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RESEARCH HIGHLIGHTS 

• The database used is the Airline On-Time Performance Data from the Bureau 

of Transport Statistics of the US. 

• The goal is to provide a global picture of the statistical patterns of the 

reactionary delays with the aim of developing models able to realistically 

account for the delay propagation. 

• We study topological properties of the US air transportation network in 2010. 

• The delay distributions, for both arrival and departure, show long decays 

which is a signature of the complex nature of the phenomena taking place in 

the system. 

• The aircraft rotation shows a highly heterogeneous profile that affects the 

development and propagation of delays. 

• For flights with delay longer than 12 hours, the destination airport plays an 

important role. 
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CHARACTERIZATION OF DELAY PROPAGATION IN 

THE US AIR TRANSPORTATION NETWORK  

ABSTRACT 

Complex networks provide a suitable framework to characterize air traffic. Previous 

works described the world air transport network as a graph where direct flights are 

edges and commercial airports are vertices. In this work, we focus instead on the 

properties of flight delays in the US air transportation network. We analyze flight 

performance data in 2010 and study the topological structure of the network as well as 

the aircraft rotation. The properties of flight delays, including the distribution of total 

delays, the dependence on the day of the week and the hour-by-hour evolution within 

each day, are characterized paying special attention to flights accumulating delays 

longer than 12 hours. We find that the distributions are robust to changes in takeoff or 

landing operations, different moments of the year or even different airports in the 

contiguous states. However, airports in remote areas (Hawaii, Alaska, Puerto Rico) 

can show peculiar distributions biased toward long delays. Additionally, we show that 

long delayed flights have an important dependence on the destination airport.  

 

 

KEYWORDS: delay propagation, complex networks, Airport and Airline 

Performance, ATM. 
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1. INTRODUCTION 

The generation, propagation and eventual amplification of flight delays involve a 

large number of interacting mechanisms. Such mechanisms can be classified as 

internal or external to the air traffic system. The basic internal mechanisms include 

aircraft rotations (the different flight legs that comprise an aircraft itinerary), airport 

operations, passengers’ connections and crew rotation. In addition, external factors, 

such as weather perturbations or security threats, disturb the system performance and 

contribute to a high level of system-wide congestion. The intricacy of the interactions 

between all these elements calls for an analysis of flight delays under the scope of 

Complex Systems theory. Complexity is concerned with the emergence of collective 

behavior from the microscopic interaction of the system elements. Several tools have 

been developed to tackle complexity. Here we use Complex Networks theory and take 

a system-wide perspective to broaden the understanding of delay propagation. A 

network is a mathematical abstraction that represents systems of interacting entities as 

vertices (nodes) connected by edges (links) (see, for instance, Bocaletti et al. 2006, 

Newman 2010, or Barrat et al. 2012 for recent reviews). Given the natural networked 

structure of the air traffic system, we analyze the air transport network formed by 

nodes representing airports and edges direct flights between them. The nature of such 

network is highly dynamical since a different instance exists at every moment in time.  

In this work we are interested in characterizing delays and how they may be 

transferred and amplified by subsequent operations, the so-called reactionary delays. 

Naturally reactionary delays spread across the network, so an understanding of the 

topological features of the air transportation network, the properties of aircraft 
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rotations and the statistical features of flight delays is of great significance for 

subsequent modeling efforts (Fleurquin et al 2013).  

The remainder of the paper is organized as follows. Section 2 provides a background 

review of the literature on complex networks, focusing on air transportation. Section 3 

describes the used database. In Section 4 we present results on the characterization of 

the US air transportation network, flight trajectories and flight delays. Finally, Section 

5 summarizes our findings and points to further research questions. 

2. BACKGROUND 

The use of network analysis to characterize complex systems has become widespread 

in the last two decades. The potential of graphs for describing social systems was 

pointed out almost a century ago (see Freeman 2004 for a review). However, the 

generalization of these concepts and tools had to wait much longer until the seminal 

works by Watts and Strogatz 1998 and by Barabási and Albert 1999. Ever since, 

complex networks have been applied in a growing range of disciplines such as 

technology (Huberman et al. 1999), biology (Jeong et al. 2001), or economy 

(Mantegna et al. 2007). 

