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ABSTRACT

In this article, we characterize histone demethylase

activity of the entire family of JmjC+N proteins of

Drosophila melanogaster. Our results show that Lid

(little imaginal discs), which is structurally homol-

ogous to JARID1, demethylates H3K4me3. However,

contrary to what would be inferred from its demeth-

ylase activity, lid contributes to the establishment of

transcriptionally competent chromatin states as: (i) is

required for histone H3 acetylation; (ii) contributes to

expression of the homoeotic gene Ultrabithorax

(Ubx); and (iii) antagonizes heterochromatin-

mediated gene silencing (PEV). These results,

which are consistent with the identification of lid as

a trithorax group (trxG) gene, are discussed in the

context of current models for the contribution of

H3K4me3 to the regulation of gene expression. Here,

we also show that the two Drosophila JMJD2

homologues, dJMJD2(1)/CG15835 and dJMJD2(2)/

CG33182, are capable of demethylating both

H3K9me3 and H3K36me3. dJMJD2(1)/CG15835

regulates heterochromatin organization, as its

over-expression induces spreading of HP1, out of

heterochromatin, into euchromatin, without affect-

ing the actual pattern of histone modifications of

heterochromatin. dJMJD2(1)/CG15835 is excluded

from heterochromatin and localizes to multiple

euchromatic sites, where it regulates H3K36 meth-

ylation. These results indicate that dJMJD2(1)/

CG15835 contributes to delimit hetero- and euchro-

matic territories through the regulation of H3K36

methylation in euchromatin. On the other hand,

dJARID2/CG3654 shows no demethylase activity on

H3K4me3, H3K9me3, H3K27me3, H3K36me3 and

H4K20me3.

INTRODUCTION

Histones are subjected to a number of post-translational
modifications, such as methylation, acetylation, phos-
phorylation, sumoylation, ubiquitinylation and ADP
ribosylation. Covalent modifications of core histones are
known to play important genomic functions as they are
recognized by regulatory proteins that bind chromatin and
modify its functional state (1). In this context, methylation
at lysine residues appears to play a central role, as it is
involved in regulating a wide range of genomic functions
including heterochromatin formation, dosage compensa-
tion, gene expression and cell memory (2). Moreover,
several protein domains are known to specifically recog-
nize methylated lysines. These include the chromo, tudor,
WD40 repeat and PHD finger domains (2–4). Chromatin-
binding proteins containing these domains have been
shown to bind histones methylated at specific lysine
residues. Some well-established examples are the BPTF
component of the remodelling complex NURF that,
through its PHD finger, binds H3K4me3 (5), or the silen-
cing proteins HP1 and Polycomb, which contain
N-terminal chromo domains that recognize H3K9me2,3
and/or H3K27me2,3 (6–9).

Key for regulation is the possibility to revert the modi-
fication. The existence of lysine-specific histone methyl-
transferases (HMTs) has been known for some years
(10,11). But, on the other hand, it was not until recently
that enzymes capable of antagonizing lysine-methylation
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were identified. The first lysine-specific histone demethy-
lase identified was LSD1, which is capable to demethylate
mono- and di-, but not tri-, methylated H3K4 or H3K9
(12,13). More recently, proteins containing the JumonjiC
(JmjC) domain were found to be capable of acting on
trimethylated H3K9 and/or H3K36 (14), H3K4 (15–23)
and H3K27 (24–27).

JmjC-containing proteins constitute an extensive phy-
logenetic family with multiple members in all eukaryotic
species analysed to date, from yeasts to humans (14).
Little is known, however, about the actual histone
demethylase activity of most of them. In Drosophila
melanogaster, homology search identified up to 13 JmjC-
containing proteins (14), whose enzymatic activity remains
largely uncharacterized. In general, the JmjC domain
is found in combination with other protein domains.
In particular, a subclass of JmjC proteins contain, in
addition to the catalytic JmjC domain, a second highly
conserved N-terminal domain (JmjN), which is also
required for enzymatic activity (14). JmjC+N proteins
are known to play important regulatory roles during
development and cell cycle progression, and are frequently
deregulated in cancer (14). Drosophila contains four
JmjC+N proteins: Lid (little imaginal discs), CG3654,
CG15835 and CG33182. Here, we have characterized their
histone-demethylase activity in vivo. Our results indicate
that Lid is capable of demethylating H3K4me3. Similar
results were recently reported by others (15,17,23).
In addition, we also show that, opposite to what would
be expected from its enzymatic activity, lid antagonizes
gene silencing being required for acetylation of histone
H3. On the other hand, CG15835 and CG33182 are able
to demethylate H3K9me3 and H3K36me3. Moreover,
over-expression of CG15835 results in spreading of HP1
into euchromatin. Finally, over-expression of CG3654
shows no significant effect on the levels of H3K4me3,
H3K9me3, H3K27me3, H3K36me3 and H4K20me3.

MATERIALS AND METHODS

DNAs

cDNAs of the genes encoding JmjC+N proteins were
obtained from Drosophila Genomics Resource Center:
GH09982 (CG3654); LD33386 (CG15835) and LD40310
(lid). GH09982 corresponds to a truncated form missing
part of the N-terminal region but carrying the complete
C-terminal part containing the JmjN, JmjC and ARID
domains (aa positions 1521 to 2351). For dJMJD2(1)/
CG15835, a H195A substitution was introduced into
pActPPA-CG15835-Flag by site-directed mutagenesis
using the QuickChange II mutagenesis kit (Stratagene)
and verified by DNA sequencing.

Fly strains

EP-line P{EPgy2}CG33182EY10737, lid12367 and lid10403

mutants and the white inversion line In(1)wm4h were
obtained from the Bloomington Stock Center (USA). The
‘engrailed’-GAL4 (en-GAL4) and UAS-GFP lines were
provided by Dr Jean-Paul Vincent (MRC, London, UK).
lid12367 and lid10403 mutants are described in ref. (15,28).

