

the x and y directions with periods a and b, respectively, as is

shown in Fig. 1. For periodic arrays excited by a plane wave

or for a mode in the array, the dipole moment, pmn, of the

ðm;nÞth nanosphere is expressed as

pmn ¼ p00 expðikB · rmnÞ; ð1Þ
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where p00 is the dipole moment of the nanosphere located at

the origin of the coordinate system;

kB ¼ kxx̂þ kyŷ ¼ βþ iα ð2Þ

is the Bloch wave vector of the incident wave or of the modal

solution, with β and α its real and imaginary vector compo-

nents and rmn ¼ max̂þ nbŷ (m, n ¼ 0;�1;�2;…) denotes

the location of the ðm;nÞth nanosphere.

In general, a mode does not necessarily have its phase

vector, β, parallel to its attenuation vector, α. Each mode in

the structure is represented in terms of an infinite sum of

Floquet waves (also called spatial harmonics) as

Emode ¼
X

∞

p;q¼−∞

EpqðzÞ exp½iðkx;pxþ ky;qyÞ�: ð3Þ

The ðp; qÞth Floquet wave vector of the guided mode is

written as

kB;pq ¼ kx;px̂þ ky;qŷ ¼ βpq þ iα; ð4Þ

with βpq ¼ βþ ð2πp=aÞx̂þ ð2πq=bÞŷ. Away from the array

plane (positioned at z ¼ 0), each Floquet wave behaves as

expðikz;pqjzjÞ, where

kz;pq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − ðkB;pq · kB;pqÞ
q

¼ βz;pq þ iαz;pq ð5Þ

is the z-directed ðp; qÞth Floquet wavenumber and k is the

wavenumber of the host medium.

A proper wave has αz;pq > 0; i.e., it decays away from the

array. An improper wave has αz;pq < 0; i.e., it grows away from

the array. A proper/improper mode has all its wave harmonics

proper/improper. Note that the apparent contradiction that an

improper mode grows indefinitely does not exist, because

each physical improper wave has a bounded domain of exis-

tence, as is well explained in [46], Ch. 5.

In order to obtain a careful description of real/complex

modes in an array of metal nanospheres, we summarize here

a classification to physically characterize the behavior of the

various modes existing in the periodic structure. The structure

in Fig. 1 supports different guided modes depending on

whether the dipole moment of the spheres is parallel or ortho-

gonal to the plane containing the array, and they can be of two

types [42,44]. If all the Floquet waves are slow waves (phase

velocity is slower than the speed of light), the mode is a

surface-wave mode or a bound mode. Bound modes are non-

radiating modes: all the Floquet waves decay exponentially

away from the structure (αz;pq > 0), being jβpqj > k (outside

the visible region) for all ðp; qÞ indices, so that the only decay

is associated with the metal or host losses [42,47,48]. If at least

one of the Floquet waves is faster than the speed of light [49]

[namely, at least one spatial harmonic is in the visible region,

i.e., jβpqj < k for some ðp; qÞ], the mode is a radiating mode or

leaky mode; i.e., at least one of the spatial harmonics is radiat-

ing or leaking energy into space (see, for instance, Table 12.1

in [42] for a summary of this classification of complex modes).

In uniform structures, this radiation takes place in the forward

direction (βpq · α > 0), and the wave grows unbounded for

growing jzj. This unbound nature is why this mode is called

improper (namely, its wavenumber is found on the improper

sheet of the corresponding Riemann surface) [49]. In contrast,

in periodic structures, the radiation can take the form of either

a forward or backward leaky wave. The forward leaky waves

in these structures are always found to be improper, whereas

radiation in the form of backward (βpq · α < 0) leaky waves

is always proper (i.e., their field is bounded in the vertical

direction) [49].

The above discussion has pointed out that radiation in per-

iodic structures can take the form of bound and unbounded

waves in the z direction, which opportunely raises the ques-

tion of the physical existence of these radiating modes and, in

general, of all the modes [42]. This very relevant question will

be treated in the next sections after the dispersion equation of

the structure is derived.

3. FORMULATION

The electromagnetic modal analysis of the structure shown in

Fig. 1 follows the single dipole approximation summarized in

[29,43]. This approximation is an effective tool to model

periodic collections of nanoscatterers, and gives a very good

description of small metal particles [23,50] when rp ≤ d=3,

where rp is the radius of the particle and d ¼ minða; bÞ. If
the host medium is isotropic, the induced electric dipole of

the ðm;nÞth nanosphere is characterized by

pmn ¼ αeeE
loc
mn; ð6Þ

where Eloc
mn is the local field at the position of this particle [Eloc

mn

is produced by the incident field plus that scattered by all the

nanospheres of the array except the (m;n)th nanosphere it-

self], and αee is the polarizability of the nanospheres (isotropic

and identical for every spherical nanoparticle). For αee we use

the following expression obtained from the Mie theory [43]:

αee ¼
6iπε0εr;h

k3
nrψ1ðs1Þψ

0
1
ðs2Þ − ψ1ðs2Þψ

0
1
ðs1Þ

nrψ1ðs1Þξ
0
1
ðs2Þ − ξ1ðs2Þψ

0
1
ðs1Þ

; ð7Þ

where ε0 is the free-space permittivity, εr;h is the relative per-

mittivity of the host medium, nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εr;m=εr;h
p

is the relative

refractive index, with εr;m being the relative permittivity of the

metal nanosphere, s1 ¼ nrkrp, s2 ¼ krp, and ψ1ð·Þ, ξ1ð·Þ are the
Ricatti–Bessel functions [51] [ψ 0

1
ð·Þ and ξ0

1
ð·Þ are their deriva-

tives with respect to the argument]. The relative permittivity

of the metal as a function of frequency is provided by the

Drude model:

εr;m ¼ εr;∞ −
ω2
p

ωðωþ iγÞ
; ð8Þ

Fig. 1. Spatial array of metal nanospheres with 2D periodicity.
rmn ¼ max̂þ nbŷ is the 2D vector pointing at the nanospheres
(m, n ¼ 0;�1;�2;…).
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where εr;∞ is a convenient fitting parameter to match the

experimental data, ωp is the plasma frequency, and γ is the

Drude damping term.

The local field Elocðr00; kBÞ at the position r00 is expressed

as [29]

Elocðr00;kBÞ ¼ Ğ∞ðr00; r00;kBÞ · p00 þ Eincðr00Þ; ð9Þ

where Ğ∞ is the regularized dyadic GF that accounts for the

field contributions produced by all the (m;n) nanospheres

except the ðm;nÞ ¼ ð0; 0Þ nanosphere [29]. The computation

of this regularized dyadic GF is discussed in Appendix A.

Because we are interested in the modal analysis of the 2D

periodic arrays, we assume that Einc ¼ 0. Combining Eqs. (6)

and (9), it is then found that the polarization of the ðm;nÞ ¼

ð0; 0Þ nanosphere is given by

p00 ¼ αee½Ğ
∞ðr00; r00;kBÞ · p00�: ð10Þ

This last expression leads to the following linear system of

equations:

AðkBÞ · p00 ¼ 0; ð11Þ

where A is a 3 × 3 matrix given by

AðkBÞ ¼
1

αee
I −Ğ∞ðr00; r00; kBÞ; ð12Þ

with I being the identity dyadic. The modes in the 2D periodic

array of nanospheres considered in Fig. 1 can now be deter-

mined from the solutions of the homogeneous matrix of

Eq. (11); namely, the modal wavenumbers correspond to the

complex zeros of the determinant of AðkBÞ. Thus, the disper-

sion relation of the structure can formally be written as

det½AðkBÞ� ¼ 0: ð13Þ

Now taking into account that the nanospheres are arranged

in the x–y plane, it is possible to write AðkBÞ as [23]

AðkBÞ ¼ AtðkBÞ þ AzzðkBÞẑẑ; ð14Þ

with

AtðkBÞ ¼

�

1

αee
− �G∞

xx −�G∞
xy

−�G∞
yx

1

αee
− �G∞

yy

�

; ð15Þ

AzzðkBÞ ¼
1

αee
− �G∞

zz; ð16Þ

from which the dispersion relation of the structure can finally

be expressed as

det½AtðkBÞ� ¼ 0; ð17Þ

AzzðkBÞ ¼ 0: ð18Þ

4. PHYSICAL EXISTENCE OF THE MODAL
SOLUTIONS

First it should be noted that the periodic nature of the array in

the x and y directions causes the function det½AðkBÞ� in

Eq. (13) to define a Riemann surface with an infinite number

of (p; q) branch points given by the (kx; ky) values that satisfy

k2x;p þ k2y;q ¼ k2, which correspond to

kz;pq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − k2x;p − k2y;q

q

¼ 0: ð19Þ

If we assume for simplicity that the mode travels along x

(i.e., ky ¼ 0), the branch points are as shown in Fig. 2, where

k00 ¼ k and kpq ¼ k − p2π=a − q2π=b, as described by Eq. (14)

in [48] or in [42]. Figure 2 shows how these branch points are

periodically located in the kx plane. Each (p; q) branch point

defines two Riemann sheets: the (p; q) top Riemann sheet,

where Imðkz;pqÞ > 0 (the so-called proper sheet), and the (p; q)

bottom sheet, where Imðkz;pqÞ < 0 (improper sheet). A de-

tailed study on the nature of the resulting Riemann surface

reveals that all the (p; q) proper sheets are actually periodic

and that they overlap to give place to just one top (proper)

sheet with the expected appearance of different Brillouin

zones (BZs) accounting for the periodic nature of the struc-

ture under study. However, the improper sheets are not found

to be periodic, and no sheet overlapping is observed. Thus, the

Riemann surface has one common top (proper) periodic sheet

and an infinite number of improper sheets disconnected

among themselves. Nevertheless, the multivalued Riemann

surface as a whole is expected to present some sort of peri-

odicity congruent with the existence of BZs (and ultimately

with the actual periodicity of the array). This feature is pre-

served by the fact that the part of the improper sheet with

respect to the (p; q) branch point, which is exactly within

the limits of the (p; q) BZ, is exactly the same for all the branch

points. In this way, every BZ has exactly the same structure in

the top sheet as well as in the bottom sheet that is accessible

through the branch points located in this particular BZ.