The application of network theory to air transportation has a much shorter history, for 

which the first results were published in 2004 and 2005. The world air transportation 

network is described as a graph formed with the passenger commercial airports as 

vertices and the direct flights between airports as edges (Barrat et al. 2004, Guimera 

et al. 2005), with a weight corresponding to the number of seats available in the 

connection. The main source of this database is IATA, while some other studies have 

presented data from the US Bureau of Transport Statistics (BTS) or from OAG. The 

initial work (Barrat et al. 2004) focused on the correlations between network topology 
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and fluxes of passengers finding a non-linear relation between them: , 

where  is the number of seats available in the connection between airports i and j, 

while  is the number of connections with other airports of airport i, and 	   is a 

parameter whose value was estimated to be approximately 1/2.  A second study  

(Guimera et al. 2005) included a network description and analyzed the degree 

(number of connections per node) and node strength (sum over the weights of the 

connections of a node) distributions, degree-degree correlations, density of triangles, 

etc. The world air transportation network was analyzed later with graph clustering 

techniques (Sales-Pardo et al. 2007) to classify airports according to their connectivity 

patterns. The seasonal evolution of the connectivity patterns in the US airports 

networks have been also investigated in (Gautreau et al. 2009, Pan et al. 2011). The 

authors characterize along the year how the network connectivity varies, with more 

routes available in summer, as well as how the passenger fluxes modify. Recently, 

information on human mobility through the air transportation network has also been 

used to model and forecast the propagation pathways of infectious diseases 

transmitted by contact such as influenza (Balcan et al. 2009, 2009b).  

Within the ATM community, even if reactionary delays have a great impact on air 

traffic performance (US Congress 2008, ICCSAI Fact Books 2011, Eurocontrol 

2011), the research effort to understand delay propagation has been scarce so far, and 

mostly limited to a descriptive work (Beatty et al. 1999, Schaefer et al. 2001 & 2003, 

Ahmadbeygi et al. 2008). A good review of previous work on delay propagation can 

be found in (Belobaba et al. 2009,  Jetzki 2009). Some research efforts have begun to 

apply network theory (Wuellner et al. 2010, Bonnefoy et al. 2007) in combination 

with stochastic modeling (Rosenberger 2002, Janic 2005) to the modeling of delay 

propagation (Bonnefoy et al. 2005, EPISODE 3, Pyrgiotis et al. 2013).  

wij = kik j( )
θ

wij

k
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3.  DATA & METHOD 

Data was obtained from the Airline On-Time Performance Data available at the 

Bureau of Transportation Statistics webpage (www.bts.gov). This database provides 

information such as schedule and actual departure and arrival times, departure and 

arrival delays, origin and destination airports, taxi-in and taxi-out times, airline ID, 

tail number and flight date. Air carriers that exceed one percent of the total domestic 

scheduled-service passenger revenue, report on-time data and the causes of delay. 

We restricted our analysis to domestic flights conducted in the year 2010. Despite 

these data are 2 years old, no major changes concerning on-time performance has 

occurred since then. For the year 2010, 18 air carriers filed on-time performance data 

that combined represents 6,450,129 flights from 305 airports. From this database 

1.75% were cancelled and 0.2% diverted. All scheduled domestic flights for the year 

2010 (not only those from On-Time Performance Data) totalize 8,687,800 (BTS 

2011), therefore the data used represent 74% of all scheduled flights in 2010.      

4. RESULTS  

4.1 Characterizing the United States air transportation network 

The resulting air transportation network is composed of 305 nodes denoting airports 

and 2,318 edges accounting for direct connections between them (Figure 1). Airports 

are sized according to the logarithm of their average delay per flight. Even though the 

network is not completely bidirectional, i.e., there can be flights from A to B but not 

from B to A, most connections bear flights in the two directions. For example, we 

find that if we build daily networks with the information of the flights, 98% percent of 

the overall connections are bidirectional. Furthermore, the lowest percentage of 
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bidirectional links measured in a daily network is 92%. Small airports are responsible 

for these minor anomalies. To simplify the analysis we symmetrized the network. 

