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Abstract. In this paper, we sketch common properties of a class of so-called subgraph opti-
mization problems that can be systematically solved on distance-hereditary graphs. Based on the
found properties, we then develop a general problem-solving paradigm that solves these problems
efficiently in parallel. As a by-product, we also obtain new linear-time algorithms by a sequential
simulation of our parallel algorithms. Let Td(|V |, |E|) and Pd(|V |, |E|) denote the time and processor
complexities, respectively, required to construct a decomposition tree of a distance-hereditary graph
G = (V,E) on a PRAM model Md. Based on the proposed paradigm, we show that the maximum
independent set problem, the maximum clique problem, the vertex connectivity problem, the domi-
nation problem, and the independent domination problem can be sequentially solved in O(|V |+ |E|)
time, and solved in parallel in O(Td(|V |, |E|) + log |V |) time using O(Pd(|V |, |E|) + |V |/ log |V |) pro-
cessors on Md. By constructing a decomposition tree under a CREW PRAM, we also show that
Td(|V |, |E|) = O(log2 |V |) and Pd(|V |, |E|) = O(|V | + |E|).
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1. Introduction. A graph is distance-hereditary [2, 18] if the distance stays the
same between any of two vertices in every connected induced subgraph containing both
(where the distance between two vertices is the length of a shortest path connecting
them). Distance-hereditary graphs form a subclass of perfect graphs [11, 15, 18]
that are graphs G in which the maximum clique size equals the chromatic number
for every induced subgraph of G [3, 13]. Two well-known classes of graphs, trees
and cographs, both belong to distance-hereditary graphs. There were sequential or
parallel algorithms to solve quite a few interesting graph-theoretical problems on this
special class of graphs. The interested readers may consult [2, 5, 6, 11, 12, 15, 16, 18,
19, 20, 25, 27, 28, 29] for details.
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Several characterizations of distance-hereditary graphs were also explored for al-
gorithmic applications. In [2], Bandelt and Mulder showed that the house, holes,
domino, and gem are neither induced subgraphs nor isometric subgraphs of a distance-
hereditary graph. In [15], Hammer and Maffray utilized the hanging structure to
show that a graph is distance-hereditary if and only if it has a one-vertex-extension
ordering. Using this ordering, they proposed a linear O(|V | + |E|)-sequential-time
recognition algorithm, where V and E are the vertex and edge sets of the given
graph. The vertex-coloring problem and the maximum weighted stable set problem
were also solved in linear time in [15]. In [6], Chang, Hsieh, and Chen generalized the
concept of the one-vertex-extension ordering to define the one-vertex-extension tree.
They further obtained a new recursive definition of distance-hereditary graphs and
showed that this new characterization can be utilized to solve the weighted vertex
cover problem, the weighted independent domination problem, the minimum fill-in
problem, and the tree-width problem. The former (respectively, latter) two problems
need O(|V | + |E|) (respectively, O(|V |2)) sequential time. Quite recently, Golumbic
and Rotics [14] showed that distance-hereditary graphs are those graphs of clique-
width at most three for which a corresponding 3-expression can be built in linear
sequential time. Moreover, Courcelle, Makowsky, and Rotics [9] showed an elegant
result that given a k-expression of a graph G with the bounded clique-width k, all
graph problems expressible in monadic second order logic with quantification over
vertex sets only can be solved in linear time on G. Therefore, a wide class of graph
problems are linear-time solvable on distance-hereditary graphs.

Most known polynomial time algorithms on distance-hereditary graphs utilize
techniques discovered from the properties of the problems and graphs, which we feel
are inherently sequential. In this paper, we propose a new approach based on the one-
vertex-extension tree proposed in [6] to come out a general problem-solving paradigm,
and thus a good structure for representing distance-hereditary graphs, for designing
parallel algorithms for a class of problems on distance-hereditary graphs. Note that
we also obtain linear-time algorithms that are different from the previous studies of
other researchers for all these problems by sequentially simulating our parallel algo-
rithms. Given a graph problem, we say it belongs to the class of subgraph optimization
problem if the object of this problem is to find a subgraph of the input graph to sat-
isfy the given properties which include an optimization constraint. For example, the
problem of finding a maximum independent set is a subgraph optimization problem.
By discovering recursive properties of distance-hereditary graphs, we define a general
problem-solving paradigm for subgraph optimization problems. The paradigm con-
sists of the two main phases. The first phase is to construct a binary tree structure,
called a decomposition tree, for representing a distance-hereditary graph. The sec-
ond phase is to reduce the given subgraph optimization problem to another problem
which can be solved on a decomposition tree. Problems that fit in our paradigm in-
clude the following: (a) the maximum clique problem, (b) the maximum independent
set problem, (c) the vertex connectivity problem, (d) the domination problem, and
(e) the independent domination problem. All the above problems but problem (c)
were shown to be linear-time solvable [6, 9, 14, 15].

Let Td(|V |, |E|) and Pd(|V |, |E|) denote the time complexity and processor com-
plexity required to construct a decomposition tree of a distance-hereditary graph
G = (V, E) on a PRAM model Md. We show that problems (a)–(e) can be sequen-
tially solved in O(|V | + |E|) time, and solved in parallel in O(Td(|V |, |E|) + log |V |)
time using O(Pd(|V |, |E|) + |V |/ log |V |) processors on Md. If a decomposition tree
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is given to be the input instance, problems (a)–(e) can be solved in O(log |V |) time
using O(|V |/ log |V |) processors on an EREW PRAM. To our knowledge, the se-
quential complexity of problem (c) and the parallel complexities of problems (b)–(e)
remains unknown in the literatures. Note that previous known parallel complexities
for problem (a) on distance-hereditary graphs were O(log2 |V |) time using O(|V |+|E|)
processors on a CREW PRAM [19]. For the rest, we match the current best algo-
rithms [6, 15, 19]. By constructing a decomposition tree in parallel, we also show that
Td(|V |, |E|) = O(log2 |V |), Pd(|V |, |E|) = O(|V |+ |E|) under a CREW PRAM.

The computation model used here is the deterministic parallel random access
machine (PRAM) which permits concurrent read and exclusive write (CREW), or
exclusive read and write (EREW) in its shared memory [22]. The rest of this paper
is organized as follows. In section 2, we review some properties of distance-hereditary
graphs and give basic definitions. In section 3, we define a general problem-solving
paradigm and develop its sequential and parallel implementation. In section 4, we
show that problems (a)–(e) are examples that fit into our paradigm. In section 5, we
present a parallel algorithm to construct a decomposition tree for a distance-hereditary
graph. Finally, some concluding remarks are given in section 6.

2. Preliminaries. This paper considers finite, simple, and undirected graphs
G = (V, E), where V and E are the vertex and edge sets of G, respectively. Let
n = |V | and m = |E|. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union
of G1 and G2, denoted by G1 ∪ G2, is the graph (V1 ∪ V2, E1 ∪ E2). Let G[X]
denote the subgraph of G induced by X ⊆ V . For graph-theoretic terminologies and
notations not mentioned here, see [13]. For a vertex v ∈ V of a graph G = (V, E),
the neighborhood of v is NG(v) = {u ∈ V | (u, v) ∈ E} and the closed neighborhood of
v is NG[v] = NG(v)∪ {v}. We use N(v) for NG(v), and N [v] for NG[v], if there is no
ambiguity.

For a graph G = (V, E), the degree of a vertex v ∈ V is deg(v) = |N(v)|. We
say that vertex u is a pendant vertex attached to vertex v if deg(u) = 1 and v is the
vertex adjacent to u. Two vertices u and v are called true (respectively, false) twins
if N [u] = N [v] (respectively, N(u) = N(v)).

Given a graph G = (V, E), an ordering δ = (v1, v2, . . . , vn) of V is said to be a
one-vertex-extension ordering of G if vi is a pendant vertex attached to some vertex
in G[Vi] or is a twin of some vertex in G[Vi] for 1 ≤ i ≤ n, where Vi = {v1, v2, . . . , vi}.

Lemma 2.1 (see [2, 15]). A graph is distance-hereditary if and only if it has a
one-vertex-extension ordering.

Let G = (V, E) be a distance-hereditary graph with a one-vertex-extension-
ordering δ = (v1, v2, . . . , vn). In [6], Chang, Hsieh, and Chen constructed a one-
vertex-extension tree, denoted by EG, with respect to δ as follows. Tree EG is a rooted
ordered tree rooted at v1 with the node set V . For j = 2, 3, . . . , n, we let vj be the
rightmost child of vi, i < j, in the current tree if either vj is a pendant vertex at-
tached to vi or vj and vi are twins in G[Vj ]. We use (vj , vi) to denote an edge of EG.
Moreover, (vj , vi) is labelled with P if vj is a pendant vertex attached to vi in G[Vj ],
and it is labelled with T (respectively, F) if vi and vj are true twins (respectively,
false twins) in G[Vj ].

Lemma 2.2 (see [6]). A one-vertex-extension tree of a distance-hereditary graph
can be constructed in O(n+m) time.

Figure 2.1(a) shows a distance-hereditary graph whose vertex set is associated
with a one-vertex-extension ordering. Figure 2.1(b) shows a one-vertex-extension tree
with respect to the ordering.
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Fig. 2.1. A distance-hereditary graph and its one-vertex-extension tree. The numbers (1)–(12)
associated with the vertices of the graph shown in (a) correspond to a one-vertex-extension ordering.

The twin set of v ∈ V (EG), denoted by S(v), consists of v and the descendants
of v such that v can be reached through only T or F edges. The twin set of EG (or
twin set of G) is the twin set of the root of EG. In Figure 2.1(b), the twin set of G is
{a, b, c, d, e}.

Suppose nodes vi1 < vi2 < · · · < vij−1
< vij < vij+1

< · · · < vik are children

of vi in EG. For an edge (vij , vi) in EG, let Sr(vij , vi) = S(vi) \ (∪jl=1S(vil)). Let
EG(vij , vi) denote the subtree of EG induced by vi, vij , vij+1

, . . . , vik and all descen-
dants of vij , vij+1

, . . . , vik . Recall that EG(v) is used to denote the subtree rooted at
v in EG.

We say that two disjoint vertex subsetsX and Y form a join in a graphG = (V, E)
if every vertex of X is connected to every vertex of Y .

Lemma 2.3 (see [6]). Suppose that vj is a child of vi in EG. Then the following
two statements hold.

1. If (vj , vi) is labelled with P or T, then S(vj) and Sr(vj , vi) form a join in G.
Moreover, for every vertex v ∈ V (EG(vj)) \ S(vj), N [v] ⊆ V (EG(vj)).

2. If (vj , vi) is labelled with F, then every vertex of V (EG(vj)) is not adjacent to
any vertex of V (EG(vj , vi)) \ V (EG(vj)) in G.

Given a distance-hereditary graph G = (V, E), there exists a one-vertex-extension
ordering (v1, v2, . . . , vn). This ordering corresponds to a one-vertex-extension tree EG.
Note that the twin set of G is S(v1). The vertex set V can be partitioned into four
disjoint sets: V (EG(v2)) \ S(v2), S(v2), (V \ V (EG(v2))) \ Sr(v2, v1), and Sr(v2, v1).
By Lemma 2.3, G can be regarded as to be formed from G1 = G[V \ V (EG(v2))] and
G2 = G[V (EG(v2))] by the three operations according to the type (v2, v1) in EG as
follows. If (v2, v1) is labelled T or P, then G is formed from G1 and G2 by connecting
every vertex of Sr(v2, v1) to all vertices of S(v2). If (v2, v1) is labelled F, then G is
the union of G1 and G2. If (v2, v1) is labelled P, then the twin set of G is the twin
set of G1. If [v1, v2] is labelled T or F, then the twin set of G is the union of the twin
set of G1 and G2. Based upon the above observations, we provide a characterization
for distance-hereditary graphs below.
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A graph consisting of a single vertex v is clearly a distance-hereditary graph. It
is said to be a primitive distance-hereditary graph with the twin set {v} [6]. A graph
G with |V (G)| ≥ 2 is distance-hereditary if and only if it can be obtained by three
operations described in the following lemma. Let G1 and G2 be distance-hereditary
graphs with the twin sets S1 and S2, respectively.

