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We present a quantum multimodal treatment describing electromagnetically induced transparency �EIT� as a
mechanism for storing continuous-variable quantum information in light fields. Taking into account the atomic
noise and decoherences of realistic experiments, we numerically model the propagation, storage, and readout of
signals contained in the sideband amplitude and phase quadratures of a light pulse using phase space methods.
An analytical treatment of the effects predicted by this model is then presented. Finally, we use quantum
information benchmarks to examine the properties of the EIT-based memory and show the parameters needed
to operate beyond the quantum limit.
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One of the steps toward the realization of quantum com-
putation is a device that allows the coherent storage of infor-
mation. The Heisenberg uncertainty principle �HUP� sets a
limit on the quality of stored information that depends on
direct measurement and subsequent reconstruction. Much ex-
perimental and theoretical research is directed toward quan-
tum memories for light to circumvent this classical bench-
mark. To realize such memories, methods that provide a
coherent interface between large atomic ensembles and light
fields have been proposed.

A scheme using the off-resonant interaction of a light field
with a large ensemble of three level atoms was presented in
Ref. �1�. Off-resonant Faraday rotation was also used as a
mechanism for mapping quantum states of light onto atoms
�2�. The storage of a light field was shown to be possible by
controlling the spatial distribution of atomic shifts in opti-
cally thick ensembles of three level �3,4� and two level atoms
�5�. Probably the most actively studied technique to achieve
a quantum memory for light utilizes electromagnetically in-
duced transparency �EIT� �6,7�.

Experiments using EIT in atoms carried out in a sodium
magneto-optical trap �MOT� �6� and in hot rubidium vapor
cells �8� have demonstrated the storage of a light pulse for a
few milliseconds. In solid state systems a storage of more
than 1 s has been achieved using photon echo techniques �9�.
The quantum nature of single photon Fock states was shown
to be preserved when stored and released from a MOT
�10–12�, and theoretical studies have proposed methods to
enhance the storage efficiency in these experiments �13–15�.
The delay of the two quadratures of a continuous wave beam
�16,17�, and the delay �18� and storage of vacuum squeezing
using EIT has also recently been achieved �19,20�.

Improvements in the efficacy of those system can be
made with a better understanding of the sources of excess
noise and loss. The transfer of the sideband statistics from
optical fields to atoms also requires further investigation. In
this work we develop a model describing the storage of the
signals contained in the sideband amplitude and phase
quadratures of a light pulse in the presence of decoherences
and associated atomic noise, and use quantum information

benchmarks to show the quantum nature of the transfer.
In the first part we present theoretical models that de-

scribe the multimode propagation of an amplitude and phase
modulated pulse and the storage of its information onto
atomic states in EIT-based memories. A numerical phase
space treatment of light storage treats several sources of in-
efficiency present in current experiments. Maxwell-Bloch
equations are then solved analytically in the weak probe ap-
proximation to explain the behavior of the atomic noise and
to give an expression for the time-bandwidth product of this
system in the presence of decoherence and finite atomic den-
sity.

Next, we develop criteria that quantify parameters for
which EIT-based memories are able to store information in
the quantum regime. Several criteria have been developed in
the past to distinguish classical and quantum distributions of
states in other quantum information protocols, such as tele-
portation or quantum cryptography. Signal-transfer coeffi-
cients T and conditional variances VCV have been used as a
state-independent measure to analyze the effectiveness of
teleportation experiments in the presence of nonunity gain
�21–23�. We propose implementing the TV diagram to define
benchmarks for the storage of continuous-variable informa-
tion and identify the parameters required to enable a transfer
of information that outperforms any classical strategy.

I. MODEL

Previous theoretical work has characterized the efficiency
of EIT as a delay line for continuous-variable quantum states
�14,24�. Considering a three level atom such as the one de-
picted in Fig. 1, under conditions where there is a pure
dephasing rate between the ground states, the information
flow can be slowed down within a narrow frequency win-
dow, and no additional noise is introduced beyond that which
is necessary to preserve the canonical commutation relation
of the field �24�. The width of this transparency window
depends on the coupling beam power, the atomic density and
the ground-state decoherence rate.