In(1)wm4h is described in ref. (29). To over-express
dJMJD2(1)/CG15835 in flies, transgenic lines carrying a
UASGAL4-CG15835-Flag construct were obtained. For
that, CG15835-Flag was cloned into in the pUAST vector
(30). Transgenic flies for UAS constructs were generated
using a w1118 strain as a recipient stock.

In silico analysis

Protein sequences from Drosophila JmjC+N proteins
(CG15835, CG33182, CG3654 and CG9088) were
retrieved from Ensembl release 43 (February 2007) and
human protein sequences (JARID1A-D, JARID2 and
JMJD2A-D) were retrieved from Ensembl release 45 (June
2007) (31). Multiple sequence alignment was performed
using ClustalW (32). Protein domains were retrieved from
PFAM (33) and SMART databases (34,35). Percentage
identity was calculated using the program needle (36–38)
at the EBI webpage (www.ebi.ac.uk).

Over-expression in S2 cells

For over-expression in S2 cells, cDNAs were Flag-tagged
at C-terminal, cloned into the Drosophila expression
vector pActPPA, where expression is driven by the
actin5C promoter, and transfected (15mg) into S2 cells
by the calcium-phosphate method (39). Immuno-
localization experiments were performed 48 h after trans-
fection according to standard procedures using antibodies
against H3K4me3 (Abcam), H3K4me2 (Upstate),
H3K9me3 (Upstate), H3K9me2 (Upstate), H3K27me3
(Upstate) and H3K36me3 (Abcam). aFlag antibodies
were FITC-conjugated monoclonal M2 (Upstate) or
rabbit polyclonal (Sigma), and were added at the same
time than the secondary antibody at a 1/200 and 1/500
dilution, respectively. aHP1 antibodies were raised in rat
and used at a 1/200 dilution. Cy3-conjugated anti-rat,
Cy3-conjugated anti-rabbit and Cy2-conjugated anti-
rabbit secondary antibodies were obtained from Jackson
ImmunoResearch. For fluorescence microscopy analysis,
samples were mounted in Vectashield mounting medium
(Vector Laboratories) with 1.5 mg/ml DAPI (4,6-diamidi-
no-2-phenylindole) and visualized in an Eclipse E-1000
(Nikon) fluorescence microscope equipped with a Cool-
Snapfx camera (Photometrics) and Metamorph software
(version 6.3r1).

Over-expression in flies

For over-expression in flies the GAL4-UAS system was
used (30). In these experiments, UASGAL4-CG15835-Flag
lines and the EP_line P{EPgy2}CG33182EY10737 were
crossed to either an ‘engrailed’-GAL4 (en-GAL4); UAS-
GFP line, when over-expression was analysed in imaginal
discs, or an actin5C-GAL4 line, when over-expression was
analysed in polytene chromosomes.

Immunostaining of imaginal discs

Dissection and immunostaining of imaginal discs
obtained from third instar larvae was performed as
described elsewhere (40), using aH3K4me3 (Abcam),
aH3K9me3 (Upstate), aH3K27me3 (Upstate) and
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aH3K36me3 (Abcam). Secondary Cy3-conjugated anti-
bodies (Jackson Laboratories) were used at a 1/200
dilution. GFP fluorescence was visualized directly.
Preparations were mounted in Vectashield mounting
medium (Vector Laboratories) with 1.5mg/ml DAPI
(4,6-diamidino-2-phenylindole) and visualized in a Leica
TCS/SPE confocal microscope equipped with LAS/AF
software (version v.1.6.3).

Immunostaining of polytene chromosomes

Polytene chromosomes were obtained from third instar
larvae raised at 258C. Dissection of salivary glands and
immunostaining were performed as described in ref. (41),
using aH3K4me3 (Abcam), aH3K9me3 (Upstate),
aH3K9me2 (Upstate), aH3K36me3 (Abcam), aFlag_M2
monoclonal (Upstate), aH3K9Ac (Upstate), aH3K9/
K14Ac (aH3Ac) (Upstate) and rat aHP1. Secondary
antibodies Cy3- and Cy2-conjugated antibodies (Jackson
Laboratories) were used at a 1/200 dilution. Preparations
were mounted in Vectashield mounting medium (Vector
Laboratories) with 1.5 mg/ml DAPI (4,6-diamidino-2-
phenylindole) and visualized in an Eclipse E-1000
(Nikon) fluorescence microscope equipped with a
CoolSnapfx camera (Photometrics) and Metamorph soft-
ware (version 6.3r1).

Analysis of Ubx expression

When the effect of lid mutations on Ubx expression was
determined, imaginal discs obtained from wild-type,
homozygous lid10403 or lid12367, or trans-heterozygous
lid12367/lid10403 mid-third instar larvae were immuno-
stained with aUbx antibodies (42), used at a 1/20 dilution.
Immunostaining and visualization were performed as
described above.

PEV analysis

To analyse the effect of lid mutations on PEV, the white
inversion In(1)wm4h line was used. In these experiments,
w1118; lid12367/CyO [w-] females were crossed with
In(1)wm4h/Y; +/+ males and the eye phenotype of
heterozygous lid12367/+ females was compared to that of
siblings ‘wt’ for this ‘locus’. Similar results were obtained
when the reverse cross was performed.

RESULTS

Domain organization and sequence homology analysis of
JmjC+N proteins ofD. melanogaster

JmjC+N proteins are divided into two evolutionarily
conserved groups showing important differences in their
domain structure and organization, the JARID family and
the JMJD2 family (14) (Figure 1A). JARID proteins
contain, in addition to the JmjN and JmjC domains,
ARID and C5HC2-zinc finger domains, which mediate
DNA binding. JARID proteins are, in turn, divided into
two subgroups according to the presence, JARID1, or not,
JARID2, of chromatin-binding PHD domains
(Figure 1A). On the other hand, JMJD2 proteins contain
several PHD and/or tudor domains, for binding to

chromatin, but no DNA-binding domains (Figure 1A).
JMJD2D constitutes an exception, as it does not contain
any known chromatin- or DNA-binding domains.