Lemma 2.4 (see [6]). 1. The graph obtained from G1 and G2 by connecting
every vertex of S1 to all vertices of S2 is a distance-hereditary graph with the twin set
S1 ∪ S2.

2. The graph obtained from G1 and G2 by connecting every vertex of S1 to all
vertices of S2 is a distance-hereditary graph with the twin set S1.

3. The union of G1 and G2 is a distance-hereditary graph with the twin set
S1 ∪ S2.

Note that the difference between operations 1 and 2 of Lemma 2.4 is the twin set
construction.

A distance-hereditary graph G is said to be formed from G1 with the twin set S1

and G2 with the twin set S2 by the true twin (respectively, attachment) operation if
G is obtained through operation 1 (respectively, 2) of Lemma 2.4, and by the false
twin operation if G is obtained through operation 3 of Lemma 2.4.

A distance-hereditary graph can be represented by a binary tree form, called a
decomposition tree, which is defined as follows.

Definition 2.5 (see [6]). 1. The tree consisting of a single vertex v is a decom-
position tree of the primitive distance-hereditary graph G = ({v}, ∅).

2. Let D1 and D2 be the decomposition trees of distance-hereditary graphs G1 and
G2, respectively.

(a) If G is formed from G1 and G2 by the true twin operation, then a tree D with
the root r represented by ⊗ and with the roots of D1 and D2 being the two
children of r is a decomposition tree of G.

(b) If G is formed from G1 and G2 by the attachment operation, then a tree D
with the root r represented by ⊕ and with the roots of D1 and D2 being the
left child and the right child of r, respectively, is a decomposition tree of G.

(c) If G is formed from G1 and G2 by the false twin operation, then a tree D with
the root r represented by � and with the roots of D1 and D2 being the two
children of r is a decomposition tree of G.

Figure 2.2 shows a distance-hereditary graph and its decomposition tree. Note
that the twin set of the given graph is {a, b, c, d}.

Lemma 2.6. A decomposition tree of a distance-hereditary graph can be con-
structed in O(n+m) sequential time.

Proof. It follows from the fact that a one-vertex-extension tree can be generated
in O(n+m) time [6].

3. A general problem-solving paradigm.

3.1. The subgraphs generating problem. Suppose that G = (V, E) is a
graph and let U be the set consisting of all subsets of V . Given a set Q = {Q1, Q2, . . . ,
Ql}, where Qi ∈ U , we define Minv to be an operator on Q that returns a set Qj ,
for some 1 ≤ j ≤ l, such that |Qj | is the smallest. The operator Maxv is defined
similarly. Given Q = {Q1, Q2, . . . , Ql} and R = {R1, R2, . . . , Rt}, where Q,R ⊂ U ,
Q and R are disjoint if Qi ∩ Rj = ∅, 1 ≤ i ≤ l, and 1 ≤ j ≤ t. For two lists
L1 = 〈l1, l2, . . . , lk〉 and L1

′ = 〈l1′, l2′, . . . , lj ′〉, we define the concatenation of L1 and
L1

′, denoted by L1 • L1
′, to be the list 〈l1, l2, . . . , lk, l1

′, l2′, . . . , lj ′〉.
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Fig. 2.2. A distance-hereditary graph with its decomposition tree.

Consider a rooted tree T . Let root(T ) be the root of T . For a node x in T , any
node y on the unique path from x to root(T ) is called an ancestor of x. If y is an
ancestor of x, then x is a descendant of y. Further, x is a proper descendant of y when
x �= y. Note that every node is both an ancestor and a descendant of itself. Two
nodes in T are irrelative if one is not an ancestor of the other. The least common
ancestor of two nodes x and y in T is the node that is an ancestor to both x and y,
and is farthest from root(T ).

Definition 3.1. Let G = (V, E) be a graph and let T be a binary tree. Also let
U be the set consisting of all subsets of V . Given two nonnegative integers k and r,
and an operator Θ ∈ {Minv,Maxv}, T is an (r, k,Θ)-subgraph generating tree of G
if the following conditions hold. Let v be a node of T and let Ni be the set of integers
from 1 to i.

1. Node v is associated with a list of r subgraphs Av = 〈Av,1, Av,2, . . . , Av,r〉
selected from U such that |Av,i| = O(1) and Av and Aw are disjoint if v and w are
irrelative. These subgraphs are called the auxiliary subgraphs1 of v.

2. If v is an internal node, then it is associated with k integers av,1, av,2, . . . , av,k
from Nr+k, and the following 2k linear unary functions fv,i : Nav,i �→ Nr+k and
gv,i : Nav,i �→ Nr+k, 1 ≤ i ≤ k.

3. Node v is also associated with a list of k subgraphs Rv = 〈Rv,1, Rv,2, . . . , Rv,k〉,
called the target subgraphs of v, which are defined as follows.

(a) If v is a leaf, then Rv is a list of subgraphs selected from U . Moreover, Rx
and Ry are disjoint for two arbitrary distinct leaves x and y.

(b) If v is an internal node with the children u and w, then

Rv,i = Θ{Zu,fu,i(1) ∪ Zw,gw,i(1), Zu,fu,i(2) ∪ Zw,gw,i(2), . . . ,(3.1)

Zu,fu,i(av,i) ∪ Zw,gw,i(av,i)},

where 1 ≤ i ≤ k, Zu = Ru • Au = 〈Zu,1, Zu,2, . . . , Zu,k+r〉, Zw = Rw • Aw =
〈Zw,1, Zw,2, . . . , Zw,k+r〉. Note that Zu,fu,i(j) ∩ Zw,gw,i(j) = ∅ for 1 ≤ j ≤ av,i.

For a node v in an (r, k,Θ)-subgraph generating tree T , let T (v) be a subtree of
T rooted at v and let Gv be the subgraph of G induced by the leaves of Gv. Also let

1For ease of implementation, we allow a subgraph of G to be represented by its vertex set if it
has no edge.
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Uv be the set consisting of all subsets of (∪1≤i≤kRx,i)∪ (∪1≤i≤rAy,i), where x is a leaf
of T (v) and y ∈ V (T (v)). Note that Uv and Uw are disjoint if v and w are irrelative.

Let G be a distance-hereditary graph. As we will show in sections 4.1–4.5, solving
some subgraph optimization problem P on G can be transformed easily into solving
that on a corresponding (r, k,Θ)-subgraph generating tree T of G. According to the
essential property of P, each node v ∈ V (T ) can be associated with r(≥ 0) subgraphs
Av of Gv in advance such that the following condition holds. For an internal node
v with two children u and w, a solution of P on Gv can be obtained by selecting
a subgraph with the maximum or minimum cardinality (depending on P) from the
2(k+r) subgraphs in some combinations of Ru, Rw, Au, and Aw shown as (3.1). Note
that Rv is generated in a bottom-up fashion, and the selection can be implemented
according Θ together with fu,i, fw,i, gu,i and gw,i, 1 ≤ i ≤ k.

Definition 3.2. Let T be an (r, k,Θ)-subgraph generating tree. The (r, k,Θ)-
subgraph generating problem is the problem of finding the k target subgraphs of the
root of T .

Lemma 3.3. The (r, k,Θ)-subgraph generating problem can be solved in O((rk +
k2)n) time, where n is the number of vertices of the given tree.

Proof. Clearly, the problem can be solved by a bottom-up evaluation of the given
tree. We now show the complexity. Note that there are l ≤ r + k subgraphs in
(3.1) to generate Rv,i, 1 ≤ i ≤ k, using Θ. Without loss of generality, assume that
v is an internal node. According to (3.1), each term is obtained by the union of
two disjoint sets selected using the functions fu,i and gw,i, where u and w are the
two children of v. Since both fu,i and gw,i are linear unary functions which can be
evaluated in O(1) time, the desired l subgraphs can be obtained in O(r + k) time.
Next, we explain how to implement Θ to select a target subgraph. We can record the
cardinality of each of l subgraphs such that generating Rv,i is equivalent to finding the
maximum (or minimum) among l values. This can be implemented to run in O(r+k)
time. Therefore, generating Rv,i’s for all 1 ≤ i ≤ k takes O(rk + k2) time. Since
there are totally n vertices in the tree, the problem can be solved with the desired
complexity.

3.2. Parallel complexities of the (r, k,Θ)-subgraph generating problem.
In this section, we apply the binary tree contraction technique described in [1] to par-
allelize the (r, k,Θ)-subgraph generating problem. This technique recursively applies
two operations, prune and bypass, to a given binary tree. Prune(u) is an operation
which removes a leaf node u from the current tree, and bypass(v) is an operation
(following a prune operation) that removes a node v with exactly one child w and
then lets the parent of v become the new parent of w. We define a contraction phase
to be the consecutive execution of a prune and then bypass operations. Figure 3.1
shows two procedures, prune(u) and bypass(v).

Let T be an n-leave binary tree. Given an Euler tour starting from root(T ) of T ,
the algorithm initially numbers the leaves from 1 to n according to the order of their
appearances in the tour. Then the algorithm repeats the following steps. In each
step, prune and bypass work only on the leaves with odd indices and their parents.
Hence, these two operations can be performed independently and delete � l2� leaves
together with their parents on the binary tree in each step, where l is the number
of the current leaves. Therefore, the tree will be reduced to a three-node tree after
repeating the steps in �log n times.

Lemma 3.4 (see [1]). If the prune operation and bypass operation can be per-
formed by one processor in constant time, the binary tree contraction algorithm can
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Fig. 3.1. Illustrating two procedures, prune(u) and bypass(v).

be implemented in O(log n) time using O(n/ log n) processors on an EREW PRAM,
where n is the number of nodes in an input binary tree.

Definition 3.5. Let u and v be two nodes of an (r, k,Θ)-subgraph generating
tree T such that u is a descendant of v. A k-ary function h : Uuk �→ Uv possesses the
closed form if h(X1, . . . , Xk) = Θ{Xb1 ∪C1, Xb2 ∪C2, . . . , Xba ∪Ca, Q}, where bi �= bj
for two distinct 1 ≤ i, j ≤ a, and Ci, Q ∈ (Uv \ Uu).

Lemma 3.6. Let Θ ∈ {Minv,Maxv}, and let h0 : Uuk �→ Uv be a function
with the closed form, where u is a descendant of v. Let w be a descendant of u and
let hi : Uwk �→ Uu, 1 ≤ i ≤ k, be k functions possessing the closed form. Then the
function obtained from the composition h0◦(h1, h2, . . . , hk) : Uwk �→ Uv also possesses
the closed form.