Controlling the coupling beam in time allows storage of
the information within the atomic sample. This storage pro-
cess for continuous variables can be understood as follows.
The coupling beam prepares the atoms initially in the Zee-*ping.lam@anu.edu.au
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man state �1� through optical pumping. When a weak probe
resonant with the transition �1�– �3� propagates in the me-
dium, coherences are created between the two ground states
of the atoms. These coherences arise from a quantum inter-
ference between the two excitation pathways and acquire the
sideband information of the probe pulse during its compres-
sion inside the medium. After the compression, most of the
probe field energy has been transferred to the coupling beam
and left the cell at the speed of light. At this point in time the
atoms possess the frequency information of the probe within
the transparency window, distributed in momentum space.
When the coupling beam is turned off, the remaining energy
in the probe field leaves the medium without affecting the
information stored. The information will be saved provided
the readout is performed before the decoherence processes
have affected the atomic state. When the coupling beam is
switched back on, the probe beam is regenerated with the
supply of photons from the coupling beam and leaves the
medium while reading the spin state of the atoms. The main
constraints are that the signal has to be encoded at frequen-
cies within the transparency window and that the compressed
pulse has to fit the size of the atomic sample. When these
criteria are satisfied, the efficiency of this process is close to
unity. The switching of the coupling beam can be done adia-
batically or abruptly if the pulse is totally compressed within
the medium �6,25,26� but recent theoretical work shows that
the way the coupling beam is shaped in time enhances the
efficiency when the optical depth is limited �13,15�.

Experimental investigation of this effect requires optical
sources at or below the shot noise limit, which is only pos-
sible at some modulation frequency around a carrier. Model-
ing this spatiotemporal dynamics accurately therefore re-

quires a model which contains the quantum state of a large
number of modes of the light, which we provide in this pa-
per. We solve this problem numerically and then analytically
to calculate the degradation of the signal and added noise
during the storage process in the presence of decoherence
mechanisms. Specifically, we consider dephasing affecting
the ground-state coherence and also allowing an exchange of
population between the two ground states.

We approximate the atomic structure by the three level
atomic � system shown in Fig. 1, where the two atomic
ground states are degenerate and the transitions are addressed
experimentally with orthogonal circular polarizations. We
will consider the simultaneous storage of both quadratures of
the probe when amplitude and phase modulations are en-
coded within the EIT bandwidth in the case where the cou-
pling beam is switched abruptly. The preparation of this state
can be achieved experimentally by passing a light pulse
through amplitude and phase modulators sequentially. Pro-
vided the modulation frequency is larger than the Fourier
width �� of the pulse, classical information is encoded onto
its sideband � at the shot noise limit.

The envelope of the probe field, Ê�z , t�, obeys the com-

mutation relations �Ê�z , t� , Ê†�z� , t���= L
c �(t−z /c− �t�−z� /c�),

where L is the quantization length, taken to be the length of
the cell, and c the speed of light. We are interested in the
evolution of the amplitude and phase quadrature operators

which will be denoted X̂in
+ ���= Êin���+ Êin

† �−�� and X̂in
− ���=

−i�Êin���− Êin
† �−���, respectively. To distinguish between the

classical signal and the quantum noise, we decompose X̂in
����

into

X̂in
���� = 2�in

���� + �X̂in
���� , �1�

where �in
���� is the coherent amplitude encoded onto the

probe via optical modulation and �X̂in
���� its quantum fluc-

tuations.
The power spectral density S���� of the fluctuating signal

X̂� is the Fourier transform of its autocorrelation function,
which equals �24,27�

S������� + ��� =
c

L
�X̂����X̂������ . �2�

When normalized to the detection bandwidth, chosen to be
much smaller than the applied modulation frequency, the
measured power spectrum will be

S���� =
c

L
��X̂�����2� �3�

and the noise on the signal

V���� =
c

L
���X̂�����2� . �4�

For the input probe state we then have Sin
����=4 c

L ��in
�����2

+Vin
����. The signal will be defined as 4 c

L ��in
�����2 and the

noise as Vin
����, which is by definition unity for a shot-noise-

limited laser beam.

,

FIG. 1. �Color online� EIT level structure. Ê�z , t� is the envelope
operator of the probe field and �c�t� is the coupling beam Rabi
frequency. Almost all the atoms are pumped into state �1� initially. �
is the spontaneous emission rate from the upper state and �0, �c are
mean decoherence rates between the two ground states for pure
dephasing and population exchange, respectively. These two quan-
tities are usually referred to as 1 /T2 and 1 /T1 in the field of mag-
netic resonance.
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If this state is inefficiently stored with some frequency
and quadrature-dependent loss 	���� and if some excess
noise with amplitude Vnoise

� ��� is generated by the memory,
we will have

Sout
� = 	����Sin

� + 1 − 	���� + Vnoise
� ��� . �5�

The term 1−	���� corresponds to uncorrelated vacuum
noise, common to any system in the presence of loss. This
vacuum noise is necessary to preserve the commutation re-
lations of the output state. The excess noise Vnoise

� ��� trans-
forms an initial coherent state, where Vin

����=1 into a mixed
state where Vout

� ���=1+Vnoise
� ���
1.