In Drosophila, Lid and CG3654 are JARID proteins
(Figure 1A). Lid is structurally homologous to mamma-
lian JARID1 as, in addition to the JmjN and JmjC
domains, it contains an ARID domain, a C5HC2-zinc
finger domain and three PHD domains. In mammals,
there are four JARID1 isoforms (Figure 1A) (14).
JARID1D and JARID1C, which are closely related
(84% identity), contain only two PHD fingers. On the
other hand, JARID1A and JARID1B contain three PHD
fingers, like Lid, and they are more distantly related to
JARID1D (45% identity). Hence, from the point of view
of its domain organization, Lid is more closely related to
JARID1A/B than to JARID1C/D, though identity is
similar (37–35%). On the other hand, CG3654 is the
structural homologue of mammalian JARID2
(Figure 1A), as it does not contain any chromatin-binding
domains. In this case, however, identity is lower (15%)
and, in addition, CG3654 is missing the C5HC2-zinc
finger domain present in mammalian JARID2.

CG15835 and CG33182 are JMJD2 proteins
(Figure 1A). In mammals, the JMJD2 family consists of
four closely related isoforms (14). Three of these isoforms
(JMJD2A-C) contain chromatin-binding domains (PHD
fingers and tudor domains), which are missing in JMJD2D
(43,44). In Drosophila, CG15835 and CG33182, which are
closely related to each other (50% identity), do not
contain any known DNA- or chromatin-binding domains
being, therefore, structurally homologous to mammalian
JMJD2D. Actually, both CG15835 and CG33182 show
higher identity to mammalian JMJD2D (40%) than to
any of the other mammalian JMJD2 isoforms (22%).

At the level of the catalytic JmjC domain, Lid shows
high identity to mammalian JARID1 isoforms (77–75%)
(Figure 1B). Similarly, the JmjC domains of CG15835 and
CG33182 are closely related to those of the mammalian
JMJD2 isoforms (63–71% identity) (Figure 1B). On the
other hand, in the case of the JARID2 homologue of
Drosophila, CG3654, conservation of the JmjC domain is
lower (40% identity to mammalian JARID2).

Determination of histone demethylase activity of
Drosophila JmjC+N proteins

Histone demethylase activity of the Drosophila JmjC+N
proteins was analysed through over-expression experi-
ments performed in Drosophila cultured S2 cells and/or
in flies.

To determine the potential histone demethylase activity
of dJARID1/Lid, a dJARID1/Lid-Flag fusion protein was
transiently expressed in S2 cells and after transfection,
cells were stained with aFlag antibodies, to identify cells
expressing the fusion protein, and with antibodies that
specifically recognize H3K4me3, H3K9me3, H3K27me3
and H3K36me3. Over-expression of dJARID1/Lid results
in a strong reduction in the overall levels of H3K4me3. On
the other hand, no significant effects on the levels of
H3K9me3, H3K27me3 and H3K36me3 were detected.
These results indicate that dJARID1/Lid is capable to
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specifically demethylate H3K4me3. Consistent with this
hypothesis, a strong increase in H3K4me3 is detected in
polytene chromosomes from homozygous lid12367 mutants
(Figure 2B). In the course of these experiments, others
reported a similar demethylase activity for several
members of the JARID1 family of JmjC+N proteins,
including Lid (15–23).

In Drosophila, there are two JMJD2 isoforms,
dJMJD2(1)/CG15835 and dJMJD2(2)/CG33182
(Figure 1A). To analyse the potential histone demethylase
activity of dJMJD2(1)/CG15835, we performed similar
over-expression experiments in S2 cells as those described
above for dJARID1/Lid (Figure 2A). Over-expression of
dJMJD2(1)/CG15835 results in a strong decrease on the
levels of H3K9me3 and H3K36me3 (Figure 3A). On the
other hand, the levels of H3K4me3 and H3K27me3 are
not significantly altered. Demethylase activity of
dJMJD2(1)/CG15835 depends on the JmjC domain, as it
is abolished by mutations that affect its catalytic activity.
JmjC proteins used Fe(II) and a-ketoglutarate (aKG) as
co-factors to carry out the demethylating reaction (44,45).
Structural studies allowed the identification of residues

within the JmjC domain involved in binding of Fe(II) and
aKG (Figure 1B, shown in red and blue, respectively) (46).
In the case of dJMJD2(1)/CG15835, co-ordination of
Fe(II) involves residues H195, E197 and H223
(Figure 1B). As shown in Figure 3B, a single-point
mutation involving one of these residues, H195A,
abolishes demethylase activity of dJMJD2(1)/CG15835.
Demethylase activity of dJMJD2(1)/CG15835 was also

analysed in flies (Figure 4). For this purpose, we obtained
transgenic lines carrying a UASGAL4-CG15835-Flag con-
struct, where expression of dJMJD2(1)/CG15835 is under
the control of the yeast activator GAL4, allowing its over-
expression upon crossing with lines expressing GAL4. In
these experiments, we used a line carrying an en-GAL4
transgen, where GAL4 is expressed under the control of
the ‘engrailed’ promoter, and, in addition, a second UAS-
GFP transgen, where GFP is also expressed in response
to GAL4, allowing identification of the domains of
expression of en-GAL4. Then, the effects of dJMJD2(1)/
CG15835 over-expression were determined in wing
imaginal discs, where the ‘engrailed’ promoter is specif-
ically active in the posterior compartment. In this system,

Lid

JARID1A
(37%)

JARID1B
(36%)

JARID1C
(35%)

JARID1D
(35%)

CG3654

JARID2
(15%)

CG15835

CG33182
(50%)

JMJD2A
(23%;22%)

JMJD2B
(21%;23%)

JMJD2C
(22%;23%)