Proof. Let hi(X1, . . . , Xk) = Θ{Xbi1 ∪ Ci1, Xbi2 ∪ Ci2, . . . , Xbiai
∪ Ciai , Qi} for all

0 ≤ i ≤ k. Note that Cij , Qi ∈ (Uu \ Uw), 1 ≤ j ≤ ai. Define function B(i, j) = bij ,
where 0 ≤ i ≤ k and 1 ≤ j ≤ ai. We show in the following that h0 ◦ (h1, . . . , hk) is a
function with the desired form. Clearly,

h0 ◦ (h1, . . . , hk) = Θ{hB(0,1) ∪ C0
1 , . . . , hB(0,a0) ∪ C0

a0 , Q0}.(3.2)

For 1 ≤ i ≤ a0, (hB(0,i) ∪ C0
i )(X1, . . . , Xk) = Θ{XB(B(0,i),1) ∪ C

B(0,i)
1 , XB(B(0,i),2) ∪

C
B(0,i)
2 , . . . , XB(B(0,i),aB(0,i)) ∪ C

B(0,i)
aB(0,i)

, QB(0,i)} ∪ C0
i = Θ{XB(B(0,i),1) ∪ (CB(0,i)

1 ∪
C0
i ), . . . , XB(B(0,i),j) ∪ (CB(0,i)

j ∪C0
i ), . . . , XB(B(0,i),aB(0,i)) ∪ (CB(0,i)

aB(0,i)
∪C0

i ), (QB(0,i) ∪
C0
i )} = Θ{XB(i′,1) ∪ C ′i′

1 , . . . , XB(i′,ai′ ) ∪ C ′i′
ai′ , Q

′
i} = h′

i′(X1, . . . , Xk), where i′ =
B(0, i). We define {l1, l2, . . . , lt}, t ≤ k, to be the set of integers such that for each
ls, 1 ≤ s ≤ t, there is a term XB(q,p) in h′

i′(X1, . . . , Xk) with XB(q,p) = Xls for
some p, q. For 1 ≤ s ≤ t, let Kls = {XB(q,p) ∪ C ′q

p| XB(q,p) = Xls} and let
K ′
ls = {C ′q

p| (XB(q,p)∪C ′q
p) ∈ Kls}. Since C ′q

p ∈ (Uv \Uw), each set in K ′
ls is disjoint

with Uw. Notice that Xls is drawn from Uw. Therefore, (3.2) can be further simpli-
fied as follows: Θ{Xl1 ∪ Θ{K ′

l1}, . . . , Xlt ∪ Θ{K ′
lt},Θ{Q0, Q′

1, Q′
2, . . . , Q′

a0}} =
Θ{Xl1 ∪ Dl1 , . . . , Xlt ∪ Dlt , R}, where Dli = Θ{K ′

li}, for 1 ≤ i ≤ t and R =
Θ{Q0, Q′

1, Q′
2, . . . , Q′

a0}. It is easy to check that Dli , R ∈ Uv \ Uw, and w is a
descendant of v. Hence, h0 ◦ (h1, . . . , hk) possesses the desired form.

We next develop a parallel algorithm for the (r, k,Θ)-subgraph generating prob-
lem. For a node x in the current tree H, let parH(x) (childH(x)) denote the parent
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(children) of x and let sibH(x) denote the sibling of x. The subscript H can be omitted
if no ambiguity arises. Also let H(x) denote the subtree of H rooted at x. Recall that
Rx = 〈Rx,1, . . . , Rx,k〉 (respectively, Ax = 〈Ax,1, . . . , Ax,r〉) is the list of the target
(respectively, auxiliary) subgraphs associated with x.

During the process of executing the tree contraction, we aim at constructing k
k-ary functions hx,1, hx,2, . . . , hx,k associated with each node x of the current tree
such that each hx,i, 1 ≤ i ≤ k, possesses the closed form and satisfies the condition
described below. Let v be an internal node in the current tree whose left child and
right child are u and w, respectively. Let u′ be the left child and w′ be the right
child of v in the original tree. Note that u′ and w′ are ancestors of u and w in the
original tree, respectively. For the remainder of this section, we call u′ and w′ replacing
ancestors of u and w with respect to v, respectively. Once Ru,i and Rw,i, 1 ≤ i ≤ k,
are provided as the inputs of hu,i and hw,i, respectively, the target subgraphs of v
can be obtained from Zu′ = 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉•Au′ , and
Zw′ = 〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉 • Aw′ , using the formula

Rv,i = Θ{Zu′,fu′,i(1) ∪ Zw′,gw′,i(1), Zu′,fu′,i(2) ∪ Zw′,gw′,i(2), . . . ,(3.3)

Zu′,fu′,i(av,i) ∪ Zw′,gw′,i(av,i)}.

That is, Ru′ = 〈Ru′,1, . . . , Ru′,k〉 = 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉
and Rw′ = 〈Rw′,1, . . . , Rw′,k〉 = 〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉. We
call the above functions hx,i, 1 ≤ i ≤ k, computed for each node x in the current tree
the crucial functions of x. For ease of describing the concept of the crucial function,
we demonstrate an example as follows.

Example 1. Consider an internal node v in the original tree T whose left child and
right child are u′ and w′, respectively. Let u be a proper descendant of u′ which is a leaf
and let w be a proper descendant of w′ (see also Figure 3.2(a)). Initially, the k target
subgraphs Rv can be obtained by merging 〈hu′,1(Ru′,1, . . . , Ru′,k), . . . , hu′,k(Ru′,1, . . . ,
Ru′,k)〉 • Au′ and 〈hw′,1(Rw′,1, . . . , Rw′,k), . . . , hw′,k(Rw′,1, . . . , Rw′,k)〉 • Aw′ in which
Ru′ = 〈Ru′,1, . . . , Ru′,k〉 and Rw′ = 〈Rw′,1, . . . , Rw′,k〉 are indeterminate. After a
sequence of contraction phases, assume T ′ is the current tree in which the left child
and the right child of v are u and w, respectively (see also Figure 3.2(b)). Notice that
u′ and w′ are now replacing ancestors of u and w with respect to v, respectively. Rv
are then obtained by merging 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉•Au′ and
〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉•Aw′ . Since Ru,i are those subgraphs
associated with T before executing the tree contraction, the indeterminate part for
generating Rv is reduced to Rw = 〈Rw,1, . . . , Rw,k〉. This part is smaller than the
previous one.

We next describe the details of our algorithm. Initially, for each node v in the
given tree we construct k functions hv,i(X1, . . . , Xk) = Θ{Xi∪∅, ∅},1 ≤ i ≤ k. Clearly,
these functions are crucial functions.

In the execution of the tree contraction, assume that prune(u) and bypass(par(u))
are performed consecutively. Let par(u) = v and sib(u) = w in the current tree.
Let u′ and w′ be the replacing ancestors of u and w with respect to v, respec-
tively. Assume that hu,i and hw,i, 1 ≤ i ≤ k, are crucial functions of u and w
in the current tree. Thus Ru′ = 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉 and
Rw′ = 〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉. Since u is a leaf, Ru,i’s are
associated with u before executing the tree contraction algorithm. Therefore, the
above k target subgraphs Ru′ can be obtained through function evaluation. On
the other hand, since w is not a leaf in the current tree, Rw,i, 1 ≤ i ≤ k, is an
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w’R

Ru’
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Fig. 3.2. The concept of crucial functions. The indeterminate part for evaluating Rv shown in
(a) is smaller than that shown in (b).

indeterminate value represented by variable Xi. Hence, Rw′ can be represented by
〈hw,1(X1, . . . , Xk), . . . , hw,k(X1, . . . , Xk)〉. By (3.1), we construct k intermediate func-
tions representing the k target subgraphs of v from those of u′ and w′ by

Rv,i = Θ{Zu′,fu′,i(1) ∪ Zw′,gw′,i(1), Zu′,fu′,i(2) ∪ Zw′,gw′,i(2), . . . ,(3.4)

Zu′,fu′,i(av,i) ∪ Zw′,gw′,i(av,i)},

where Zu′,fu′,i(j) = Ru′,fu′,i(j) = hu,fu′,i(j)(Ru,1, . . . , Ru,k), Zw′,gw′,i(j) ∈ Aw′ if gw′,i(j)

> k, and Zw′,gw′,i(j) = hw,gw′,i(j)(X1, . . . , Xk) if gw′,i(j) ≤ k.

Similar to the proof of Lemma 3.6, (3.4) can be further simplified as

Rv,i = Θ{Xb1 ∪ C1, Xb2 ∪ C2, . . . , Xba ∪ Ca, Q},(3.5)

where bi �= bj for two distinct 1 ≤ i, j ≤ a, Xbi are variables drawn from Uw, and
Ci, Q ∈ (Uv \ Uw).

Therefore, the above functions (constructed after executing prune(u)) possess the
closed form. Given those functions Rv,i’s, the contribution to the k target subgraphs
of par(v) is obtained by function composition hv,i(Rv,1, . . . , Rv,k) for all 1 ≤ i ≤ k.
These functions are constructed for w after executing bypass(par(v)). By Lemma 3.6,
hv,i(Rv,1, . . . , Rv,k), 1 ≤ i ≤ k, possesses the closed form. Hence, we have the following
lemma.

Lemma 3.7. During the process of executing the binary tree contraction on an
(r, k,Θ)-subgraph generating tree to remove some nodes, the crucial functions of the
remaining nodes of the current tree can be constructed in O(k2(r+k)) time using one
processor.
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Proof. This can be shown by induction on the number of contraction phases based
on the arguments preceding the lemma. For constructing each of the k functions, there
are at most k(r + k) terms generated. These terms can be simplified as the closed
form using Θ. Thus the desired complexities follow.

Theorem 3.8. The (r, k,Θ)-subgraph generating problem can be solved in O(k2(r+
k) log n) time using O(n/ log n) processors on an EREW PRAM, where n is the num-
ber of nodes of the input tree.

Proof. The algorithm for solving the (r, k,Θ)-subgraph generating problem con-
sists of an initial assignment of k crucial functions to each node of the input tree,
and an application of the tree contraction algorithm such that the crucial functions
after executing prune(v) and bypass(par(v)) are constructed by Lemma 3.7. Once
the algorithm terminates, a three-node tree T ′ results. Let t be the root of T ′ and
y, z be two children of t. Note that the k target subgraphs of y′ and z′, the replacing
ancestors of y and z with respect to t, can be generated by their corresponding crucial
functions. Moreover, the auxiliary subgraphs associated with y′ and z′ before execut-
ing the tree contraction are now maintained in y and z by (3.3). Therefore, according
to the operators associated with t, the k target subgraphs of t can be generated. By
Lemmas 3.4 and 3.7, the problem can be solved with the stated complexities.

Definition 3.9. Let G be a distance-hereditary graph. A problem P is said to be
an (r, k,Θ)-regular problem on G if P can be reduced to an (r, k,Θ)-subgraph gener-
ating problem B on a decomposition tree of G such that the following two conditions
hold.

1. The solution of B is exactly the solution of P.
2. The reduction scheme takes O(k2(r+k) log n) time using O(n/ log n) processors

on an EREW PRAM, where n is the number of nodes in the given decomposition tree.
Note that each (r, k,Θ)-regular problem corresponds to an (r, k,Θ)-subgraph gen-

erating tree. This tree is obtained from a decomposition tree DG in which some ad-
ditional data structures are associated with V (DG) (refer to Definition 3.1). In the
remainder of this section and section 4, we assume that a decomposition tree is given
for solving an (r, k,Θ)-regular problem on a distance-hereditary graph. Such a tree
will be constructed using a parallel algorithm presented in section 5.

Lemma 3.10. Given a decomposition tree of a distance-hereditary graph G,
an (r, k,Θ)-regular problem on G can be solved in O(k2(r + k) log n) time using
O(n/ log n) processors on an EREW PRAM.

Proof. The proof follows from Definition 3.9 and Theorem 3.8.
Lemma 3.11. An (r, k,Θ)-regular problem on a distance-hereditary graph can be

solved in O(k(r + k)n+m) sequential time.
Proof. According to Lemma 2.6, a corresponding (r, k,Θ)-subgraph generating

tree can be constructed in O(k(r+k)n+m) time. By Lemma 3.3, an (r, k,Θ)-regular
problem can be solved within the desired complexity.