In the following sections we will calculate 	���� and
Vnoise

� ��� using phase space simulations in the positive-P rep-
resentation, and use a simplified model that identifies the
origin of the excess noise and describe the light storage and
retrieval efficacy. We treat the probe beam as a general quan-
tized field with longitudinal spatial dependence z, and the
coupling beam �c as a classical field. The atoms are all
prepared in state �1� before the probe enters the cell via op-
tical pumping induced by �c.

In this study we assume the coupling beam Rabi fre-
quency to be 104 times larger than that of the probe, ensuring
that no atoms will move into state �2� due to optical pumping
induced by the probe, and the coupling beam will not be
depleted throughout the storage process. Its dependence on z
will therefore be ignored in this treatment. The validity of
this approximation in the presence of decoherence is dis-
cussed in Sec. I B 1. When both beams are of comparable
strength and both are treated as quantum fields, a strong cor-
relation develops between them �28–32�. As we are well
away from this regime in our system, this correlation will not
affect the quantum statistics of our probe, allowing us to treat
the coupling beam as a classical field.

The master equation of this system is

�

�t
�̂ =

1

i�
�Ĥint, �̂� + L31��̂� + L32��̂� + L�1,2�

deph��̂� + L�1,2�
coll ��̂� ,

�6�

where �̂ is the reduced density matrix of the optical field and

atomic variables and Ĥint is the interaction Hamiltonian. We
define locally averaged atomic dipole operators ̂ij�z , t� for
the �i�− �j� transition given by �7,24�

̂ij�z,t� =
1

nA�z
�

zk��z

̂ij
k �z,t� , �7�

where A is the cross-sectional area of the beam, n the atomic
density, and �z an infinitesimal slice of the medium contain-
ing N atoms. In the rotating wave approximation, the inter-
action Hamiltonian is then

Ĥint = −	 N�

L
�gÊ�z,t�̂31�z,t� + �c�t�̂32�z,t� + H.c.�dz ,

�8�

where g is the coupling strength on the probe transition. The
Li3 are Liouvillians modeling the decays due to spontaneous

emission from the upper state �3�, and are defined by

Li3��̂� = � �
zk��z


̂i3
k �̂̂3i

k −
1

2
̂i3

k ̂3i
k �̂ −

1

2
�̂̂i3

k ̂3i
k � , �9�

where for simplicity we assume the decay rates � from the
upper state to be the same for both transitions.

L�1,2�
deph accounts for an off-diagonal dephasing rate �0 af-

fecting the ground-state coherence and arises from elastic
collisions or atoms moving in and out of the interaction re-
gion defined by the probe beam quantized mode. Its expres-
sion is

L�1,2�
deph��̂� = �0 �

zk��z

̂11

k �̂̂11
k −

1

2
̂11

k ̂11
k �̂ −

1

2
�̂̂11

k ̂11
k �

+ �0 �
zk��z


̂22
k �̂̂22

k −
1

2
̂22

k ̂22
k �̂ −

1

2
�̂̂22

k ̂22
k � .

�10�

This term does not affect the atomic population. If the pump-
ing preparation is not optimum or if inelastic collisions are
non-negligible, a population exchange term L�1,2�

coll needs to be
introduced.

It is defined as

L�1,2�
coll ��̂� = �c �

zk��z

̂12

k �̂̂21
k −

1

2
̂12

k ̂21
k �̂ −

1

2
�̂̂12

k ̂21
k �

+ �c �
zk��z


̂21
k �̂̂12

k −
1

2
̂21

k ̂12
k �̂ −

1

2
�̂̂21

k ̂12
k � .

�11�

L�1,2�
coll ��̂� also affects the off-diagonal terms in the density

matrix in the same way as L�1,2�
deph��̂�, but as the sources of

these two decoherence processes are different we monitor
them separately. It should be noted that this last term does
not account for a pure loss of atoms out of the system, due to
possible atomic motion out of the interaction region or atoms
moving into other hyperfine states. We also assume the mean
dephasing rates describing quantum jumps from �1� to �2� to
be the same as the mean rates describing quantum jumps
from �2� to �1� for simplicity. The ratio between �0 and �c
depends on the atomic system used. In a cool enough atomic
sample where the mean free path of the atoms is on the order
of the probe beam size �0 would, for example, be dominant.
Those two quantities have recently been characterized ex-
perimentally in a vapor cell containing a buffer gas �33�. It
indeed appeared that �0 was the main source of dephasing
with �c playing a minor role.