JMJD2D
(40%;41%)

jmjN

jmjC

ARID

C5HC2-ZF

PHD

TUDOR

Lid_Dm       EYAESSWNLNNLPLLEDSILGHINADISGMNAPWMYVGMCFAAFCWHNEDHWSYSINYLH 650

JARID1A_Hs   EYALSGWNLNNMPVLEQSVLAHINVDISGMKVPWLYVGMCFSSFCWHIEDHWSYSINYLH 536
JARID1B_Hs   EYLDSGWNLNNMPVMEQSVLAHITADICGMKLPWLYVGMCFSSFCWHIEDHWSYSINYLH 512

JARID1C_Hs   EYATSGWNLNVMPVLEQSVLCHINADISGMKVPWLYVGMVFSAFCWHIEDHWSYSINYLH 527

JARID1D_Hs   EYATSGWNLNVMPVLDQSVLCHINADISGMKVPWLYVGMVFSAFCWHIEDHWSYSINYLH 517

CG3654_Dm NYARHPWNLKVLTNNSGSVLRSLG-PVMGVTVPTLHVGMLFSACCWYRDPHGLSWIEYLH 2091

JARID2_Hs PFSRHGWNLTVLPNNTGSILRHLG-AVPGVTIPWLNIGMVFSTSCWSRDQNHLPYIDYLH 942

CG15835_Dm   DEDLDVWNIGRLDTILNLVNTDYNIIIDGVNTAYLYFGMWKSSFAWHTEDMDLYSINYLH 208

CG33182_Dm   DTDQDSWNINRLGTILDYVNKDYNIQIDGVNTAYLYFGMWKTTFAWHTEDMDLYSINYLH 199

JMJD2A_Hs EKHVDEWNIGRLRTILDLVEKESGITIEGVNTPYLYFGMWKTSFAWHTEDMDLYSINYLH 201

JMJD2B_Hs    DDDVAQWNIGSLRTILDMVERECGTIIEGVNTPYLYFGMWKTTFAWHTEDMDLYSINYLH 202
JMJD2C_Hs    DEGVDEWNIARLNTVLDVVEEECGISIEGVNTPYLYFGMWKTTFAWHTEDMDLYSINYLH 203

JMJD2D_Hs    DENTKQWNLGHLGTIQDLLEKECGVVIEGVNTPYLYFGMWKTTFAWHTEDMDLYSINYLH 205

Lid_Dm       WGEPKTWYGVPGSCAEQFEETMKQAAPELFSSQPDLLHQLVTIMNPNILMNNRVPVFRTD 710

JARID1A_Hs   WGEPKTWYGVPSHAAEQLEEVMRELAPELFESQPDLLHQLVTIMNPNVLMEHGVPVYRTN 596

JARID1B_Hs   WGEPKTWYGVPGYAAEQLENVMKKLAPELFVSQPDLLHQLVTIMNPNTLMTHEVPVYRTN 572

JARID1C_Hs   WGEPKTWYGVPSLAAEHLEEVMKKLTPELFDSQPDLLHQLVTLMNPNTLMSHGVPVVRTN 587

JARID1D_Hs   WGEPKTWYGVPSLAAEHLEEVMKMLTPELFDSQPDLLHQLVTLMNPNTLMSHGVPVVRTN 577

CG3654_Dm    TGASKLWYGIPDDQSANFRAALTSLIPTHCQNKTIWLPCDTVMVPPHMLTDRGVSLCRIE 2151

JARID2_Hs    TGADCIWYCIPAEEENKLEDVVHTLLQANGTPGLQMLESN-VMISPEVLCKEGIKVHRTV 1001

CG15835_Dm   FGAPKTWYAIPPAYGRRLEKLANETFSENYQECNAYLRHKMTMISPKVLRQHNIPYNKIT 268

CG33182_Dm   FGAPKTWYVVPPECGRKLEKVANQYFPASYKNCNAYLRHKMTLISPQILKQHDVPVSKIT 259
JMJD2A_Hs    FGEPKSWYSVPPEHGKRLERLAKGFFPGSAQSCEAFLRHKMTLISPLMLKKYGIPFDKVT 261

JMJD2B_Hs    FGEPKSWYAIPPEHGKRLERLAIGFFPGSSQGCDAFLRHKMTLISPIILKKYGIPFSRIT 262

JMJD2C_Hs    FGEPKSWYAIPPEHGKRLERLAQGFFPSSSQGCDAFLRHKMTLISPSVLKKYGIPFDKIT 263

JMJD2D_Hs LGEPKTWYVVPPEHGQRLERLARELFPGSSRGCGAFLRHKVALISPTVLKENGIPFNRIT 265

Lid_Dm QHAGEFVITFPRAYHAGFNQGYNFAEAVNFAPADWLKMGRECVNHYSMLRRFCVFSHDE- 769

JARID1A_Hs   QCAGEFVVTFPRAYHSGFNQGYNFAEAVNFCTADWLPIGRQCVNHYRRLRRHCVFSHEE- 655

JARID1B_Hs   QCAGEFVITFPRAYHSGFNQGFNFAEAVNFCTVDWLPLGRQCVEHYRLLHRYCVFSHDE- 631
JARID1C_Hs   QCAGEFVITFPRAYHSGFNQGYNFAEAVNFCTADWLPAGRQCIEHYRRLRRYCVFSHEE- 646