The previous knowledge on the nature of the Riemann sur-

face is key to discerning the physical/nonphysical nature of

the different modes of the periodic structure. Thus, in order

to identify the modes that are physical in the present case, we

start with the appropriate definition of the inverse Fourier

transform that has to be used to represent any field excited

by a realistic point source [42,48,52]. Taking into account the

Fig. 2. Path deformation in the complex kx plane for a lossless host
medium assuming an observer along the positive x. The meaningful
physical modes are those captured in the deformation of the original
path (detouring around the branch-point singularities). Physical prop-
er poles (top Riemann sheet) are shown with a solid contour, and
physical improper poles (bottom Riemann sheet) are shown with a
dashed contour. The poles and branch points are periodically re-
peated in the kx plane with period 2π=a. kpq ¼ k − p2π=a − q2π=b.
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periodic nature of the Riemann surface and the different poles

and branch-point singularities, the adequate inversion contour

of the Fourier transform should be the thicker gray solid line

shown in Fig. 2 (there are more details in [42]). This inversion

contour runs entirely on the real axis of the kx complex plane

for the case of a lossy medium, but it detours around the real-

axis singularities in the case of a lossless medium. Assuming a

source at the origin, and an observer along the positive x

direction, it is possible to apply a further path deformation

toward the positive imaginary half plane. The deformation

consists of an infinite periodic set of the steepest descent

paths and residues of those poles encountered in the deforma-

tion [42,46,52]. Each encircled pole of the periodic set repre-

sents a physical mode. The poles associated with physical

modes can be located on both the proper and improper sheets

of the Riemann surface. Hence, it is the possibility that the

physical modes are located on the improper sheets of the

Riemann surface that actually justifies and requires a precise

knowledge on the nature of the Riemann surface as well as the

study of the evolution of the modes in the improper sheets.

Thus for the particular case shown in Fig. 2, inside the first

BZ [defined as −π=a < ReðkxÞ < π=a], has been plotted the

wavenumbers of two physical modes: a bound mode and a

leaky mode. The leaky mode with 0 < ReðkxÞ < k00 ¼ k is

physical if it belongs to the bottom Riemann sheet with re-

spect to the ð0; 0Þ branch point, which would cause the

ð0; 0Þth Floquet wave to be a forward improper wave. The

bound mode characterized by ReðkxÞ > k00, however, is phys-

ical if it is located on the upper Riemann sheet (forward prop-

er wave) [42,47]. If we now consider the ð1; 0Þ branch point

(which belongs to the p ¼ 1 BZ in Fig. 2), for the improper

leaky mode to be physical, it has to correspond to the

ð1; 0Þth Floquet wave (namely, it has to belong to the bottom

Riemann sheet with respect to the ð1; 0Þ branch point). And

for the p ¼ −1 BZ, the physical mode is that corresponding

to the ð−1; 0Þth spatial harmonic. Further plots in next sec-

tions show the evolution of the wavenumbers of these modes

(real and imaginary parts) in the complex kx plane. In sum-

mary, it can be said that the physical modes are those whose

corresponding poles in the complex kx plane (assuming

ky ¼ 0) are captured in the path deformation shown in Fig. 2

(see also [42,47,48,52]), and, therefore, for an observer along

the positive x axis, they have ImðkxÞ > 0 [solutions with

ImðkxÞ ¼ 0 can be valid in the lossless case]. In the p ¼ 0

BZ, it implies that the physical modes for an observer along

the positive x direction are in one of these four categories:

(i) improper forward leaky modes in the ð0; 0Þth bottom Rie-

mann sheet with 0 < ReðkxÞ < k, (ii) proper forward bound

modes (top Riemann sheet) with ReðkxÞ > k, (iii) proper back-

ward bound modes with ReðkxÞ < −k, and (iv) proper back-

ward leaky modes with −k < ReðkxÞ < 0. When losses are

present, the physical validity of the modes can be tracked

back to the corresponding lossless case.