As in previous works, we define as degree of an airport its number of different 

connections (airports of origin or destination of flights connecting with it). We can 

then calculate a degree distribution taking into account the degrees or the number of 

flights of the airports across the network and integrate it to obtain a cumulative 

distribution 𝐹!(𝑥), which for each value of 𝑥 is telling us which is the fraction of 

airports with degree (number of flights) less than or equal to 𝑥. In Figure 2, we show 

the complementary cumulative distribution of the degree and of the number of flights 

(1− 𝐹!(𝑥)). Both distributions are wide and evince the heterogeneities present in the 

network. Some few airports are large hubs with a large number of connections and 

flights, while most of the airports have low traffic. These topological characteristics 

are well known for this network but still are relevant for the dynamics of delay 

propagation.   

Table 1 shows the ranking of the top 10 airports based on the number of different 

destinations (degree) and displays also the number of flights. The largest hub in the 

network is Atlanta International Airport (ATL) with 159 direct connections and the 

average degree of the whole network is 15.2. 

 

4.2 Flight trajectories 

An important ingredient to characterize the propagation of reactionary delays is the 

rotation of the aircrafts. The database contains the tail number of the planes, which 

allows us to track their movements throughout the day. In Figure 3, we show the 

percentage of aircrafts taking a certain number of leaps per day. It can be seen that 
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80% of trajectories are composed of a number of leaps between 2 and 7. Very few 

planes do longer rotations due to the constraint of daily time periods and the duration 

of the flights. 

 

Within a day, some of the aircraft trajectories for closed walks, that is, a sequence of 

airports starting and ending at the same airport, but most of the aircraft trajectories do 

not close at the end of the day. In Figure 4 we show the percentage of closed walks 

per day during 2010. We can conclude that these trajectories are a small percentage 

with respect to the total number of aircraft rotations. This finding does not mean that 

the trajectories will not close taking into account longer periods of time (weeks, 

months or years).  

 

Regarding the previous result, another way of classifying the airports (besides 

connectivity) is according to the fraction of closed walks that starts in each airport. 

These airports are not necessarily the ones with highest degree (see Figure 5). 

Assuming that the airline hubs (airlines’ centers of operations) are those airports with 

a larger percentage of closed rotations, we can conclude that the network hubs (nodes 

with highest degree) do not always coincide with the airlines hubs.  

 

4.3 Flight delay characterization 

We have described the topology of the network and the rotation of the flights. The 

next step is to focus on the real data regarding flight delays. We plot in Figure 6 the 

complementary cumulative distribution of departure and arrival delays for all flights 

of 2010, 1− 𝐹!(𝑥). First, we notice that just like the degree and flight distribution, 

the delay distribution is broad with a slight hump at values of the delay around and 
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larger than 700 min. Second, we find that there is no significant difference for both 

types of delays (arrival and departure delays), the day of the week or the season of the 

year (Figure 7).  The cumulative distribution for different airports (Figure 8) shows a 

broad variety of behaviors. A remote airport from the mainland like Honolulu 

International Airport (HNL) and two continental hubs are displayed in the Figure: 

Dallas/Fort Worth International Airport (DFW) and Denver International Airport 

(DEN). We can see that DFW and DEN still show a slight hump in the distribution 

unlike HNL. On the other hand, Honolulu displays a broader distribution. This is 

probably due to the longer duration of the flights with destination or origin in HNL 

that allows for an easier absorption of short delays. The delays in the islands can be, 

therefore, much larger than those in the continent and as a consequence the 

distribution becomes more skewed. 

In order to understand the nature of the hump in the delay distributions, we extract the 

flights with departure delay above 12 hours and compare them with all the flights of 

2010. Plotting the departure delay as a function of the scheduled departure time we 

can distinguish how flights with delay greater than 12 hours are more abundant than 

the baseline at the beginning and at the end of the day (see Figure 9A). The opposite 

behavior can be observed for flights with departure delay below 12 hours, which 

show an almost flat delay distribution. Regarding this point, we plotted the delay 

distribution for flights with different scheduled departure times in Figure 9B. The 

hump becomes more evident in the distribution of flights departing between 00am to 

5am and 1pm to 11:59pm (local times) indicating a relatively higher abundance of 

long delayed flights. Note that even so, the fraction of delay flights is small compared 

with the total.  
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Another feature of long delayed flights is their strong dependence on the destination 

airport. In Table 3, we compare the data for long delayed flights with two sets of 

randomly selected flights: one among all flights (delayed or not) and the other only 

with delayed flights. From the data 51 airports (16.00%) are the destination of 414 

delayed flights. If the 414 flights are randomly chosen, the number of destination 

airport increases up to 120 (more than double the results from the real data) regardless 

of the way we choose the flights. This means that a bias exists towards a smaller set 

of destination airports. Note that the same phenomenon is not observed for the 

departure airports that are in the same range both in the data and in the randomly 

selected flights. Other variables as days, tail-number or air carriers remain the same. 