JARID1D_Hs   QCAGEFVITFPRAYHSGFNQGYNFAEAVNFCTADWLPAGRQCIEHYRRLRRYCVFSHEE- 636

CG3654_Dm    QKPGEFIVVFPRAYTSSLATGYVVSESVYFATMSWLDLAKDDFRDIHESCEPAMFSLEQ- 2210

JARID2_Hs    QQSGQFVVCFPGSFVSKVCCGYSVSETVHFATTQWTSMGFETAKEMKRRHIAKPFSMEK- 1060

CG15835_Dm   QEAGEIMITFPFGYHAGFNHGFNGAESTNFASKRWIEYGKRAS-ICRCRSDMVKISMETF 327

CG33182_Dm   QEAGEIMITFPFGYHAGFNHGFNCAESTNFAMERWIEYGKRAV-QCTCSNDMVKISMDTF 318

JMJD2A_Hs    QEAGEFMITFPYGYHAGFNHGFNCAESTNFATRRWIEYGKQAV-LCSCRKDMVKISMDVF 320

JMJD2B_Hs    QEAGEFMITFPYGYHAGFNHGFNCAESTNFATLRWIDYGKVAT-QCTCRKDMVKISMDVF 321

JMJD2C_Hs    QEAGEFMITFPYGYHAGFNHGFNCAESTNFATVRWIDYGKVAK-LCTCRKDMVKISMDIF 322
JMJD2D_Hs    QEAGEFMVTFPYGYHAGFNHGFNCAEAINFATPRWIDYGKMAS-QCSCGEARVTFSMDAF 324

A B

Figure 1. Drosophila contains four JmjC+N proteins that are structurally homologous to mammalian JARID1 (Lid), JARID2 (CG3654) and
JMJD2 (CG15835 and CG33182). (A) The domain structure of the four Drosophila JmjC+N proteins is compared to those corresponding to
mammalian JARID1A-D, JARID2 and JMJD2A-D proteins. The positions of the JumonjiC (JmjC) and JumonjiN (JmjN) domains are indicated.
DNA-binding domains, ARID and C5HC2-zinc fingers and chromatin-binding domains, PHD and tudor, are also indicated. Numbers indicate
percentage identity with respect to the corresponding Drosophila homologue. (B) Sequence alignment of the catalytic JmjC domains of JmjC+N
proteins from Drosophila (Dm) and humans (Hs). For each group, identical residues are shown in black. Catalytic residues involved in binding of
co-factors are shown in red [Fe(II)] and blue (aKG). Shown in yellow are residues involved in differential binding of H3K36me3 and H3K9me3
peptides. Numbers on the right indicate amino acid positions on the corresponding proteins.
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Figure 2. dJARID1/Lid demethylates H3K4me3. (A) A Lid-Flag fusion protein was over-expressed in Drosophila S2-cells and transfected cells were
stained with aFlag (shown in green), and aH3K4me3, aH3K9me3, aH3K27me3 or aH3K36me3 antibodies (shown in red). DNA was stained with
DAPI (shown in blue). Arrows indicate cells over-expressing dJARID1/Lid. (B) Polytene chromosomes from control wild-type larvae (+/+) and
homozygous lid12367/lid12367 mutant larvae stained with aH3K4me3 are shown. DNA was stained with DAPI.

Figure 3. dJMJD2(1)/CG15835 demethylates H3K9me3 and H3K36me3. (A) A CG15835-Flag fusion protein was over-expressed in Drosophila S2
cells and transfected cells were stained with aFlag (shown in green), and aH3K4me3, aH3K9me3, aH3K27me3 or aH3K36me3 antibodies (shown in
red). DNA was stained with DAPI (shown in blue). Arrows indicate cells over-expressing CG15835. (B) Similar experiments as those described in
(A), but with a mutated CG15835 form carrying a single-point mutation at the catalytic JmjC domain, H195A, which perturbs co-ordination of
Fe(II) and impairs enzymatic activity.
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the en-GAL4 driver induces both GFP expression and
specific over-expression of dJMJD2(1)/CG15835 only in
the posterior wing-disc compartment. Under these condi-
tions, cells of the posterior compartment show a reduced
reactivity with aH3K36me3 antibodies when compared to
cells of the anterior compartment, where no over-
expression takes place (Figure 4A). A weaker, but
reproducible, effect on the levels of H3K9me3 is also
detected (Figure 4A). On the other hand, no effect on
H3K9me3 or H3K36me3 is observed in the posterior
compartment of flies expressing en-GAL4; UAS-GFP
alone (Figure 4C). A similar approach was used to analyse
demethylase activity of dJMJD2(2)/CG33182 in flies
(Figure 4B). In this case, we took advantage of a
P-element insertion at the 50-UTR of CG33182,
P{EPgy2}CG33182EY10737, which contains GAL4-binding
sites and, therefore, allows its over-expression upon
crossing to the en-GAL4 line. In this case, a strong
decrease in reactivity with aH3K9me3 and aH3K36me3
antibodies is observed in cells of the posterior

compartment (Figure 4B), indicating that dJMJD2(2)/
CG33182 is also capable of demethylating H3K9me3 and
H3K36me3. On the other hand, over-expression of
dJMJD2(2)/CG33182 shows no significant effect on the
levels of H3K4me3 and H3K27me3 (Supplementary Data,
Figure S1).
Similar over-expression experiments, performed both in

S2 cells and flies, failed to detect any demethylase activity
of dJARID2/CG3654 on H3K4me3, H3K9me3,
H3K27me3, H3K36me3 and H4K20me3 (data not
shown).

dJARID1/Lid antagonizes gene silencing

lid was first identified as a member of the trithorax group
of genes (trxG), as lid mutants enhance the homoeotic
transformations associated to mutations in other trxG
genes (28). In fact, lid interacts genetically with the major
HMTs of H3K4 of Drosophila, trithorax (trx) and ash1,
which are also trxG genes (28). These observations suggest