4. (r, k,Θ)-regular problems. Given a problem P, a graph G, a subgraph H
of G, and a subset S of vertices in H, PS(G, H) is a solution to the problem such that
this solution has a nonempty intersection with S and is contained in H. For the case
of S = ∅, i.e., P∅(G, H), the notation represents a solution to G, and this solution is
contained in H. For brevity, let PS(G, G) = PS(G).

In this section, let G = (V, E) be a distance-hereditary graph and S be the twin
set of G. Also let G1 = (V1, E1) and G2 = (V2, E2) be distance-hereditary graphs
with the twin sets S1 and S2, respectively. Recall that S = S1 if G = G1 ⊕ G2.
We will show that the problems demonstrated in sections 4.1–4.5 can be efficiently
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parallelized using our strategy. We also note that combining the results of [9, 14], the
sequential linear time complexity of these problems can also be obtained.

4.1. The maximum clique problem. A graph is a clique if there is an edge
between every pair of vertices. We say a clique is in G if it is an induced subgraph
of G. We define the maximum clique problem C to be the problem that finds a clique
with the maximum number of vertices in the input graph. A previous work to solve
this problem on distance-hereditary graph can be found in [19]. Using our notation,
we want to solve C∅(G). For a primitive distance-hereditary graph G = ({v}, ∅),
C∅(G) = C∅(G, G[S]) = {v}.

Theorem 4.1.
1. In the case of G = G1 ⊗ G2,

• C∅(G) =Maxv{C∅(G1), C∅(G2), C∅(G1, G1[S1]) ∪ C∅(G2, G2[S2])};
• C∅(G, G[S]) = C∅(G1, G1[S1]) ∪ C∅(G2, G2[S2]).

2. In the case of G = G1 ⊕ G2,
• C∅(G) =Maxv{C∅(G1), C∅(G2), C∅(G1, G1[S1]) ∪ C∅(G2, G2[S2])};
• C∅(G, G[S]) = C∅(G1, G1[S1]).

3. In the case of G = G1 � G2,
• C∅(G) =Maxv{C∅(G1), C∅(G2)};
• C∅(G, G[S]) =Maxv{C∅(G1, G1[S1]), C∅(G2, G2[S2])}.

Proof. The proof is straightforward.
For a node v in a decomposition tree DG, recall that Gv denote a subgraph of G

induced by the leaves of the subtree of DG rooted at v. Let Sv denote the twin set of
Gv. For convenience, let V (Gv) = Vv.

Theorem 4.2. The maximum clique problem is a (1, 2,Maxv)-regular problem
on distance-hereditary graphs.

Proof. We first reduce the problem to a (1, 2,Maxv)-subgraph generating prob-
lem. A corresponding (1, 2,Maxv)-subgraph generating tree can be constructed by
the following steps:
(S1) For each node v ∈ V (DG), set Av = 〈∅〉.
(S2) For each internal node v, let u and w be the left child and the right child of v.
For x ∈ {u, w}, let Zx = Rx • Ax = 〈Zx,1, Zx,2, Zx,3〉 = 〈C∅(Gx), C∅(Gx, Gx[Sx]), ∅〉.
Set two integers av,1, av,2 and construct functions fx,i and gx,i, 1 ≤ i ≤ 2, according
to the following cases:
Case 1: v is a ⊗-node. Set av,1 = 3, av,2 = 1, and fu,1(1) = gw,1(2) = 1, fu,1(3) =

gw,1(3) = fu,2(1) = gw,2(1) = 2, fu,1(2) = gw,1(1) = 3.
According to Theorem 4.1(1), C∅(Gv) = Rv,1 =Maxv{Zu,fu,1(1) ∪Zw,gw,1(1),
Zu,fu,1(2)∪Zw,gw,1(2), . . . , Zu,fu,1(av,1)∪Zw,gw,1(av,1)} =Maxv{Zu,1∪Zw,3, Zu,3∪
Zw,1, Zu,2∪Zw,2}, and C∅(Gv, Gv[Sv]) = Rv,2 =Maxv{Zu,fu,2(1)∪Zw,gw,2(1),
Zu,fu,2(2) ∪ Zw,gw,2(2), . . . , Zu,fu,2(av,2) ∪ Zw,gw,2(av,2)} =Maxv{Zu,2 ∪ Zw,2}.

Case 2: v is a ⊕-node. Set av,1 = 3, av,2 = 1, and fu,1(1) = gw,1(2) = 1, fu,1(3) =
gw,1(3) = fu,2(1) = 2, fu,1(2) = gw,1(1) = gw,2(1) = 3.
Then, C∅(Gv) = Rv,1 = Maxv{Zu,1 ∪ Zw,3, Zu,3 ∪ Zw,1, Zu,2 ∪ Zw,2} and
C∅(Gv, Gv[Sv]) = Rv,2 =Maxv{Zu,2 ∪ Zw,3}.

Case 3: v is a �-node. Set av,1 = 2, av,2 = 2, and fu,1(1) = gw,1(2) = 1, fu,2(1) =
gw,2(2) = 2, fu,1(2) = gw,1(1) = gw,2(1) = fu,2(2) = 3.
Then, C∅(Gv) = Rv,1 =Maxv{Zu,1∪Zw,3, Zu,3∪Zw,1} and C∅(Gv, Gv[Sv]) =
Rv,2 =Maxv{Zu,2 ∪ Zw,3, Zu,3 ∪ Zw,2}.

(S3) For each leaf l corresponding to a primitive distance-hereditary graph Gl =
({v}, ∅), set two target subgraphs of l to be Rl = 〈Rl,1, Rl,2〉 = 〈C∅(Gl), C∅(Gl, Gl[Sl])〉
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= 〈{v}, {v}〉.
The other two cases for ⊕-node and �-node can be verified similarly. Therefore, the
maximum clique problem can be reduced to a (1, 2,Maxv)-subgraph generating prob-
lem. Clearly, steps (S1)–(S3) can be implemented in O(1) time using O(n) processors
on an EREW PRAM. As with the aid of Brent’s scheduling principle [22], the reduc-
tion scheme takes O(log n) time using O(n/ log n) processors on an EREW PRAM.
By Definition 3.9, the theorem holds.

4.2. The maximum independent set problem. An independent set of a
graph is a subset of its vertices such that no two vertices in the subset are adja-
cent. The maximum independent set problem I is the problem of finding a maximum
cardinality independent set in the input graph. A previous sequential linear time
algorithm to solve this problem on distance-hereditary graphs can be found in [15].
Using our notation, given an input graph G, a solution is I∅(G). For a primitive
distance-hereditary graph G = ({v}, ∅), I∅(G) and IS(G) are both equal to {v}, and
I∅(G, G[V \ S]) = ∅.

Theorem 4.3.

1. In the case of G = G1 ⊗ G2,
• I∅(G) =Maxv{IS1(G1) ∪ I∅(G2, G2[V2 \ S2]),

IS2(G2)∪I∅(G1, G1[V1 \S1]), I∅(G1, G1[V1 \S1])∪I∅(G2, G2[V2 \S2])};
• IS(G) =Maxv{IS1(G1)∪ I∅(G2, G2[V2 \ S2]), IS2

(G2)∪ I∅(G1, G1[V1 \
S1])};

• I∅(G, G[V \ S]) = I∅(G1, G1[V1 \ S1]) ∪ I∅(G2, G2[V2 \ S2]).
2. In the case of G = G1 ⊕ G2,

• I∅(G) =Maxv{IS1(G1) ∪ I∅(G2, G2[V2 \ S2]),
IS2
(G2)∪I∅(G1, G1[V1 \S1]), I∅(G1, G1[V1 \S1])∪I∅(G2, G2[V2 \S2])};

• IS(G) = IS1
(G1) ∪ I∅(G2, G2[V2 \ V2]);

• I∅(G, G[V \ S]) = I∅(G1, G1[V1 \ S1]) ∪ I∅(G2).
3. In the case of G = G1 � G2,

• I∅(G) = I∅(G1) ∪ I∅(G2);
• IS(G) =Maxv{IS1(G1) ∪ I∅(G2), IS2(G2) ∪ I∅(G1)};
• I∅(G, G[V \ S]) = I∅(G1, G1[V1 \ S1]) ∪ I∅(G2, G2[V2 \ S2]).

Proof. The proof is straightforward.

As with the proof similar to that of Theorem 4.2, the following result can be
obtained.

Theorem 4.4. The maximum independent set problem is a (0, 3,Maxv)-regular
problem on distance-hereditary graphs.

4.3. The vertex connectivity problem. We now consider the vertex connec-
tivity problem. A vertex separator (separator for short) of a graph is a set of vertices
whose removal increases the number of connected components or results in a trivial
graph, i.e., a graph with no edges. A vertex separator Q of G is minimal if any proper
subset of Q is not a vertex separator of G. A minimum vertex separator of G is a
vertex separator with the minimum cardinality. We define the vertex connectivity
problem V to be the problem that finds a minimum vertex separator for the input
graph. A related work can be found in [26]. Using our notation, a solution on the
input graph G is denoted as V∅(G).

Lemma 4.5. Let Q be a minimal vertex separator of G such that G = G1 ⊗G2 or
G = G1 ⊕ G2. If S1 �= V (G1) and S2 �= V (G2), then there is a connected component
H of G[V \ Q] such that V (H) ∩ (S1 ∪ S2) = ∅.
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Proof. Note thatG is connected and bothG[V \S1] andG[V \S2] are disconnected.
Thus S1 �⊂ Q and S2 �⊂ Q. By assumption, S1 �= V (G1) and S2 �= V (G2), and this
lemma holds trivially when S1 = Q or S2 = Q. We now assume S1 �= Q and S2 �= Q.
Hence there is a vertex of S1 and one of S2 in G[V \ Q]. Assume the contrary, that
every connected component C of G[V \Q] satisfies V (C)∩ (S1 ∪S2) �= ∅. Since every
vertex of S1 is connected to all the vertices of S2, G[V \ Q] remains connected which
contradicts the fact that Q is a vertex separator of G.

For a subset X of V , let NG(X) = (
⋃
v∈X NG(v)) \ X. The subscript G in the

notations used in this section can be omitted when no ambiguity arises.

Lemma 4.6. Let Q be a minimal vertex separator of G. If S1 �= V (G1) and
S2 �= V (G2), then Q ⊆ V (Gi) for some i ∈ {1, 2}.

Proof. If G = G1 � G2, the result holds clearly; otherwise, G = G1 ⊗ G2 or
G = G1 ⊕ G2. By Lemma 4.5, there exists a connected component H of G[V \ Q]
such that V (H) ⊆ V (Gi) for some i ∈ {1, 2}. Since G is connected and Q is a
minimal vertex separator, N(V (H)) = Q. By V (H) ∩ (S1 ∪ S2) = ∅, we know that
N(V (H)) ⊆ V (Gi). Therefore, Q ⊆ V (Gi).

Lemma 4.7. If G is disconnected, then for any connected component C of G,
C ∩ S �= ∅.

Proof. The proof is straightforward.

The following lemma can be shown by the structure characterization of distance-
hereditary graphs.

Lemma 4.8. Let G = G1 ⊗ G2 or G = G1 ⊕ G2. If V (Gi) = Si and Gj is
disconnected, where i, j ∈ {1, 2} and i �= j, then Si is a minimal vertex separator of
G.