5. MODES IN LOSSLESS STRUCTURES

In this section, we present dispersion curves for a 2D periodic

array of silver nanospheres of radius rp ¼ 25nm in a lossless

host medium with εr;h ¼ 1 arranged in a square lattice with

a ¼ b ¼ 73nm. The parameters in the Drude model for silver

permittivity are εr;∞ ¼ 5, ωp ¼ 1:37 × 1016 rad=s, and γ ¼ 0 for

lossless nanospheres [5,53]. The modal wavenumbers in the

array of nanospheres are computed by searching for the

complex zeros of Eq. (13), under the assumption that the com-

plex wave vector is parallel to the x axis (namely, kB ¼ kxx̂,

with kx ¼ β þ iα) and that the supported modes have the

dipole moment p00 parallel to one of the Cartesian axes. Be-

cause of the periodicity of the structure, we restrict our study

to the first BZ, with proper modes (upper Riemann sheet)

plotted in solid lines and improper modes (bottom

Riemann sheet) in dotted lines. Furthermore, in the absence

of losses, there is a four-quadrant complex modal wavenum-

ber symmetry. In other words, if kx is a complex solution, then

−kx, k
�
x and −k�x are also solutions (where � indicates the com-

plex conjugate). If kx is a real solution, we also have a mode

that can propagate with the −kx wavenumber. In what follows,

our discussion on the physical validity of the modes reaching

an observer along the positive x axis will be restricted to those

modes whose wavenumber kx has positive or null imaginary

part, ImðkxÞ ≥ 0, because otherwise their corresponding poles

could not be captured by the integration path deformation

shown in Fig. 2 or in [42]. Because of the reciprocity of the

structure under study, for an observer along the negative x

direction, the corresponding mode with wavenumber −kx will

have the same nature.

The evolution with frequency of the real and imaginary

parts of the wavenumber kx (namely, the dispersion diagram)

for modes with dipole moments polarized along x, y, and z is

shown in Figs. 3 and 4. The physical modes for an observer

placed along the positive x direction (that is, those that are

excited and effectively traveling with either positive or nega-

tive phase velocity and reaching the observer) are tagged in

Figs. 3 and 4 by circular markers (○) and the nonphysical

modes by crossed circular markers (⊗). These markers will

also be used in some of the following figures.

For the case of dipoles polarized along x, a nonphysical real

improper leaky mode [red dotted curve in Figs. 3(a) and 4(a),

β > k) transitions to a physical real proper bound mode [red

solid curves in Figs. 3(a) and 4(a)] at the normalized frequency

ka=π ≈ 0:38. This forward-bound mode has a growing propa-

gation constant as the frequency increases. Because of the

periodicity, at the boundary of the BZ [ReðkxÞ ¼ π=a], this

mode meets another related backward-bound mode (which

arrives at the boundary of the BZ from the right-side adjacent

BZ), and they join together to give rise to a pair of com-

plex conjugate proper modes [blue solid curve in Figs. 3(a)

and 4(a)] with phase constant β ¼ ReðkxÞ ¼ π=a and attenua-

tion constant α ¼ �ImðkxÞ (certainly, only the complex mode

with α > 0 is physical and bound, as explained in Section 4).

Figure 3(a) also shows an improper complex mode (dotted

green curve) that is physical when its phase constant is lo-

cated in the leaky region above the light line in the first quad-

rant of the complex kx plane (that is, when 0 < β < k, α > 0),

until it reaches the light line to transition to a nonphysical

improper bound mode (β > k).

The evolution of the modal wavenumbers is more apparent

in Fig. 5, which shows the excursion of the wavenumbers in

the complex kx plane as the frequency varies (namely, the loci

of the kx modal solutions). In this figure it can easily be ap-

preciated that the solutions have a symmetry with respect

to the ImðkxÞ ¼ 0 axis (i.e., conjugate values are also solutions

in the lossless case). The arrows in this figure, and in other

following similar figures, indicate the direction of increasing
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frequency. The details of how the improper real solution (not

visible in Fig. 5) transitions into the real proper one and then

gives rise to a pair of complex proper solutions are depicted in

Fig. 6: there, the two forward and backward proper real solu-

tions (red) meet at kx ¼ π=a and become two proper complex

solutions (blue) when the frequency increases.

The dispersion diagrams of the modes having dipoles or-

iented along the y direction are shown in Figs. 3(b) and 4(b),

and the loci of their wavenumbers are shown in Fig. 7. In the

detailed picture shown in Fig. 8, we can observe in the neigh-

borhood of point A (separating two BZs) that two real proper

modes (red solid curves) moving in opposite directions with

increasing frequency meet at the limit of the BZ to turn into a

pair of complex conjugate proper modes with ReðkxÞ ¼ π=a.

Each one of this pair of complex proper modes (purple curves

in Fig. 8) can be seen to evolve along the limit line of the BZ up

to meet another complex proper mode [green solid curve,

β ¼ ReðkxÞ ¼ π=a] to give rise at points B and B0 to two

new pairs of complex proper modes (blue solid curves), which

start to move horizontally toward the right-/left-hand sides of

the aforementioned meeting points.

All the modes shown in Fig. 8 with ImðkxÞ ≥ 0 are physical

according to the previous discussion in Section 4, and this ex-

plains the tags that appear in Figs. 3(b) and 4(b). In particular,

the presence of two pairs of physical complex proper bound

modes is noteworthy, plotted with blue solid curves in these

figures for ka=π > 0:37. Only two of the four solutions

Fig. 4. (Color online) Evolution of the imaginary part of proper
(solid curve) and improper (dotted curve) modes for (a) x, (b) y,
and (c) z polarization in a lossless structure assuming kB ¼ kxx̂.