Figure 4. In flies, dJMJD2(1)/CG15835 and dJMJD2(2)/CG33182 demethylate H3K9me3 and H3K36me3. (A) To over-express CG15835, flies
carrying a transgenic UASGAL4-CG15835-Flag construct, where expression of dJMJD2(1)/CG15835 is under the control of GAL4, were crossed to
en-GAL4; UAS-GFP flies (see text for details). The effects on the levels of H3K9me3 and H3K36me3 were determined by staining wing imaginal
discs from en-GAL4; UAS-GFP; UASGAL4-CG15835-Flag larvae with aH3K9me3 and aH3K36me3 antibodies. In this system, expression of the
GFP reporter labels the posterior wing-disc compartment, where over-expression of CG15835 is specifically induced. (B) Similar experiments as those
described in (A), but performed with flies carrying a P-element insertion at the 5’-UTR of CG33182, P{EPgy2}CG33182EY10737, that contains GAL4-
binding sites and, therefore, allows over-expression of dJMJD2(2)/CG33182 at the posterior wing-disc compartment upon crossing to the en-GAL4;
UAS-GFP line. (C) Similar experiments as those described in (A) and (B), but performed with control en-GAL4; UAS-GFP flies, where only the
GFP reporter is expressed at the posterior wing-disc compartment.
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that lid is required to maintain expression of the
homoeotic genes, which is opposite to what would be
inferred from its demethylase activity as, in general,
H3K4me3 is an epigenetic mark that correlates with
transcriptionally active genes (47–51). Therefore,
demethylation of H3K4 would be expected to contribute
to gene silencing rather than to activation. These
considerations prompted us to investigate the actual
contribution of lid to expression of the homoeotic gene
Ultrabithorax (Ubx) (Figure 5A). In these experiments, we
analysed Ubx expression in imaginal discs from lid12367 or
lid10403 mutant larvae by immunostaining with specific
aUbx antibodies (42). It was reported that lid mutations
result in small imaginal discs (28). Actually, it was recently
shown that, independent of its demethylase activity, lid
regulates cell proliferation through its interaction with
myc (15). This phenotype occurs, however, at a very low
frequency (<2%), so that most homozygous mutant
larvae contain discs of normal size. In a wild-type
condition, Ubx is strongly expressed in haltere, much
less expressed in leg and not expressed at all in wing discs
(Figure 5A, panel +/+). In homozygous lid12367 larvae,
the pattern of Ubx expression is not altered but expression
in haltere discs is reduced being similar to that observed in
leg discs (Figure 5A, panel lid12367/lid12367), which is in
contrast with the much higher expression in haltere versus
leg discs observed in wild-type larvae. Similar results were
obtained with homozygous lid10403 or trans-heterozygous
lid12367/lid10403 mutant larvae. A similar effect on Ubx
expression was reported in S2 cells (23).
The contribution of lid to heterochromatin-dependent

gene silencing (PEV) was also analysed (Figure 5B).
In these experiments, we determined the effects of lid12367

on silencing of the white gene in In(1)wm4. Heterozygous
lid12367 flies show strong enhancement of PEV when
compared to control siblings, indicating that lid12367 is a
strong dominant E(var), which is in contrast with the
suppressor effect associated to mutants of Drosophila
LSD1/Su(var)3-3 that demethylates H3K4me1,2 but not
H3K4me3 (52).
These results indicate that lid antagonizes gene silencing

in two different contexts, expression of the homoeotic gene
Ubx and heterochromatin-dependent gene silencing, and
suggest a role of lid in maintaining transcriptionally
competent chromatin states. Consistent with this hypoth-
esis, lid is required to maintain the pattern of acetylation
of histone H3 (Figure 6), a modification that is
characteristic of open chromatin domains (53,54). In
these experiments, the levels of H3K9Ac were found to be
strongly reduced in polytene chromosomes from homo-
zygous lid12367 mutants when compared to control
polytenes obtained from wild-type larvae (Figure 6A).
Similar results were obtained when aH3Ac antibodies,
which recognize histone H3 acetylated at K9 and K14,
were used (Figure 6B).

dJMJD2(1)/CG15835 regulates spreading of HP1

As shown above, dJMJD2 isoforms demethylate
H3K9me3 and H3K36me3. In this context, we rationalize
that histone demethylases capable of removing H3K9me3

are likely to regulate HP1 binding to chromatin and,
therefore, contribute to the structural organization of
heterochromatin. To address this question, dJMJD2(1)/
CG15835-Flag was over-expressed in S2 cells, and the
pattern of HP1 localization was determined using specific
aHP1 antibodies. As shown in Figure 7A, most untrans-
fected cells show a bright aHP1 spot, which reflects
localization of HP1 to the heterochromatic chromocentre.
On the other hand, cells over-expressing dJMJD2(1)/
CG15835 show a diffuse pattern of HP1 localization with
no preferential localization at heterochromatin, indicating
mislocalization throughout euchromatin. Similar results
were obtained when over-expression was performed in
flies (Figure 7B). In these experiments, transgenic flies
carrying the UASGAL4-CG15835-Flag construct were
crossed to an act5C-GAL4 line, where GAL4 is expressed
under the control of the constitutive act5C-promoter and,
therefore, CG15835 is ubiquitously expressed. Then, the
pattern of HP1 localization was determined in polytene
chromosomes, where HP1 localizes to the heterochromatic
chromocentre in control wild-type flies (Figure 7B, panels
+/+). However, upon over-expression of dJMJD2(1)/
CG15835, HP1 spreads out of the chromocentre invading
the euchromatic chromosome arms (Figure 7B, panels
dJMJD2(1)/CG15835). Actually, under these conditions,
HP1 concentration along the chromosome arms decreases
progressively as distance to the chromocentre increases.
These results indicate that, rather than delocalization,

Figure 5. lid antagonizes gene silencing. (A) Expression of the homoeotic
gene Ultrabithorax (Ubx) was determined by immunostaining with aUbx
antibodies in imaginal discs from control wild-type larvae (+/+) and
homozygous lid12367/lid12367mutant larvae. Haltere, wing and leg discs are
indicated. (B) The effect of lid mutations on the PEV of In(1)wm4 is
shown. The eye phenotype of heterozygous lid12367/+ flies is compared to
that of control siblings wild type for the ‘locus’ (+/+).
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over-expression of dJMJD2(1)/CG15835 induces spread-
ing of HP1 into euchromatin.