In Figure 10, we plotted the number of flights with long delays versus the ranking of 

destination airport with respect to the number of long delayed flights. The data 

correspond to the blue bars while the randomly selected set of flights are the red 

curve. In the data, the first 8 airports are destination of 75 % of the long delayed 

flights, while in the randomly selected set the first 8 airports totalize only 52 %.   

The significance of the destination airports could be related to Ground Delay Program 

(GDP) from the Federal Aviation Administration (FAA). This program is 

implemented to control air traffic volume to airports where the estimated demand is 

expected to surpass the Airport Arrival Rate. When a GDP is issued flights destined to 

the affected airport are not permitted to depart until their Controlled Departure Time. 

5. CONCLUSION  

In summary, we have analyzed the characteristics of the US air transportation network 

with a focus on flight delays. The air transportation network is built by connecting 

pairs of airports if they have a direct flight. We studied the network topological 
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properties such as the distribution of the number of flights or the number of 

connections per airport. These features show the broad heterogeneity of the air 

transport network in accordance with previous works. In addition to the topology, we 

consider also the properties of the aircraft rotation throughout the day and the 

characteristics of the delays. The aircraft rotation shows a complicated and highly 

heterogeneous profile. Some aircrafts itineraries are essentially round trips while 

others do not close in a simple periodic way. The heterogeneity of the rotation 

procedures can play an important role in the development and propagation of delays.  

Regarding the delays, we show that the delay distributions show long decays both for 

arrival and departure delays, irrespective of the day of the week and season. Long 

tails are usually indicative of the complex nature of the mechanisms contributing to 

the propagation of delays. In this case, the system is not necessarily working under 

critical conditions but the combined action of several factors such as connecting 

passengers or crew, a predetermined schedule and the geographical distance of the 

airports can contribute to reach a similar system state at a global level. Whether the 

air transport network is a system at criticality is an open question that deserves further 

research.  We study also the properties of the flights with a delay higher than 12 hours 

showing a relative concentration of long delayed flights early in the morning or late in 

the afternoon. The destination airport seems to be a key player for the surge of flights 

with long delay. 

These results are relevant in order to better characterize flight delays from a statistical 

perspective. Subsequent efforts aimed at modeling delay spreading in the air transport 

networks, such as the recent works in (Fleurquin et al. 2013, 2013b), should have into 

account the statistical patterns described here both in the model development and 

validation.  
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FIGURE 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2 

  

FLIGHTS ORIGIN DEST DAYS TAIL AR_ID

WITH PROBLEM 414 118 51 226 346 14

TOTAL 6341340 305 305 365 5081 18

PERCENTAGE 0.01% 38.00% 16.00% 62.00% 7.00% 77.00%

FLIGHTS ORIGIN DEST DAYS TAIL AR_ID

WITH PROBLEM 414 114 120 248 392 18

TOTAL 6341340 305 305 365 5081 18

PERCENTAGE 0.01% 38.00% 39.00% 67.00% 8.00% 100.00%

FLIGHTS ORIGIN DEST DAYS TAIL AR_ID

RANDOMIZE 414 112 120 246 383 18

TOTAL 6341340 305 305 365 5081 18

PERCENTAGE 0.01% 36.00% 39.00% 67.00% 7.00% 100.00%

FLIGHTS WITH DEPARTURE DELAY > = 12 HOURS

RANDOMLY CHOSEN 414 FLIGHTS

RANDOMLY CHOSEN 414 FLIGHTS DELAYED
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FIGURE	  1.	  US	  air	  transport	  network	  in	  2010.	  