Let inf be an infinite set of vertices. Given a graph G, let conn(G) be inf if G
is connected and be ∅ if G is disconnected. For a distance-hereditary graph G with
the twin set S, a vertex separator Q is called crucial if there exists a component H
of G[V \ Q] such that V (H) ∩ S = ∅. Define V2

S(G) to be the problem that finds
a minimum crucial vertex separator of G. Let V2

S(G) be inf if there is no vertex
separator satisfying the requirements. Recall that every connected component of G
has a nonempty intersection with S. We define V3

S(G) to be the problem that returns
inf if S = V (G), and returns Minv{V (C)∩ S| C if a connected component of G and
(V (C) \ S) �= ∅} otherwise. For a primitive distance-hereditary graph G = ({v}, ∅),
V∅(G) = ∅, V2

S(G) = inf , and V3
S(G) = inf .

Lemma 4.9. Assume that G = G1 ⊗ G2.

1. If S1 = V (G1) and S2 �= V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)},

V2
S(G) =Minv{V2

S2
(G2),V3

S2
(G2)}, and

V3
S(G) = S1 ∪ S2.

2. If S2 = V (G2) and S1 �= V (G1), then
V∅(G) =Minv{S2 ∪ conn(G1), S2 ∪ V∅(G1),V2

S1
(G1),V3

S1
(G1)},

V2
S(G) =Minv{V2

S1
(G1),V3

S1
(G1)}, and

V3
S(G) = S1 ∪ S2.

3. If S1 = V (G1) and S2 = V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S2 ∪ conn(G1), S1 ∪ V∅(G2), S2 ∪ V∅(G1)},
V2
S(G) = inf , and

V3
S(G) = inf .

4. If S1 �= V (G1) and S2 �= V (G2), then
V∅(G) =Minv{ V2

S1
(G1),V2

S2
(G2), V3

S1
(G1),V3

S2
(G2)},
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V2
S(G) =Minv{V2

S1
(G1),V2

S2
(G2),V3

S1
(G1),V3

S2
(G2)},

V3
S(G) = S1 ∪ S2.

Proof. We first consider the situation where S1 = V (G1) and S2 �= V (G2). Let Q
be a minimum vertex separator of G. Note that G is connected. There are five cases.
Case 1: Q ⊂ S1. It is impossible because G[V \ Q] remains to be connected.
Case 2: Q = S1. In this case, G2 must be disconnected. Thus V∅(G) equals S1 ∪
conn(G2).
Case 3: Q∩S1 �= ∅ and S1 \Q �= ∅. Clearly, Q∩V (G2) �= ∅. There are two subcases.
Case 3.1: S2 ⊂ Q. This contradicts the fact that |Q| is the minimum because S2 is

also a vertex separator of G.
Case 3.2: S2 \ Q �= ∅. Thus the vertices in (S1 ∪ S2) \ Q are in the same connected

component, say H, of G[V \ Q]. Let H ′ be another connected component of
G[V \Q]. Since G is connected and V (H ′)∩ (S1 ∪S2) = ∅, N(V (H ′)) = Q ⊆
V (G2). This contradicts Q ∩ S1 �= ∅.

Case 4: S1 ⊆ Q and Q ∩ V (G2) �= ∅. In this case, G2 is connected; otherwise, S1

is a vertex separator of G. Moreover, for every connected component C of G[V \ Q],
V (C) ∩ S2 �= ∅ (otherwise, Q \ S1 is a vertex separator of G). Let Q′ = Q ∩ V (G2).
Clearly, Q′ is a minimal vertex separator of G2 = (V2, E2). We next show Q′ is a
minimum vertex separator of G2. Assume the contrary, that Q′′ is a vertex separator
of G2 such that |Q′′| < |Q′|. There are two situations.
(a) Every connected component of G2[V2 \ Q′′] has a nonempty intersection with
S2. Clearly, S1 ∪ Q′′ is a vertex separator of G, and a contradiction arises because
|S1 ∪ Q′′| < |S1 ∪ Q′| = Q.
(b) There exists a connected component H of G2[V2 \Q′′] with V (H)∩S2 = ∅. Then
Q′′ is a vertex separator of G and |Q′′| < |Q′| < |Q| which contradicts the assumption
that Q is a minimum separator of G.
By the above discussion, V∅(G) equals S1 ∪ V∅(G2).
Case 5: Q ∩ S1 = ∅ (i.e., Q ⊆ V (G2)).

Case 5.1: Q is a vertex separator of G2. If every connected component of G[V \ Q]
has a nonempty intersection with S2, then G[V \Q] remains connected. This
contradicts the fact that Q is a vertex separator of G. Hence, there exists a
connected component H of G[V \ Q] such that V (H) ∩ S2 = ∅. This implies
V∅(G) = V2

S2
(G2).

Case 5.2: Q is not a vertex separator of G2. There exists a connected component
H of G[V \ Q] such that V (H) ∩ S1 = ∅ and V (H) ∩ S2 = ∅. Note that
N(V (H)) ⊂ V (G2). Moreover, the subgraph induced by V (H) ∪ Q is a
connected component, say C, of G2 and Q = (S2 ∩V (C)) by the facts that Q
is not a vertex separator of G2 and S2 ∩ V (C) is a minimal vertex separator
of G. This implies that V∅(G) = V3

S2
(G2).

Combining the above cases, we have V∅(G) =Minv{S1∪conn(G2), S1∪V∅(G2),V2
S2
(G2),

V3
S2
(G2)}. The equations for computing V2

S(G) and V3
S(G) can be shown similarly from

the structure characterization of G. By Lemmas 4.5–4.8, the other situations can be
shown analogously.

The following lemma can be shown in a way that is similar to the proof of
Lemma 4.9.

Lemma 4.10. Assume that G = G1 ⊕ G2.

1. If S1 = V (G1) and S2 �= V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)},

V2
S(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)}, and
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V3
S(G) = S1.

2. If S2 = V (G2) and S1 �= V (G1), then
V∅(G) =Minv{S2 ∪ conn(G1), S2 ∪ V∅(G1),V2

S1
(G1),V3

S1
(G1)},

V2
S(G) =Minv{V2

S1
(G1),V3

S1
(G1)}, and

V3
S(G) = S1.

3. If S1 = V (G1) and S2 = V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S2 ∪ conn(G1), S1 ∪ V∅(G2), S2 ∪ V∅(G1)},
V2
S(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2)}, and

V3
S(G) = S1.

4. If S1 �= V (G1) and S2 �= V (G2), then
V∅(G) =Minv{V2

S1
(G1),V2

S2
(G2),V3

S1
(G1),V3

S2
(G2)},

V2
S(G) =Minv{V2

S1
(G1),V2

S2
(G2),V3

S1
(G1),V3

S2
(G2)}, and

V3
S(G) = S1.

Lemma 4.11. Assume that G = G1 � G2.
1. If S1 = V (G1) and S2 �= V (G2), then

V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) = V2

S2
(G2), and

V3
S(G) = V3

S2
(G2).

2. If S2 = V (G2) and S1 �= V (G1), then
V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) = V2

S1
(G1), and

V3
S(G) = V3

S1
(G1).

3. If S1 = V (G1) and S2 = V (G2), then
V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) = inf , and

V3
S(G) = inf .

4. If S1 �= V (G1) and S2 �= V (G2), then
V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) =Minv{V2

S1
(G1),V2

S2
(G2)}, and

V3
S(G) =Minv{V3

S1
(G1),V3

S2
(G2)}.

Proof. The proof follows from the definition of the vertex separator and Lemma
4.6.

Theorem 4.12. The vertex connectivity problem is a (2, 4,Minv)-regular problem
on distance-hereditary graphs.

Proof. We first reduce the problem to a (2, 4,Minv)-regular problem. A corre-
sponding (2, 4,Minv)-subgraph generating tree can be constructed by the following
steps:
(S1) For each node v ∈ V (DG), determine whether Sv = V (Gv) and determine
whether Gv is connected.
(S2) For each node v ∈ V (DG), set Av = 〈∅, inf〉.2
(S3) For each internal node v, let u and w be the left child and the right child of
v, respectively. Set four integers av,1, . . . , av,4 and functions fx,i and gx,i, where
x ∈ {u, w} and 1 ≤ i ≤ 4, according to Lemmas 4.9–4.11. Without loss of gen-
erality, assume that v is a ⊗-node. (The case of v being a ⊕- or �-node can be
shown similarly.) There are four cases corresponding to 1–4 of Lemma 4.9. Here
we consider only that S1 = V (G1) and S2 �= V (G2). The other cases are analo-
gous. Let V∅(Gv) = Rv,1,V2

Sv
(Gv) = Rv,2,V3

Sv
(Gv) = Rv,3, and Sv = Rv,4, and let

2It is not difficult to generalize the (r, k,Θ)-subgraph generating tree problem when the input is
inf .
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Zv = Rv • Av = 〈Zv,1, . . . , Zv,6〉 = 〈V∅(Gv),V2
Sv
(Gv),V3

Sv
(Gv), Sv, ∅, inf〉. Consider

the following two cases.

Case 1: Gw is connected. In this case, V∅(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),
V2
S2
(G2),V3

S2
(G2)} =Minv{S1∪V∅(G2),V2

S2
(G2),V3

S2
(G2)} because conn(G2)

= inf . Set av,1 = 3, av,2 = 2, av,3 = av,4 = 1, and gw,1(1) = 1, gw,1(2) =
gw,2(1) = 2, gw,1(3) = gw,2(2) = 3, fu,1(1) = fu,3(1) = fu,4(1) = gw,3(1) =
gw,4(1) = 4, fu,1(2) = fu,1(3) = fu,2(1) = fu,2(2) = 5.
According to Lemma 4.9(1), V∅(Gv) = Rv,1 =Minv{Zu,fu,1(1) ∪ Zw,gw,1(1),
Zu,fu,1(2)∪Zw,gw,1(2), . . . , Zu,fu,1(av,1)∪Zw,gw,1(av,1)} =Minv{Zu,4∪Zw,1, Zu,5∪
Zw,2, Zu,5 ∪Zw,3}, V2

Sv
(Gv) = Rv,2 =Minv{Zu,fu,2(1) ∪Zw,gw,2(1), Zu,fu,2(2) ∪

Zw,gw,2(2), . . . , Zu,fu,2(av,2) ∪ Zw,gw,2(av,2)} = Minv{Zu,5 ∪ Zw,2, Zu,5 ∪ Zw,3},
V3
Sv
(Gv) = Rv,3 =Minv{Zu,fu,3(1) ∪ Zw,gw,3(1), Zu,fu,3(2) ∪ Zw,gw,3(2), . . . ,

Zu,fu,3(av,3) ∪ Zw,gw,3(av,3)} = Zu,4 ∪ Zw,4, and Sv = Rv,4 = Zu,4 ∪ Zw,4.
Case 2: Gw is disconnected. In this case, V∅(G) = Minv{S1 ∪ conn(G2), S1 ∪

V∅(G2),V2
S2
(G2),V3

S2
(G2)} = Minv{S1, S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)} be-

cause conn(G2) = ∅. Set av,1 = 4, av,2 = 2, av,3 = av,4 = 1, and gw,1(2) =
1, gw,1(3) = gw,2(1) = 2, gw,1(4) = gw,2(2) = 3, fu,1(1) = fu,1(2) = fu,3(1) =
gw,3(1) = fu,4(1) = gw,4(1) = 4, fu,1(4) = fu,2(1) = fu,2(2) = fu,3(1) =
gw,1(1) = 5.
Then, V∅(Gv) = Rv,1 =Minv{Zu,4∪Zw,5, Zu,4∪Zw,1, Zu,5∪Zw,2, Zu,5∪Zw,3},
V2
Sv
(Gv) = Rv,2 = Minv{Zu,5 ∪ Zw,2, Zu,5 ∪ Zw,3}, V3

Sv
(Gv) = Rv,3 =

{Zu,4 ∪ Zw,4}, and Sv = Rv,4 = Zu,4 ∪ Zw,4.