HP1 is known to recognize H3K9me2,3, a modification
that is specifically enriched at heterochromatin (6,7,9).

Therefore, spreading of HP1 observed upon over-expres-
sion of dJMJD2(1)/CG15835 might simply reflect
decreased H3K9me2,3 at heterochromatin, which will
result on its mobilization from the chromocentre.

Figure 6. lid is required for histone H3 acetylation. Polytene chromosomes obtained from control wild-type larvae (+/+) and homozygous lid12367/
lid12367 mutant larvae were stained with antibodies that specifically recognize histone H3 acetylated at K9, aH3K9, (A) or at K9 and K14, aH3Ac,
(B). DNA was stained with DAPI.

Figure 7. Over-expression of dJMJD2(1)/CG15835 induces spreading of HP1 into euchromatin. (A) S2 cells transfected with CG15835-Flag were
stained with aFlag (shown in green) and aHP1 antibodies (shown in red). DNA was stained with DAPI (shown in blue). In untransfected cells, HP1
localizes mostly to a single intense spot in the nuclei (small arrow heads), which corresponds to the heterochromatic chromocentre. Cells over-
expressing CG15835 (big arrow heads) show a diffuse nuclear distribution of HP1 with no specific enrichment at the chromocentre. (B) Polytene
chromosomes from UASGAL4-CG15835-Flag; act5C-GAL4 larvae, where CG15835 is ubiquitously expressed (see text for details) (panels
dJMJD2(1)/CG15835), and control wild-type larvae (panels +/+), were stained with specific aHP1 antibodies. DNA was stained with DAPI.
Arrows indicate the position of the heterochromatic chromocentre.
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Over-expression of dJMJD2(1)/CG15835, however, does
not show any significant effect on the extent of H3K9me3
(Figure 8A) and H3K9me2 (Supplementary Data,
Figure S2), detected at the chromocentre. Actually, the
effect on H3K9me3 observed in imaginal discs is only weak
(Figure 4A), and, in polytene chromosomes, decreased
H3K9me3 can be detected only at euchromatin, where it
localizes to a few sites (Figure 8A). Moreover, spreading of
HP1 into euchromatin is not accompanied by an equivalent
spreading ofH3K9me2,3 (Figures 8A and S2). On the other
hand, as observed in imaginal discs (Figure 4A), over-
expression of dJMJD2(1)/CG15835 shows a strong effect
on H3K36me3 in polytene chromosomes (Figure 8B),
where this modification is restricted to the euchromatic
chromosome arms. In fact, H3K36me3 is a modification
that correlates with active chromatin domains (55–58).
These observations strongly suggest that dJMJD2(1)/
CG15835 acts at euchromatin but not at heterochromatin.
Consistent with this interpretation, in polytene

chromosomes, over-expressed dJMJD2(1)/CG15835-Flag
localizes to multiple sites on the euchromatic chromosome
arms, being excluded from heterochromatin (Figure 8C).

DISCUSSION

Here, we have characterized the entire family of JmjC+N
histone demethylases of D. melanogaster, which consists of
four members: dJARID1/Lid, dJARID2/CG3654,
dJMJD2(1)/CG15835 and dJMJD2(2)/CG33182. JmjC-
demethylases are characterized by their ability to
demethylate trimethyllysine residues (14). Our results
indicate that dJARID1/Lid demethylates H3K4me3,
which is in agreement with recently reported results by
others (15,17,23). On the other hand, dJMJD2(1)/
CG15835 and dJMJD2(2)/CG33182 demethylate both
H3K9me3 and H3K36me3. Our results strongly suggest
that these enzymes are also capable to demethylate
dimethyllysine residues, as decreased trimethylation

Figure 8. dJMJD2(1)/CG15835 localizes at euchromatin and regulates H3K36me3. (A) Polytene chromosomes from UASGAL4-CG15835-Flag;
act5C-GAL4 larvae, where CG15835-Flag is ubiquitously expressed, (panels dJMJD2(1)/CG15835), and control wild-type larvae (panels +/+), were
stained with aH3K9me3 antibodies. (B) Similar experiments as those described in (A), but polytene chromosomes were stained aH3K36me3
antibodies. (C) Polytene chromosomes from UASGAL4-CG15835-Flag; act5C-GAL4 larvae were stained with aFlag antibodies to determine the
localization of the CG15835-Flag fused protein. DNA was stained with DAPI. Arrows indicate the position of the heterochromatic chromocentre.
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observed when they are over-expressed is not accompanied
by increased dimethylation (Supplementary Data,
Figure S3). Finally, no demethylase activity on
H3K4me3, H3K9me3, H3K27me3, H3K36me3 and
H4K20me3 could be attributed to dJARID2/CG3654.
Interestingly, residues within the JmjC domain involved in
binding Fe(II) and aKG (Figure 1B, shown in red and blue,
respectively) (46), which are highly conserved in all JmjC
proteins showing histone demethylase activity (14), are
present in dJARID1/Lid, dJMJD2(1)/CG15835 and
dJMJD2(2)/CG33182, but not in dJARID2/CG3654. In
dJARID2/CG3654, two of the three residues involved in
co-ordination of Fe(II) are not conserved (Figure 1B),
indicating that binding of Fe(II) should be strongly
perturbed. Similarly, binding of aKG is likely to be
perturbed as one of the two essential JmjC domain resi-
dues involved in this interaction is not conserved
(Figure 1B). A similar situation is observed in mammalian
JARID2, where residues involved in binding aKG and
Fe(II) are not conserved either (Figure 1B). Altogether,
these observations suggest that the JmjC domain of
JARID2 proteins might not be enzymatically active.
Whether, they are capable at all of carrying out any
demethylating reaction remains, however, to be determined.