Fig. 3. (Color online) Evolution of the real part of proper (solid
curve) and improper (dotted curve) modes in the first BZ for (a) x,
(b) y, and (c) z polarization in a lossless structure assuming
kB ¼ kxx̂. The physical branches for an observer along positive x
are tagged by circular markers (○), and the nonphysical branches
by crossed circular markers (⊗).
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corresponding to these complex proper bound (more specifi-

cally, those with jβj > k and α > 0) are tagged as physical in

Fig. 3(b). This pair of bound waves always appear together;

i.e., when they are physical, they both exist. These modes tran-

sition into proper leaky modes for jβj < k. However, the prop-

er forward leaky solution with β > 0, α > 0 is nonphysical

above the light line (when 0 < β < k), whereas the proper

leaky solution in the range −k < β < 0, α > 0 is physical

and backward. Figures 3(b) and 4(b) also show a real impro-

per mode (pink dotted curve), never physical, approaching

the light line. This mode lies behind the proper real (red

curve) in Fig. 7.

Figures 3(c) and 4(c) show the dispersion diagrams of the

modes polarized along z. Two real forward proper modes with

ReðkxÞ > 0 (red solid curve and cyan solid curve with negative

slope) meet at the normalized frequency ka=π ≈ 0:39 to give

rise to a pair of complex conjugate proper modes (blue solid

curves). The analogous counterparts, modal curves with ne-

gative ReðkxÞ < 0, meet at ka=π ≈ 0:39. The physical modes

for ReðkxÞ > 0 and ReðkxÞ < 0 are tagged by (○). In the com-

plex kx plane shown in Fig. 9, it can be observed that this pair

of complex conjugate proper modes (blue solid curve) move

toward the origin of the complex kx plane as the frequency

increases. They are both bound and physical (those with

α > 0) when jβj > k, and they always exist in pairs. At a cer-

tain frequency [see Fig. 3(c)], they cross the light line and the

mode with 0 < β < k becomes a nonphysical forward proper

leaky mode, while the one with −k < β < 0 becomes a physi-

cal backward proper leaky mode. Increasing the frequency, at

the origin in Fig. 9, these modes (blue solid curves) go through

the branch cuts (positioned as in Fig. 2) to reach the improper

Riemann sheet, where they are identified as improper com-

plex modes (dotted curves in Fig. 9). Up to the frequency

where these improper complex modes cross the light line, the

improper mode with 0 < β < k is physical. As the frequency

increases, the pair of improper complex modes becomes non-

physical and again approaches the real axis. There, they meet

together to transition into a pair of nonphysical improper real

modes. The details of the above transitions can be observed

in Fig. 10.

6. MODES IN LOSSY STRUCTURES

In this section, we account for metal losses in the array of

silver nanospheres previously studied in Section 5 assuming

the following Drude damping term [5,53]: γ ¼ 27:3 × 1012 s−1.

Further comparison between the lossless and lossy cases will

make apparent the situations for which the simpler lossless

case is a good model for the more realistic lossy case. The

presence of metal losses always adds certain imaginary part

to the wavenumbers of the previous real modes studied in the

lossless case in Section 5. Thus, the wavenumber of all the

Fig. 5. (Color online) Loci of the wavenumbers of the modes in
Figs. 3(a) and 4(a) (x polarization). Arrows show the increasing
frequency.

Fig. 6. (Color online) Detail of the transition of the real improper
mode to the real proper mode and then to the complex proper mode
shown in Figs. 3(a) and 4(a) (x polarization). At the normalized
frequency ka=π ¼ 0:414, two real forward and backward proper
modes (solid red line) meet at the boundary of the BZ, generating
a pair of complex conjugate proper modes (solid blue line).

Fig. 7. (Color online) Loci of the wavenumbers of the modes
shown in Figs. 3(b) and 4(b) (y polarization). Arrows show increasing
frequency.

Fig. 8. (Color online) Detail of the evolution of the modes for
y polarization in Figs. 3(b) and 4(b). At the normalized frequency
ka=π ¼ 0:37, two real forward and backward proper modes [solid red
curve in Fig. 3(b)] meet at the boundary of the BZ, generating at A a
pair of complex conjugate proper modes (purple curve). These modes
evolve up and down the BZ limit line until they meet other complex
proper modes [solid green curve in Fig. 3(b)] at points B and B0. Start-
ing from these points, two new pairs of complex modes [solid blue
curve in Fig. 3(b)] move horizontally to the right- and left-hand sides.
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modes studied in this section are complex, independently of

whether they come from real or complex solutions in the loss-

less case previously considered in Figs. 3 and 4. Furthermore,

the presence of losses breaks the four quadrant symmetry.

The only symmetry retained in the lossy case comes from re-

ciprocity: if kx is a solution, then −kx is also a solution.