(S4) For each leaf l corresponding to a primitive distance-hereditary graph ({v}, ∅),
let Rl = 〈Rl,1, Rl,2, Rl,3, R1,4〉 = 〈V∅(Gl),V2

Sl
(Gl),V3

Sl
(Gl), Sl〉 = 〈∅, inf, inf, {v}〉.

Since (S1) can be implemented in O(log n) time using O(n/ log n) processors on
an EREW PRAM by utilizing the binary tree contraction and the other steps can
be implemented within the desired complexities, the problem is a (2, 4,Minv)-regular
problem.

4.4. The independent domination problem. We say that in a graph G =
(V, E), a subset P of V dominates a subset Q of V if every vertex of Q is either in
P or adjacent to a vertex in P . A dominating set of a graph G = (V, E) is a subset
of V that dominates V . A dominating set is independent if the subgraph induced by
this set has no edge. The minimum independent domination problem ID is to find
a minimum cardinality independent dominating set of the given graph. A previous
known sequential result of this problem on distance-hereditary graphs can be found
in [6]. Another related work can be found in [5]. For a primitive distance-hereditary
graph G = ({v}, ∅), ID∅(G) and IDS(G) both equal {v}, ID∅(G[V \ S]) = ∅, and
ID∅(G, G[V \ S]) = inf .

Theorem 4.13.

1. In the case of G = G1 ⊗ G2,
• ID∅(G) =Minv{IDS1(G1)∪ID∅(G2[V2 \S2]), IDS2(G2)∪ID∅(G1[V1 \

S1]), ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2])};
• IDS(G) =Minv{IDS1(G1)∪ID∅(G2[V2\S2]), IDS2(G2)∪ID∅(G1[V1\

S1])};
• ID∅(G[V \ S]) = ID∅(G1[V1 \ S1]) ∪ ID∅(G2[V2 \ S2]);
• ID∅(G, G[V \ S]) = ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2]).

2. In the case of G = G1 ⊕ G2,
• ID∅(G) =Minv{IDS1(G1)∪ID∅(G2[V2 \S2]), IDS2(G2)∪ID∅(G1[V1 \

S1]), ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2])};
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• IDS(G) = IDS1
(G1) ∪ ID∅(G2[V2 \ S2]);

• ID∅(G[V \ S]) = ID∅(G1[V1 \ S1]) ∪ ID∅(G2);
• ID∅(G, G[V \S]) =Minv{ID∅(G1[V1\S1])∪IDS2(G2), ID∅(G1, G1[V1\

S1]) ∪ ID∅(G2, G2[V2 \ S2])}.
3. In the case of G = G1 � G2,

• ID∅(G) = ID∅(G1) ∪ ID∅(G2);
• IDS(G) =Minv{IDS1(G1) ∪ ID∅(G2), IDS2(G2) ∪ ID∅(G1)};
• ID∅(G[V \ S]) = ID∅(G1[V1 \ S1]) ∪ ID∅(G2[V2 \ S2]);
• ID∅(G, G[V \ S]) = ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2]).

As with the method used in the previous problems, we have the following result.

Theorem 4.14. The independent domination problem is a (0, 4,Minv)-regular
problem on distance-hereditary graphs.

4.5. The domination problem. The minimum dominating set problem D
aims at finding a dominating set in the input graph with the minimum cardinal-
ity. A related work on distance-hereditary graph can be found in [5]. For a problem
PX(G, H), X = ∅ or X = S, used in this section, we relax the constraint that H
is restricted to be a subgraph of G; i.e., the desired dominating set of G is con-
tained in H, and H may not be a subgraph of G. For a primitive distance-hereditary
graph G = ({v}, ∅), D∅(G),DS(G) and DS(G[V \ S], G) are all equal to {v}, and
D∅(G[V \ S], G) = ∅.

Lemma 4.15. Assume that G = G1 ⊗ G2.

1. If S1 = V1 and S2 �= V2, then
• D∅(G) =Minv{DS2(G2),DS2(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\

S2], G2)}, where u ∈ V1;
• D∅(G[V \ S], G) = D∅(G2[V2 \ S2], G2);
• DS(G) =Minv{DS2(G2),DS2(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\

S2], G2)}, where u ∈ V1;
• DS(G[V \ S], G) = DS2(G2[V2 \ S2], G2).

2. If S1 �= V1 and S2 = V2, then
• D∅(G) =Minv{DS1(G1),DS1

(G1[V1\S1], G1)∪{u},D∅(G2)∪D∅(G1[V1\
S1], G1)}, where u ∈ V2;

• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1);
• DS(G) =Minv{DS1(G1),DS1(G1[V1\S1], G1)∪{u},D∅(G2)∪D∅(G1[V1\

S1], G1)}, where u ∈ V2;
• DS(G[V \ S], G) = DS1(G1[V1 \ S1], G1).

3. If S1 = V1 and S2 = V2, then
• D∅(G) =Minv{D∅(G1),D∅(G2), {u, w}}, where u ∈ V1 and w ∈ V2;
• D∅(G[V \ S], G) = ∅;
• DS(G) =Minv{D∅(G1),D∅(G2), {u, w}}, where u ∈ V1 and w ∈ V2;
• DS(G[V \ S], G) = {u}, where u ∈ V1 ∪ V2.

4. If S1 �= V1 and S2 �= V2, then
• D∅(G) = Minv{D∅(G1) ∪ D∅(G2),DS1(G1[V1 \ S1], G1) ∪ DS2(G2[V2 \

S2], G2),DS1(G1)∪D∅(G2[V2 \S2], G2),DS2(G2)∪D∅(G1[V1 \S1], G1)};
• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2);
• DS(G) =Minv{DS1(G1[V1 \ S1], G1) ∪ DS2(G2[V2 \ S2], G2),DS1(G1) ∪

D∅(G2[V2 \ S2], G2),DS2(G2) ∪ D∅(G1[V1 \ S1], G1)};
• DS(G[V \ S], G) =Minv{DS1(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2),

DS2
(G2[V2 \ S2], G2) ∪ D∅(G1[V1 \ S1], G1)}.

Lemma 4.16. Assume that G = G1 ⊕ G2.
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1. If S1 = V1 and S2 �= V2, then
• D∅(G) =Minv{DS2(G2),DS2(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\

S2], G2)}, where u ∈ V1;
• D∅(G[V \S], G) =Minv{D∅(G2),D∅(G2[V2 \S2], G2)∪{u}}, where u ∈

V1;
• DS(G) =Minv{DS2

(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\S2], G2)},
where u ∈ V1;

• DS(G[V \ S], G) = D∅(G2[V2 \ S2], G2) ∪ {u}, where u ∈ V1.
2. If S1 �= V1 and S2 = V2, then

• D∅(G) =Minv{DS1(G1),DS1(G1[V1\S1], G1)∪{w},D∅(G2)∪D∅(G1[V1\
S1], G1)}, where w ∈ V2;

• D∅(G[V \ S], G) = Minv{D∅(G1[V1 \ S1], G1) ∪ D∅(G2),DS1(G1[V1 \
S1], G1)};

• DS(G) =Minv{DS1(G1[V1 \ S1], G1) ∪ {w},DS1(G1)}, where w ∈ V2;
• DS(G[V \ S], G) = DS1

(G1[V1 \ S1], G1).
3. If S1 = V1 and S2 = V2, then

• D∅(G) =Minv{D∅(G1),D∅(G2), {u, w}}, where u ∈ V1 and w ∈ V2;
• D∅(G[V \ S], G) = {u}, where u ∈ V1;
• DS(G) =Minv{D∅(G1), {u, w}}, where u ∈ V1 and w ∈ V2;
• DS(G[V \ S], G) = {u}, where u ∈ V1.

4. If S1 �= V1 and S2 �= V2, then
• D∅(G) = Minv{D∅(G1) ∪ D∅(G2),DS1(G1[V1 \ S1], G1) ∪ DS2(G2[V2 \

S2], G2),DS1
(G1)∪D∅(G2[V2 \S2], G2),DS2

(G2)∪D∅(G1[V1 \S1], G1)};
• D∅(G[V \ S], G) = Minv{D∅(G1[V1 \ S1], G1) ∪ D∅(G2),DS1

(G1[V1 \
S1], G1) ∪ D∅(G2[V2 \ S2], G2)};

• DS(G) =Minv{DS1
(G1[V1 \ S1], G1) ∪ DS2

(G2[V2 \ S2], G2),DS1
(G1) ∪

D∅(G2[V2 \ S2], G2)};
• DS(G[V \ S], G) = DS1(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2).

Lemma 4.17. Assume that G = G1 � G2.

1. If S1 = V1 and S2 �= V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = D∅(G2[V2 \ S2], G2);
• DS(G) = D∅(G1) ∪ D∅(G2);
• DS(G[V \ S], G) = DS2(G2[V2 \ S2], G2).

2. If S1 �= V1 and S2 = V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1);
• DS(G) = D∅(G1) ∪ D∅(G2);
• DS(G[V \ S], G) = DS1(G1[V1 \ S1], G1).

3. If S1 = V1 and S2 = V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = ∅;
• DS(G) = D∅(G1) ∪ D∅(G2);
• DS(G[V \ S], G) = {u}, where u ∈ V1 ∪ V2.

4. If S1 �= V1 and S2 �= V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2)};
• DS(G) =Minv{DS1(G1) ∪ D∅(G2),D∅(G1) ∪ DS2(G2)};
• DS(G[V \ S], G) =Minv{DS1

(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2),
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DS2
(G2[V2 \ S2], G2) ∪ D∅(G1[V1 \ S1], G1)}.

Theorem 4.18. The domination problem is a (2, 4,Minv)-regular problem on
distance-hereditary graphs.

Proof. A corresponding (2, 4,Minv)-subgraph generating tree can be constructed
by the following steps:
(S1) For each node v ∈ V (DG), determine whether Sv = V (Gv).
(S2) For each node v ∈ V (DG), set Av = 〈y, ∅〉, where y ∈ Sv.
(S3) For each internal node v, set av,1, . . . , av,4 and construct corresponding func-
tions, according to Lemmas 4.15–4.17. The details are similar to those in the proofs
of Theorems 4.2 and 4.12.
(S4) For each leaf l corresponding to a primitive distance-hereditary graph ({v}, ∅), set
four target subgraphs of l to be Rl = 〈D∅(Gl),D∅(Gl[Vl \Sl], Gl),DSl

(Gl),DSl
(Gl[Vl \

Sl], Gl)〉 = 〈{v}, ∅, {v}, {v}〉.
Clearly, the above reduction scheme can be implemented with the desired complexi-
ties. Therefore, the desired problem is a (2, 4,Minv)-regular problem.

5. Parallel constructing a decomposition tree. A parallel algorithm to con-
struct a decomposition tree of a distance-hereditary graph is presented in this section.

5.1. Previously known properties of distance-hereditary graphs. For
two arbitrary vertices u and v in a given graph H, let distH(u, v) be the length
of a shortest path between u and v in H. Given a vertex u in a connected graph
G = (V, E), the hanging of G rooted at u, denoted by hu, is the collection of
sets L0(u), L1(u), . . . , Lt(u) (or simply L0, L1, . . . , Lt without ambiguity), where t =
maxv∈V distG(u, v) and Li(u) = {v ∈ V | distG(u, v) = i} for 0 ≤ i ≤ t. For any
vertex v ∈ Li and any vertex set S ⊆ Li, 1 ≤ i ≤ t, let N ′(v) = N(v) ∩ Li−1 and
N ′(S) = N(S) ∩ Li−1. Any two vertices x, y ∈ Li (1 ≤ i ≤ t − 1) are said to be tied
if x and y have a common neighbor in Li+1.