dJMJD2(1)/CG15835 and dJMJD2(2)/CG33182, which
demethylate both H3K9me3 and H3K36me3, are structur-
ally homologous to mammalian JMJD2D (Figure 1A).
Mammalian JMJD2D, however, demethylates H3K9me3
but is not capable to demethylate H3K36me3 (44). On the
other hand, similar to the Drosophila JMJD2 proteins,
mammalian JMJD2A and JMJD2C isoforms demethylate
both H3K9me3 and H3K36me3 (44). Actually, though
missing any DNA/chromatin-binding domains, the cata-
lytic JmjC domains of CG15835 and CG33182 show
slightly higher homology to those of mammalian
JMJD2A-C (68–71% identity) than to that of JMJD2D
(63–66% identity) (Figure 1B). Recent structural studies
identified residues within the JmjC domain of mammalian
JMJD2A involved in binding H3K9me3 and H3K36me3
peptides (59–61). In both cases, similar interactions help to
bring the methyllysine residue close to the active site of the
enzyme. However, significant differences are observed at
the regions where the peptides enter and exit the JmjC
domain. For the H3K36me3 peptide, these interactions
involved the C-terminal region of the JmjC domain and, in
particular, residues R309, K314 and S316 that, in the case
of H3K9me3, are not involved in peptide binding.
Interestingly, this region is conserved in the Drosophila
JMJD2 isoforms, as well as in mammalian JMJD2C, but
not in mammalian JMJD2D (Figure 1B).

Our results also show that, despite its ability to
demethylate H3K4me3, dJARID1/Lid antagonizes silenc-
ing both of the homoeotic gene Ubx as well as hetero-
chromatin-dependent gene silencing. Moreover, consistent
with a contribution to gene activation, dJARID1/Lid
regulates acetylation of histone H3. These observations
are surprising, as, on the basis of its histone demethylase
activity, the opposite effects would be expected since
H3K4me3 correlates with transcriptionally active genes.
Actually, more in agreement with its enzymatic activity,
mammalian JARID1D was reported to interact with the

polycomb (PcG) protein RING6a/MBLR and to prevent
access of the basal transcription machinery to the human
‘engrailed’ promoter (16). Whether dJARID1/Lid, which
is more closely related to JARID1A/B than to JARID1D
(Figure 1A), interacts with PcG proteins is not known. It
is possible that the various JARID1 isoforms would
perform different non-redundant functions. It is also
possible that, depending on the actual context,
dJARID1/Lid would favour transcription activation or
repression. Actually, the fission yeast orthologue
(SpLid2C) is a component of a multi-protein complex
containing Ash2 (62), an evolutionarily conserved TrxG
protein involved both in gene activation and silencing.
Interestingly, the same complex contains SpEcm5, which
is also a JmjC+N protein of the JARID1 family (62).
Whether these interactions are conserved in Drosophila,
and if they contribute to the functional properties of
dJARID1/Lid, remains to be determined. Finally, the
overall increase on H3K4me3 that occurs in the absence of
dJARID1/Lid might alter binding to chromatin of
transcription activators recognizing H3K4me3. Actually,
slight changes in the abundance of the chromo-helicase
Chd1, which binds H3K4me3 and associates with
transcriptionally active loci, were reported at the Sgs4
‘locus’ in polytene chromosomes from RNAilid knock-
down larvae (17). At this respect, it must be noticed that
the pattern of H3K4me3 of the Ubx ‘locus’ is finely
regulated (63). In haltere/leg discs, where Ubx is highly
expressed, trimethylation of H3K4 is constrained to a
relatively short region spanning the transcription start site.
On the other hand, in wing discs, where Ubx is not
expressed, no significant enrichment in H3K4me3 is
detected throughout the ‘locus’. Various HMTs contribute
to establishment/maintenance of this pattern of
H3K4me3. It is known that, in haltere/leg discs, ash1 is
required to maintain high levels of H3K4me3 at the
transcription start site (63). On the other hand, E(z) is
required to prevent H3K4 trimethylation in the wing disc
(63). lid, which is the only H3K4me3 demethylase of
Drosophila, is likely to contribute also to establishment/
maintenance of the pattern of H3K4me3 of the Ubx gene.
Further work is required to determine the precise
molecular mechanisms of the contribution of dJARID1/
Lid to Ubx activation. However, it is possible that, in its
absence, H3K4me3 would spread throughout the ‘locus’
altering loading/assembly of the initiation complex at the
transcription start site. Actually, it was recently shown
that H3K4me3 regulates binding of the general transcrip-
tion factor TFIID (64).
Here, we have also shown that dJMJD2(1)/CG15835

influences heterochromatin organization, as its over-
expression induces spreading of HP1 into euchromatin.
dJMJD2(1)/CG15835, however, is excluded from hetero-
chromatin and, consistent with this observation, over-
expression of dJMJD2(1)/CG15835 does not affect the
pattern of H3K9me2,3 at heterochromatin. On the con-
trary, dJMJD2(1)/CG15835 localizes to multiple euchro-
matic sites, where it mostly regulates H3K36me3, as its
over-expression results in a strong decrease in the levels
of H3K36me3. At euchromatin, dJMJD2(1)/CG15835
also demethylates H3K9me3, but to a lesser extent.
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Altogether, these observations indicate that H3K36me3
acts as a barrier that prevents spreading of HP1 into
euchromatin. It was shown earlier that methylation of
H3K4 also prevents spreading of heterochromatin (52).
Interestingly, both H3K36 and H3K4 methylation associ-
ate to actively transcribed genes, suggesting that gene
activity is a main determinant to delimit hetero- and
euchromatic territories. Specific recognition ofH3K9me2,3
is known to regulate binding of HP1 to chromatin (6–9).
However, spreading of HP1 observed upon over-expres-
sion of dJMJD2(1)/CG15835 is not accompanied by a
parallel spreading of H3K9me2,3, indicating that it
involves additional mechanisms. Actually, HP1 is also
known to be capable of binding directly to DNA, RNA as
well as unmodified histones (65–67).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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