Because of losses, the conjugate k�x is no longer a solution;

however, if losses are not very significant, there can be a solu-

tion close to �k�x. Indeed, note that each complex curve in

Figs. 3 and 4 becomes a pair of almost superimposed curves

in Figs. 11 and 12. The above fact makes the transition or

meeting points discussed in the lossless case not appear

now.

For x polarization, the dispersion diagrams in Figs. 11(a)

and 12(a) show how a complex improper mode (red dotted

curve) becomes a complex proper mode (red solid curve)

at ka=π ¼ 0:38. In contrast with the lossless case plotted in

Fig. 5, in Fig. 13 it can be seen that this complex proper mode

does not meet any other mode in its evolution to the edges of

the BZ. This last figure clearly shows that this proper complex

mode continues evolving in the first BZ as frequency

increases, with its imaginary part continuously growing.

Figure 13 also shows the evolution of the improper modes

(green dotted curve). As a consequence of the losses, the

phase and attenuation constants are slightly different for

the two modes in the fourth and first complex quadrants

(the modes in the third and second quadrants are the opposite

ones with respect to the first and fourth quadrants, respec-

tively). As mentioned above, there is no longer a pair of com-

plex conjugate modes (as happened in the lossless case

shown in the green dotted curve in Fig. 5), although this fact

is almost unnoticeable in Fig. 13 due to the small amount of

losses. For the same reason, the physical validity of the modes

in the lossy case follows practically the same pattern as the

one shown in Figs. 3(a) and 4(a) for the lossless case. For

the sake of clarity, the tags on the physical/nonphysical modes

are also shown in Fig. 13.

In the case of y polarization, Figs. 11(b) and 12(b) show the

dispersion diagrams of two complex proper modes (solid blue

and red curves). This evolution is depicted in the complex

wavenumber plane in Fig. 14. Unlike the behaviors plotted

in Figs. 7 and 8 for the analogous modes in the lossless case,

there is not any splitting point in this case: both proper modes

evolve separately. Moreover, in the lossy case, it is clear that

there is not symmetry with respect to the real axis; namely,

the blue and red curves are not conjugated solutions (how-

ever, the blue solution is close to the complex conjugate of

the red solution). The tags in Figs. 11(b), 12(b), and 14 clearly

show which one of the set of complex solutions is physical. In

order to clarify the behavior of these modes, a detail of the

evolution in the complex kx plane is shown in Fig. 15, which

can be compared with that for the lossless case in Fig. 8. In the

neighborhood of point A in Fig. 15, a complex proper mode

(red solid curve) travels toward the limit line of the BZ in

the forward direction with an attenuation constant α ¼

ImðkxÞ⪆0. Above the normalized frequency ka=π ≈ 0:37 (in

the neighborhood of point A), the magnitude of its attenuation

constant starts to increase, whereas its phase constant starts

to decrease up to reach zero at ka=π ≈ 0:48 (point B). At this

normalized frequency, this complex proper mode goes

through the branch cut to become an improper complex mode

[red dotted curve in Figs. 11(b), 12(b), and 15]. Another

complex proper mode (blue solid curve) moves down close

to the limit line of the second BZ as the frequency increases.

However, as the normalized frequency approaches the value

ka=π ≈ 0:37 (neighborhood of point A), the magnitudes of both

its phase and attenuation constants start to increase. The

evolution of this mode in the second BZ is reflected in the

evolution of the complex proper mode plotted in the second

quadrant of Fig. 14, which shows that this mode is physical in

all the considered frequency ranges. Also, as happened in the

lossless case shown in Figs. 3(b) and 4(b), in Figs. 11(b) and

12(b), a complex improper mode (pink dotted curve), always

Fig. 9. (Color online) Loci of the wavenumbers of the modes
shown in Figs. 3(c) and 4(c) (z polarization). Arrows show the increas-
ing frequency.

Fig. 10. (Color online) Details of the evolution of the modes shown in
Fig. 9. Proper sheet: at the normalized frequency ka=π ¼ 0:39, two real
forward and backward proper modes [solid red and cyan curves in
Figs. 3(c) and 9] meet at ReðkxÞa=π ¼ 0:67 to give rise to a pair of com-
plex conjugate proper modes [solid blue curve in Figs. 3(c) and 9].
These modes evolve toward the origin, reached at ka=π ¼ 0:46. Im-

proper sheet: at ka=π ¼ 0:46, a pair of complex conjugate improper
modes [blue dotted curve in Figs. 3(c) and 9] transition into two real
improper modes at ReðkxÞa=π ¼ 0:6 [dotted green and pink curves in
Figs. 3(c) and 9].
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nonphysical, propagates toward the light line as the frequency

increases. This mode appears in Fig. 14 close to the real axis.