A vertex subset S is homogeneous in a graph G = (V, E) if every vertex in V \S is
adjacent to either all or none of the vertices of S. We call a family of subsets arboreal
if every two subsets of the family are either disjoint or comparable (by set inclusion).
For a hanging hu = (L0, L1, . . . , Lt), Hammer and Maffray [15] defined an equivalence
relation ≡i between vertices of Li by x ≡i y, which means x and y are in the same
connected component of Li or x and y are tied. Let ≡a be defined on V (G) by x ≡a y,
which means x ≡i y for some i.

Lemma 5.1 (see [2, 11, 15]). Let hu be the hanging of G rooted at u and let
R1, R2, . . . , Rr be the equivalence classes with respect to hu. Then the following are
true.

1. For any two vertices x and y in some Ri, N ′(x) = N ′(y).
2. The graph obtained from G by shrinking each Rj into one vertex is a tree

rooted at u.
3. Each Rj induces a cograph.
4. The family {N ′(Rk)| N ′(Rk) ⊆ Ri}, for 1 ≤ i ≤ r, is an arboreal family of

homogeneous subsets of G[Ri].
A hanging of a distance-hereditary graph is depicted in Figure 5.1.

5.2. One-vertex-extension trees of cographs. A graph is cograph [8] if it
is either a vertex, the complement of a cograph, or the union of two cographs. The
cograph is also called the P4-free graph which does not contain any induced path of
length three [8]. It has been shown that the class of cographs is properly contained in
distance-hereditary graphs [15]. A cograph G has a tree representation called cotree,
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Fig. 5.1. The hanging ha of a distance-hereditary graph G. The dotted rings depict a partition
of V (G) into nine equivalence classes R0–R8.

denoted by TG, with the following four properties: (a) the leaves of TG are the vertices
of G; (b) the internal nodes of TG are labelled with 0 or 1; (c) 0 nodes and 1 nodes
alternate along every path staring from the root; (d) two vertices x and y of G are
adjacent if and only if the least common ancestor of x and y in TG is labelled with
1. Cotrees can be utilized to solve the recognition problem and some other subgraph
optimization problems on cographs [17, 23]. Figure 5.2 shows a cograph G and its
cotree TG.

Given a tree T , let leaf(T ) be the leaves of T .
Lemma 5.2. Let u and v be two leaves in a cotree TG such that par(u) = par(v).

If par(u) is labelled with 1 (respectively, 0), then u and v are true (respectively, false)
twins.

Proof. The proof is straightforward.
Given a cograph G represented by its cotree TG, the graph can be reduced to a

single vertex by repeatedly merging twins by the following procedure. We arbitrarily
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Fig. 5.2. A cograph and its cotree.

find two leaves u and v of the current tree with par(u) = par(v) = w. By Lemma 5.2,
u and v are twins in the current graph. We delete u from the current graph and
the current tree. At the same time, we check whether v is the only child of w in
the current tree. If so, we delete w from the current tree and let par(w) be the new
parent of v when w �= r. The above procedure is repeatedly executed until the current
graph contains only one vertex. Clearly, a one-vertex-extension ordering of G can be
obtained by reversing the above process. The above discussion leads to the following
algorithm.
Algorithm Tree 1
Input: A cograph G.
Output: A one-vertex-extension tree of G.

Step 1: Construct a cotree TG. Assume that r is the root of TG.
Step 2: Order the leaves of TG from 1 to k = |leaf(TG)|. Let order(v) be the

resulting order associated with v ∈ leaf(TG).
Step 3: Assign a label to each u ∈ TG:

Find the vertex v ∈ leaf(TG(u)) such that order(v) = max{order(w)| w ∈
leaf(TG(u))}. Let label(u) = v.

Step 4: For each v ∈ V (G), compute level(v) = min{distTG
(x, r)| label(x) = v}.

Step 5: Construct a tree EG:
5-1. Let label(r) be the root of EG.
5-2. For each nonroot node v ∈ TG, let par(label(v)) = label(par(v)) if
label(v) �= label(par(v)).
5-3. Label edge (label(v), label(par(v))) as T (respectively, F) if par(v) is a
1 (respectively, 0) node.

Step 6: Order the children of each nonleaf vertex v ∈ EG:
Assume that v1, v2, . . . , vp are p children of v. Order them by vi1 < vi2 <
· · · < vip if level(vi1) ≤ level(vi2) ≤ · · · ≤ level(vip), where 1 ≤ ij ≤ p. The
resulting tree is a one-vertex-extension tree of G.

An example of executing Algorithm Tree 1 is shown in Figure 5.3. In Fig-
ure 5.3(a), the numbers associated with the leaves form an order determined after
Step 2. The bold letters associated with internal nodes v represent label(v). In Fig-
ure 5.3(b), a one-vertex-extension tree is generated after Steps 4–6.

The correctness follows from the statements preceding the algorithm. The time-
processor complexity of Algorithm Tree 1 is analyzed below. In Step 1, TG can be
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Fig. 5.3. A one-vertex-extension tree shown in (b) is obtained from the given cotree shown in (a).

constructed in O(log2 n) time using O(n+m) processors on a CREW PRAM [10]. As
with the aid of the Euler-tour, the prefix-sum and the tree contraction techniques [21],
Steps 2 and 3 can be implemented in O(log n) time using O(n/ log n) processors on an
EREW PRAM. Step 4 can be done within the above complexities using the Euler-tour
technique together with the result of finding minimum value [21]. Step 5 can be done
in O(1) time using O(n) processors. By utilizing Cole’s parallel merge sort [7], Step
6 can be implemented in O(log n) time using O(n) processors on an EREW PRAM.
Therefore, we have the following theorem.

Theorem 5.3. Algorithm Tree 1 correctly constructs a one-vertex-extension tree
for a cograph in O(log2 n) time using O(n+m) processors on a CREW PRAM.

5.3. One-vertex-extension trees of distance-hereditary graphs. Through-
out this section, G is used to denote a distance-hereditary graph unless stated other-
wise.

Let R be an equivalence class of G with respect to a hanging hu. We call ΓR =
{Y ⊂ R| there is an equivalence class R′ with N ′(R′) = Y } the upper neighborhood
system in R and call each S ∈ ΓR, where S = N ′(R′), the upper neighborhood of R′.
By Lemma 5.1, ΓR is an arboreal family of homogeneous subsets of R. We define a
partial order ( between two different sets Yp and Yq in ΓR with Yp ( Yq ⇔ Yp ⊂ Yq.
According to the partial order ( defined on ΓR, let UR = {Yi| Yi �⊆ Yk, for all Yk ∈ ΓR
and k �= i}; that is, UR is the set of those maximal elements of ((,ΓR). We call UR
the maximal upper neighborhoods in R. For a set Y that is the upper neighborhood of
some equivalence class, we can also define ΓY and UY similarly. In what follows, the
notation R is referred to as an equivalence class or an upper neighborhood of some
equivalence class if it is not specified.

Lemma 5.4. Let UR = {Q1, Q2, . . . , Qk} and xi be an arbitrary vertex of Qi,
1 ≤ i ≤ k. The graph G[(R \ ∪ki=1Qi) ∪ {x1, x2, . . . , xk}] is a cograph.
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Proof. By the property that every induced subgraph of a P4-free graph remains
P4-free, the result holds.

Let G = (V, E) be a cograph and let Q = {Q1, Q2, . . . , Qt} be the set consisting
of homogeneous sets of G such that Qi ∩ Qj = ∅, 1 ≤ i, j ≤ t and i �= j. Also let
G′ = G[(V \(∪ti=1Qi))∪{x1, x2, . . . , xt}], where xi ∈ Qi. The following procedure can
be used to construct a one-vertex-extension tree of G by merging one-vertex-extension
trees of G′ and G[Qi]’s.
Procedure 1

S1: Construct a one-vertex-extension tree E ′ of G′. For each xi in E ′, 1 ≤ i ≤ t, let
(ci1, ci2, . . . , ciji) be the children of xi.

S2: Construct a one-vertex-extension tree Ei for each G[Qi]. Let ri be the root of Ei
and let (di1, di2, . . . , dili) be the children of ri. Rename the vertex xi in E ′ as
ri.

S3: Construct a tree EG by identifying each root ri of Ei with the vertex ri in E ′,
1 ≤ i ≤ t, such that (ci1, ci2, . . . , ciji , d

i
1, di2, . . . , dili) are the resulting children

of ri in EG.
Lemma 5.5. The tree EG constructed in Procedure 1 is a one-vertex-extension

tree of a cograph G.
Proof. We show the lemma by induction on |Q| = t. The base case of t = 0

holds clearly. Suppose now that t > 0. By the proof of Lemma 5.4, the graph
G1 = G[(V \Q1)∪{x1}] is a cograph with t−1 homogeneous sets Q2, Q3, . . . , Qt. By
the induction hypothesis, a one-vertex-extension tree EG1 can be correctly constructed
using Procedure 1. Since Q1 is a homogeneous set, NG1(x1) = (NG(y) \ Q1) for
y ∈ Q1 \ {x1}, and E(G) = E(G1) ∪ E(G[Q1]) ∪ {(z, b)| z ∈ Q1, b ∈ NG1

(x1)}. By
executing S2 of Procedure 1, a one-vertex-extension tree E1 of Q1 can be obtained.
By S3 of Procedure 1 and the definition of the one-vertex-extension tree, the graph
corresponding to EG is obtained by connectingG[Q1] andG1 through edges {(z, b)| z ∈
Q1, b ∈ NG1

(x1)}. Hence, EG is a one-vertex-extension tree of G.
For ordered k children (vi1 , vi2 , . . . , vik) of a node vi in EG, recall that EG(vij , vi)

is the subtree of EG induced by vi, vij , vij+1 , . . . , vik and all descendants of vij , vij+1 ,
. . . , vik .

Definition 5.6. Let R be an equivalence class with respect to a hanging. A
one-vertex-extension tree EG[R] is canonical if for each Q ∈ ΓR there exist a vertex
vi ∈ Q and one of its children vji such that EG[R](vji , vi) is a one-vertex-extension
tree of G[Q].

Given R and ΓR, the following procedure can be used to construct a canonical
one-vertex-extension tree of G[R].
Procedure 2

S1: Let ΓR ∪ {R} = {Y1, Y2, . . . , Yt}, and let UYi
= {Yi1 , Yi2 , . . . , Yili}, where Y1 = R

and 2 ≤ ij ≤ t for 1 ≤ j ≤ li. For each Yi ∈ ΓR and |Yi| > 1, select a
shrinking vertex yi ∈ Yi.

S2: Let Yi
′ = (Yi \ ∪lij=1Yij ) ∪ {yi1 , yi2 , . . . , yili}. Construct a one-vertex-extension

trees EG[Yi
′]’s, 1 ≤ i ≤ t, using Algorithm Tree 1.

S3: For each 1 ≤ i ≤ t, merge trees EG[Yi
′] and EG[Yi1

′], EG[Yi2
′], . . . , EG[Yili

′] using

Procedure 1.
Lemma 5.7. The tree constructed using Procedure 2 is a canonical one-vertex-

extension tree for G[Y1] = G[R].
Proof. The proof is by induction on |ΓY1 |. The base case of ΓY1 = ∅ trivially

holds. Now we consider |ΓY1 | > 0. By the induction hypothesis, the canonical one-
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Fig. 5.4. An example of constructing a canonical one-vertex-extension tree using Procedure 2.
The dotted lines shown in (b) represent identifying operations.

vertex-extension trees EG[Y1j
] of G[Y1j

], 1 ≤ j ≤ l1, can be correctly constructed

using Procedure 2. By Lemma 5.1(4), Y1j is a homogeneous set of G[Y1]. By the
definition of UY1 , Y1p ∩ Y1q = ∅, 1 ≤ p, q ≤ l1, and p �= q. The operations used to
merge EG[Y1

′] and EG[Y1j
]’s are based on Procedure 1. Hence, the resulting tree is a

one-vertex-extension tree of G[Y1]. Moreover, the canonical property holds from the
construction.