FIGURE	  2.	  Complementary	  cumulative	  distribution	  of	  the	  degree,	  that	  is,	  the	  number	  of	  

destinations	   per	   airport	   (on	   the	   left)	   and	   of	   the	   number	   of	   flights	   per	   airport	   (on	   the	  

right)	  in	  the	  US	  air	  transport	  network.	  

FIGURE	  3.	  Percentage	  of	  daily	  aircraft	  trajectories	  with	  given	  number	  of	  leaps.	  

FIGURE	  4.	  Percentage	  of	   closed	  walks,	   that	   is,	  daily	  aircraft	   trajectories	   that	   start	  and	  

end	  in	  the	  same	  airport.	  

FIGURE	  5.	  Percentage	  of	  daily	  aircraft	  trajectories	  ending	  at	  an	  airport	  as	  a	  function	  of	  

the	   airport	   degree.	   IATA	   codes	   are:	  MIA	   (Miami),	   EWR	   (Newark),	   IAH	   (Houston)	   and	  

ATL	  (Atlanta).	  

FIGURE	  6.	  Complementary	  cumulative	  distribution	  function	  of	  departure	  (black	  circles)	  

and	  arrival	  (red	  stars)	  delay	  in	  2010.	  

FIGURE	   7.	   Complementary	   cumulative	   distribution	   function	   of	   departure	   delays	   in	  

2010.	   In	  A),	   the	  continuous	  colour	   lines	   represent	  data	  differentiated	  by	  weekday	  and	  

black	  circles	   for	  all	   flights	  of	  2010.	   In	  B),	  green	  stars	  correspond	  to	   flights	  operated	   in	  

winter,	   red	   triangles	   represent	   flights	   operated	   in	   summer	   and	   black	   circles	   for	   all	  

flights	  of	  2010.	  

FIGURE	   8.	   Complementary	   cumulative	   distribution	   of	   the	   departure	   delays	   in	   2010	  

(black	   circles),	   and	   single	   airports	  HNL	   (Honolulu	   International	  Airport).	  DFW	   (Dallas	  

Fort	  Worth)	  and	  DEN	  (Denver	  International	  Airport).	  

FIGURE	   9.	   	   Fraction	   of	   departures	   as	   a	   function	   of	   the	   scheduled	   departure	   hour.	   A)	  

Fraction	  of	  departures	  taking	  into	  account	  all	  flights	  of	  2010	  (blue	  bar),	  and	  fraction	  of	  

departures	   per	   hour	   for	   flights	   with	   12	   hours	   departure	   delay	   or	   longer	   (red).	   B)	  

Complementary	   cumulative	   distribution	   function	   of	   departure	   delays.	  Green	   triangles	  

represents	  flights	  with	  scheduled	  departure	  from	  00:00	  am	  to	  05:00	  am	  or	  01:00	  pm	  to	  

11:59	  pm.	  Black	  symbols	  represent	  flights	  with	  scheduled	  departure	  from	  05:00	  am	  to	  

00:59	  pm.	  

FIGURE	   10.	   	  Ranking	   of	   the	   number	   of	   flights	   delayed	   12	   hours	   or	   more	   for	   the	   51	  

destination	   airport	   from	   the	  data	   (blue	  bars)	   and	   the	   randomly	   selected	   airports	   (red	  

line).	  For	  the	  sake	  of	  clarity,	  from	  the	  120	  destination	  airports	  from	  the	  random	  case	  we	  

only	  plot	  the	  first	  51	  airports.	  

TABLE	  1.	  Major	  airports	  ranked	  according	  to	  their	  degree.	  

TABLE	  2.	  Statistical	   analysis	  of	   flights	  with	  departure	  delay	   larger	   than	  12	  hours.	   For	  

the	  year	  2010	  414	  flights	  were	  delayed	  12	  hours	  or	  more.	  For	  comparison	  purposes	  414	  

(delayed)	  flights	  were	  randomly	  selected,	  checking	  if	  this	  random	  selection	  modifies	  the	  

origin	   or	   destination	   airport	   and	   also	   the	   number	   of	   days,	   aircrafts	   (tail	   number)	   or	  

airline	   (airline	   id).	   Only	   the	   destination	   airport	   suffers	   a	   significant	   deviation	   from	   a	  

random	  selection.	  