In Figs. 11(c) and 12(c) are plotted the dispersion diagrams

of the modes for z polarization along with their corresponding

physical/nonphysical tags. The apparent multiplicity of modes

shown in these figures disappears in Fig. 16, which shows the

frequency evolution of these modes in the complex wavenum-

ber plane. This figure also makes more apparent the physical/

nonphysical character of the modes. The complex proper

modes (red and blue solid curves) show a similar evolution as

that shown in Fig. 14 for the case of y polarization. A clear

difference observed in Fig. 16 is that, at ka=π ≈ 0:42, these

two complex proper modes go through the branch cut

(through either the real or the imaginary axes) to become im-

proper complex modes (dotted red and blue curves). At this

normalized frequency, it can be seen that the physical com-

plex backward proper mode coming from the second quad-

rant (blue solid curve) transitions into a physical complex

forward improper leaky mode (blue dotted curve), which

eventually becomes nonphysical forward improper bound

when ReðkxÞ > k [see Figs. 11(c) and 16]. The other complex

proper mode coming from the first quadrant (red solid curve)

was already nonphysical before transitioning to a nonphysical

complex improper mode in the fourth quadrant.

To conclude this analysis, having both lossless and lossy

dispersion diagrams available, it is possible to observe

whether the lossless approximation for the computation of

β − k diagrams for the lossy case provides a satisfactory result

Fig. 12. (Color online) Evolution of the imaginary part of the proper
(solid curve) and improper (dotted curve) modes for (a) x, (b) y, and
(c) z polarization in a lossy structure assuming kB ¼ kxx̂.

Fig. 11. (Color online) Evolution of the real part of the proper (solid
curve) and improper (dotted curve) modes in the first BZ for (a) x,
(b) y, and (c) z polarization in a lossy structure assuming kB ¼ kxx̂.
The physical branches for an observer along positive x are tagged
by circular markers (○) and the nonphysical branches by crossed
circular markers (⊗).

1454 J. Opt. Soc. Am. B / Vol. 28, No. 6 / June 2011 Fructos et al.



(a fact that is especially important for complex modes whose

physics can hardly be analyzed within the lossy model). Ana-

lyzing the x polarization, the lossless approximation could be

adopted without making a large error (as can be noticed by

comparing the graphs in Figs. 5 and 13). For y polarization,

by comparing the graphs in Figs. 7 and 14, this approximation

would produce a larger error than the previous case for the

proper modes, especially for the region close to the boundary

of the BZ. For z polarization, looking at the graphs in Figs. 9

and 16, this approximation would produce the largest error

with respect to the other two polarizations, and as such should

not be used to approximate the modes in a lossy structure.

7. ANALYSIS OF GUIDANCE AND
RADIATION

A. Physical Bound Modes
Physical bound modes travel a long distance in terms of the

free-space wavelength when their attenuation constant is

small, i.e., when α ≪ k (low decay). As was previously stated,

our analysis is restricted to modes along the x axis, such that β

and α are both parallel to the x axis, kx ¼ β þ iα. Taking into

account the condition of physical existence, and considering

the harmonic in the fundamental BZ, a hypothetical observer

along the positive x direction would be reached by a bound

mode as outlined at the end of Section 4. A more general

condition for bound and physical modes is given in [42,44].

In the planar array of nanospheres under study, the bound

modes that travel without large decay are discussed next (the

description is performed looking at the more realistic lossy

case dispersion diagrams shown in Figs. 11 and 12; a similar

discussion can be provided for the lossless case in Figs. 3 and

4). For x polarization, the proper forward mode [solid red

curve in Figs. 11(a), 12(a), and 13] is bound and physical.

As shown in Fig. 12(a), its attenuation constant α is small

for a narrow frequency region. For y polarization, the best

bound mode is the proper forward mode [solid red curve

in Figs. 11(b), 12(b), and 14]; it has a very small imaginary part

near the light line for a wide frequency range. For increasing

frequency, the imaginary part grows. The proper backward

mode (solid blue curve) is also bound, but its attenuation

constant is large. For z polarization, the best bound mode

is the proper forward mode [solid red curve in Figs. 11(c),

12(c), and 16], because its attenuation constant is small

for a wide frequency range. Also the backward proper mode

(solid blue curve) is bound, but its attenuation constant is not

small. None of the improper modes can be bound.

As a last remark concerning z polarization, we point out

that the real mode dispersion analysis carried out in [14,16]

shows a mode whose slope transitions from positive to nega-

tive. That mode has been associated with the capability of

producing superresolution with arrayed nanospheres. The

nanospheres in [14,16] were assumed lossless, and only real

Fig. 15. (Color online) Details of the evolution of the modes in the
complex kx plane for y polarization (solid blue and red curves in
Fig. 14).

Fig. 16. (Color online) Loci of the wavenumbers of the modes
in Figs. 11(c) and 12(c) (z polarization). Arrows show the increasing
frequency.

Fig. 13. (Color online) Loci of the wavenumbers of the modes
in Figs. 11(a) and 12(a) (x polarization). Arrows show the increasing
frequency.