Figure 5.4 shows an example of generating a canonical one-vertex-extension tree
using Procedure 2. Consider Y1 = R = {a, b, c, d, e, f, g}, Y2 = {b, c, d}, Y3 = {c, d}, Y4

= {e, f, g}, and Y5 = {e, f} (see Figure 5.4(a)). Note that UY1 = {Y2, Y4},UY2 = {Y3},
and UY4 = {Y5}. Let y2 = d, y3 = d, y4 = e, and y5 = e. In Figure 5.4(b), trees EG[Yi

′]
are constructed after S2. The identifying operations shown as dotted lines i1–i4 are
then executed in S3. Note that i1 and i2 are executed after the labels of d in EG[Y1

′]
and d in EG[Y2

′] have been changed to b and c, respectively. Also note that the resulting
tree can be constructed correctly despite the operations i3 and i4 involving the vertex
which is the root of EG[Y4

′] and also the shrinking vertex of Y5. Figure 5.4(c) shows
the tree produced after executing Procedure 2.
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We now present an algorithm to construct a one-vertex-extension tree of a distance-
hereditary graph.
Algorithm Tree 2
Input: A distance-hereditary graph G.
Output: A one-vertex-extension tree EG.
Step 1: Build a hanging hu and compute the equivalence classes with respect to hu.
Step 2: For each equivalence class R, compute ΓR.
Step 3: For each equivalence class R, generate a canonical one-vertex-extension tree

EG[R] using Procedure 2.
Step 4: For each equivalence class R, let R′ be the equivalence class withN ′(R) ⊆ R′.

Find the subtree EG[N ′(R)] in EG[R′], which is a one-vertex-extension tree of
G[N ′(R)]. Let root(EG[N ′(R)]) be the root of EG[N ′(R)] and let (c1, c2, . . . , clN′(R)

)

be the children of root(EG[N ′(R)]) in EG[R′]. Construct EG as follows. Let the
root of EG[R] be a new child of root(EG[N ′(R)]) which is located between ciR
and ciR+1 for some 1 ≤ iR ≤ lN ′(R)−1 such that EG[R′](ciR+1, root(EG[N ′(R)]))
equals EG[N ′(R)]. The edge (root(EG[R]), root(EG[N ′(R)])) is labelled with “P.”

Figure 5.5 shows the construction of a one-vertex-extension tree of the graph
shown in Figure 5.1. The nine canonical one-vertex-extension trees EG[Ri]’s for 0 ≤
i ≤ 8 are generated in Step 3. The dotted lines represent those operations executed
in Step 4.

Recall that shrinking each equivalence class with respect to the given hanging
hu forms a tree (see Lemma 5.1(2)). We use Thu to denote such a tree. For each
equivalence class R, let νR be the node representing R in Thu . Let ψ(R) = {Q| νQ ∈
V (Thu(νR))} and let ψ′(R) =

⋃
X∈ψ(R) X.

Lemma 5.8. Algorithm Tree 2 correctly constructs a one-vertex-extension tree of
G[ψ′(R)].

Proof. The proof is by induction on |ψ(R)|. The base case of ψ(R) = {R} triv-
ially holds. Suppose now that |ψ(R)| = t > 1. Let R1, R2, . . . , Rr be the equivalence
classes with N ′(Ri) ⊆ R. After Step 3, a canonical one-vertex-extension tree EG[R]

can be constructed. Note that |ψ(Ri)| < t for all 1 ≤ i ≤ r. By the induction hy-
pothesis, the one-vertex-extension trees EG[ψ′(Ri)]’s can be correctly constructed using
Algorithm Tree 2. After Step 4, the graph corresponding to EG[ψ′(R)] can be obtained
from G[R] (corresponding to EG[R]) and G[ψ′(Ri)] (corresponding to EG[ψ′(Ri)]), 1 ≤
i ≤ r, by making Ri and N ′(Ri) form a join. According to the structure character-
ization described in Lemma 5.1, the resulting tree is a one-vertex-extension tree of
G[ψ′(R)].

By Lemma 5.8, Algorithm Tree 2 correctly constructs a one-vertex-extension tree
of G[ψ′({u})] = G, where u is the root of the given hanging.

We now analyze the time-processor complexity. Step 1 and Step 2 can be imple-
mented to run in O(log2 n) time using O(n+m) processors on a CREW PRAM [19].

To implement Step 3, we need to implement Steps (S1)–(S3) of Procedure 2.
In (S1), given ΓR ∪ {R} = {Y1, Y2, . . . , Yt}, we find UYi in O(log |R|) time using
O(

∑t
i=1 |Yi|) processors on an EREW PRAM [19]. Clearly, selecting a shrinking ver-

tex can be done in O(1) time using O(t) processors. Thus (S1) can be implemented in
O(log |R|) time using O(

∑t
i=1 |Yi|) processors on an EREW PRAM. The complexities

of (S2) are bounded by constructing EG[Yi
′], 1 ≤ i ≤ t. By Theorem 5.3, this step

can be implemented in O(log2 |R|) time using O(E(G[R])) processors on a CREW
PRAM. After executing this step, we assume that the children of each node in a given
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Fig. 5.5. An example of executing Algorithm Tree 2.

tree are manipulated using an ordered list. In (S3), we merge desired trees based on
the identifying operations in Procedure 1. Those operations can be implemented in
O(log t) time using O(t) processors on a CREW PRAM. By utilizing the list-ranking
technique and the prefix-sum technique [21], we maintain the children of each node in
the resulting tree through merging lists. Therefore, Step 3 can be implemented within
O(log2 n) time using O(n+m) processors on a CREW PRAM. Similarly, Step 4 can
be implemented with the desired complexities. Then, we have the following theorem.

Theorem 5.9. Algorithm Tree 2 correctly constructs a one-vertex-extension tree
of a distance-hereditary graph in O(log2 n) time using O(n+m) processors on a CREW
PRAM.

5.4. Decomposition trees of distance-hereditary graphs. Throughout this
section, we assume that each vertex of G is represented by its corresponding one-
vertex-extension order. By Lemma 2.3, the following recursive method can be used
to transform a one-vertex-extension tree into a decomposition tree. Let E be a given
one-vertex-extension tree whose root and leftmost child are x and y, respectively. If
(y, x) is labelled with T , then we create a ⊗-node as the root of a decomposition
tree DG[V (E(x))]. If (y, x) is labelled with P , then we create a ⊕-node as the root of
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Fig. 5.6. An example of executing Algorithm Tree 3. The tree shown in the left is an input and
that shown in the right is its corresponding output.

DG[V (E(x))]. Otherwise, we create a �-node as the root of DG[V (E(x))]. After recur-
sively constructing DG[V (E(y))] and DG[V (E(x))\V (E(y))]), we let the roots of DG[V (E(y))]

and DG[V (E(x))\V (E(y))] be the left child and the right child of the created node for
(y, x), respectively. The above method can be implemented using the following non-
recursive algorithm.
Algorithm Tree 3
Input: A one-vertex-extension tree EG.
Output: A decomposition tree DG.

Step 1: For each vertex v in EG, let num(v) be the one-vertex-extension order asso-
ciated with v. For each edge e = (v, par(v)) in EG, let num(e) = num(v).

Step 2: For each edge e in EG, create an internal node νe (⊗ or ⊕ or �) for DG
depending on the label of e.

Step 3: For each node νe, where e = (v, par(v)), execute the following operations:
(a) If par(v) contains no child w in V (EG) such that num((w, par(v))) >
num(e), create a node representing par(v) to be the right child of νe. Other-
wise, find the edge e′ next to e. Let the node created for e′ be the right child
of νe.
(b) If v is a leaf in V (EG), create a node representing v to be the left child of νe.
Otherwise, find the edge e′ = (z, v) such that num(z) = min{num(x)| x ∈
child(v)}. Let the node created for e′ be the left child of νe.

Figure 5.6 shows a one-vertex-extension tree with its corresponding decomposition
tree. The nodes να, νβ , νγ , νω are created in Step 2 of Algorithm Tree 3. The left child
and the right child of each node νe, where e is an edge in {α, β, γ, ω}, are determined
in Step 3 of Algorithm Tree 3.
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The correctness follows from the statements preceding the algorithm. Based on
the data structure maintained in Algorithm Tree 2 and the Euler-tour technique [21],
we have the following result.

Theorem 5.10. Algorithm Tree 3 correctly transforms a one-vertex-extension
tree into a decomposition tree in O(log n) time using O(n/ log n) processors on an
EREW PRAM.

6. Discussion and conclusion. In this paper, we first define the (r, k,Θ)-
subgraph generating problem on trees. We solve this problem in O((rk + k2)n)
sequential time, and in O(k2(r + k) log n) time using O(n/ log n) processors on an
EREW PRAM, where n is the number of nodes of the given tree. We then develop
a general problem-solving paradigm used to reduce a class of subgraph optimization
problems on distance-hereditary graphs to its corresponding (r, k,Θ)-subgraph gen-
erating problems. Using this paradigm, we define a class of (r, k,Θ)-regular prob-
lems on distance-hereditary graphs. Let Td(|V |, |E|) and Pd(|V |, |E|) denote the
time complexity and processor complexity required to construct a decomposition
tree of a distance-hereditary graph G = (V, E) on a PRAM model Md. We show
that an (r, k,Θ)-regular problem on a distance-hereditary graph G = (V, E) can be
solved in sequential O((rk + k2)n +m) time, and in O(Td(n, m) + logn) time using
O(Pd(n, m) + n/ log n) processors on Md. We also show that Td(n, m) = O(log2 n),
Pd(n, m) = O(n+m) under a CREW PRAM.

Several fundamental graph problems are shown to be (r, k,Θ)-regular, includ-
ing the maximum clique problem, the maximum independent set problem, the vertex
connectivity problem, the domination problem, and the independent domination prob-
lem. Therefore, the above problems can be solved in linear time, and in O(log2 n)
time using O(n+m) processors on a CREW PRAM. Opposed to less parallel results
on distance-hereditary graphs, our method classifies a class of problems on distance-
hereditary graphs to be in NC. We believe that more graph problems can be shown
to be in (r, k,Θ)-regular class.

We note that Golumbic and Rotics [14] showed that a distance-hereditary graph
has clique-width at most three and can be represented by a so called 3-expression.
Using this structure, it is shown that a class of problems can be solved in sequential
linear time on distance-hereditary graphs if those problems can be represented in
monadic second order logic with quantification over vertex sets only (MSOL problems
for short) [9]. Note that Bodlaender and Hagerup [4] developed a general parallel
algorithm to solve several subgraph optimization problems on special classes of graphs
with bounded tree-width. However, the tree-width of distance-hereditary graphs is
not bounded. It is hopeful and certainly interesting to see if clique-width can be used
similarly to solve subgraph optimization problems in parallel. However, to the best
of our knowledge, no such result exists.

In [24], Miller and Teng presented a systemic method for the design of efficient
parallel algorithms for the dynamic evaluation of computation trees and/or expres-
sions. Their method involves the use of uniform closure properties of certain classes
of unary functions. In this paper, we extend their work by considering k-ary func-
tions. Let D be the power set of some given set and let Min (respectively, Max) be
the operator defined on a subset of D that returns a set with the minimum (respec-
tively, maximum) cardinality. We show that a class algebraic computation tree over
{D,Min,Max,∪} can be optimally evaluated using a class of k-ary functions which
is closed under the composition.
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