Fig. 14. (Color online) Loci of the wavenumbers of the modes in
Figs. 11(b) and 12(b) (y polarization). Arrows show the increasing
frequency.
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modes were shown. The same dispersion analysis has been

found in Fig. 3(c), and we have shown that the mode con-

sidered in [14,16] is actually made of two distinct modes: a

physical forward proper real mode (the red solid curve with

β > 0) and a nonphysical backward proper real mode (cyan

solid curve with β > 0). Furthermore, a third complex proper

mode (solid blue curve with β > 0 and α > 0) is intersecting

the previous two in Fig. 3(c) where the slope vanishes. Indeed,

we also show that this complex mode in the second quadrant

of the complex kx plane is physical and must be included in

the explanation of the complex behavior of fields generated

by the arrayed nanospheres. The intersection of these three

different mode types is well represented in the proper sheet

of Figs. 9 and 10. The more realistic case of mode dispersion

analysis for an array that includes losses is shown in

Figs. 11(c) and 16.

B. Physical Radiating (Leaky) Modes
Physical leaky modes provide very directive radiation when

their attenuation constant is small, i.e., α ≪ k. Again, our ana-

lysis is restricted to modes along the x axis, such that β and α

are both parallel to the x axis, kx ¼ β þ iα. Taking into ac-

count the physical condition, and considering the harmonic

in the fundamental BZ, a hypothetical observer along the

positive x direction would be reached by a radiating mode

excited at the origin as outlined at the end of Section 4. Con-

sidering the cases represented in Figs. 11–16, the only modes

that can provide a directive radiation (for which they should

have a low attenuation constant in order to travel a long dis-

tance before leaking all of their power) are z polarized and,

more specifically, the improper forward mode (dotted blue

curve) and the proper backward mode (solid blue curve) in

Figs. 11(c), 12(c), and 16. In Fig. 12(c) it can be seen that there

is a frequency range where the attenuation constants of these

modes are rather small, which means that they can travel a

large distance from a source, thus providing a very large

“equivalent radiating aperture.” Note that, in principle, these

modes can also radiate at broadside (namely, orthogonal to

the x–y plane), because their phase constants approach the

origin [47]. However, as these modes are z polarized, each ele-

ment has a radiation null along the z direction (the so-called

element factor in array theory). This is observed by noticing

that the imaginary part, α, tends to vanish as the real part, β,

approaches zero. In other words radiation losses vanish as

β → 0. Also the x-polarized improper forward mode [dotted

green curve in Figs. 11(a), 12(a), and 13] is radiating, but

its attenuation constant is very large and therefore cannot pro-

vide directive radiation. For y polarization, the only radiating

mode is the proper backward (solid blue curve), but it cannot

provide directive radiation, because its attenuation constant is

rather large.

8. CONCLUSIONS

In this work we have presented a thorough study of the modes

of a 2D periodic array of metal nanospheres at optical frequen-

cies. We have paid special attention to the mathematical con-

tinuation of the different modal solutions in their excursions

across the different sheets of the Riemann surface defined by

the corresponding dispersion equation. A comprehensive

study of this mathematical continuation is key to avoid the

eventual loss of some solutions and also because it does

provide essential information about the physical nature of

the modes. Although the reported method allows for the de-

termination of all the possible modes, we have shown only

those with a small imaginary part (i.e., low decay when

propagating along the array), and we have discussed the nat-

ure of the modes from different perspectives: real/complex,

proper/improper, physical/nonphysical, forward/backward,

and bound/radiating.

This is the first time (to our knowledge) such a complete

physical characterization in a 2D periodic array of metal nano-

spheres has been presented showing which modes can actu-

ally be excited by a localized source and how a mode can

evolve when the frequency is increasing; e.g., it can stop/start

being physical, or it can start radiating. The presented analysis

is also useful because it shows when lossy nanospheres could

be approximated by lossless ones and when that approxima-

tion fails to be valid. The above discussion and classification

of the modes allowed us to have a very complete knowledge of

the characteristics of the different modes. This knowledge is

certainly crucial for a further exploration of practical applica-

tions of 2D periodic arrays of metal nanospheres.

APPENDIX A

The regularized dyadic GF, Ğ∞, in Eq. (9) can be expressed as

follows [29]:

Ğ∞ðr; r00;kBÞ ¼ G∞ðr; r00;kBÞ −Gðr; r00Þ; ðA1Þ

where

G∞ðr; r00; kBÞ ¼
X

mn

Gðr; rmnÞe
ikB·rmn ; ðA2Þ

with

Gðr; rmnÞ ¼
1

ε0εr;h
½k2Gðr; rmnÞIþ∇∇Gðr; rmnÞ�; ðA3Þ

r ¼ xx̂þ yŷþ zẑ is an arbitrary observation point and the

expression of the scalar GF, Gðr; r00Þ, is given by

Gðr; r00Þ ¼
eikjr−r00j

4πjr − r00j
: ðA4Þ

The expression for the periodic GF given in Eq. (A2) is not

convergent for complex wave vectors kB. However, it can

alternatively be efficiently evaluated by applying the Ewald

method [54] in a similar way as that followed in [14,55].

The Ewald method has the advantage of providing a very fast

convergence, even for complex wave vectors kB.
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