A. Stochastic simulations

To model this system, we used stochastic phase space
methods, and worked with the positive-P representation �34�.
This phase space representation is computationally intensive
but has the advantage of being exact as opposed to the trun-
cated Wigner representation. We choose the following nor-
mal ordering of the operators:
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�Ê†,̂13
† ,̂23

† ,̂12
† ,̂33,̂22,̂11,̂13,̂23,̂12, Ê� �12�

and define

�̂��� ,z� = �
i

e�iÔi�z�, �13�

where Ôi�z� refers to the ith operator in our normally ordered
definition and �� = ��0¯�i¯�11� is a real vector. The nor-
mally ordered characteristic function �35� is then

���� ,z� = Tr��̂�̂��� ,z�� . �14�

The equations of motion for ���� ,z� are calculated using
the master Eq. �6� and the commutation properties of the
atomic and field operators. By taking the Fourier transform
of the characteristic function equations of motion, and as-
suming a large number of atoms in each slice �z, a Fokker-
Planck equation can be found. We then derive a set of nine
complex-valued Ito stochastic differential equations �SDE�
describing the atomic dynamics, with 18 uncorrelated noise
terms arising from atomic fluctuations. Their expressions are
given in Appendix A. The Stratonovitch corrections used in
the numerical simulations are also listed in the appendix, but
they are small compared to all the other variables and are not
included in the SDE. The Maxwell equations for the probe
envelope in a moving frame at the speed of light are

�

�z
��z,t� =

igN

c
3�z,t� , �15�

�

�z
��z,t� =

igN

c
11�z,t� , �16�

where the c numbers � and � represent the operators Ê and

Ê†, and 3, 11 correspond to the atomic operators ̂13, ̂13
†

�this naming convention follows the one introduced in Ap-
pendix A�.

The evolution of � and � in space and time is computed
when amplitude and phase modulations at a frequency
0.005� are encoded onto a 50 /� long coherent input state;
the envelope of the field then shows two cycles in both
quadratures. We numerically evaluate the expectation values

of the two quadrature operators �X̂+�z , t��=��z , t�+��z , t�
and �X̂−�z , t��=−i���z , t�−��z , t�� and their noise spectrum
S����= c

LX��z ,��X��z ,−��, where the averaging is done
over a large number of trajectories in phase space. The noise
floor V��z ,�� is obtained by turning off the signal on the
probe. We solved these stochastic equations using the nu-
merical package XMDS �36� and chose parameters realistic to
atom optics experiments with 87Rb atoms. The atomic den-
sity was chosen to be 1012 cm3 with a sample total length of
12 cm. At the moment the pulse is inside the medium, the
coupling beam is switched off abruptly and turned back on
50 /� later. For these particular simulations, we chose a
dephasing rate �0=250 Hz and an inelastic scattering rate
�c=100 Hz.

Figure 2 shows the results of this simulation where two
quadratures of the multimode field have been stored in the

presence of atomic noise. The stochastic simulations were
averaged over 2000 trajectories. Figure 2�a� shows the
propagation of the amplitude quadrature of the modulated
pulse through the cell. The results are identical for the phase
quadrature and are not shown here. We can see that the EIT
memory preserves the shape of the signal with minimal dis-
tortion. To better quantify this we plot the power spectrum of
the input and output fields in Fig. 2�b�. The asymmetry in the
transmission reveals a frequency-dependent absorption of the
pulse as it propagates through the system, characteristic of
the EIT Lorentzian transmission window. For these simula-
tions, 60% of the classical signal is absorbed but also extra
noise is added to the field. Using the previously defined no-
tation the transmission 	����=0.40 and the excess noise
Vnoise

� ���=0.12. We will see in Sec. II if these conditions
correspond to a quantum memory regime and describe the
origin of the noise in the following section.

It should be noted here that an iterative procedure was
recently proposed to optimize the coupling beam shape and
power in Ref. �13�. We also performed some simulations by
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FIG. 2. �Color online� Phase space numerical simulations of
quantum information storage using EIT. Amplitude and phase
modulations at 190 kHz are applied to the pulse. The decoherence
rates are �0=250 Hz, �c=100 Hz. �a� 3D graph showing the stor-
age of the probe amplitude quadrature on a time-space grid. �b�
Variances of the input and output fields for the amplitude and phase
quadratures, with 1 corresponding to the quantum noise limit. �i�–
�iii� is the power spectrum of the input and output states and �ii�–
�iv� are the noise floor of the input and output states. The dashed
lines corresponds to statistical standard deviations. These simula-
tions are the average of 2000 trajectories.
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shaping the control field and noticeable improvements were
found on the transmission and noise of the signal. The in
depth study of these effects were done during the course of
this work in Ref. �13� and are beyond the scope of our study.
In this paper, we chose our �time independent� coupling
beam Rabi frequency by maximizing the output signal with-
out decoherence, i.e., we found a trade off between off line
center absorption and the compression of the pulse required
to fit the sample. In this case the efficiency 	 was found to be
80%, only limited by the lack of optical depth. At higher
densities and optimized coupling beam strength, we found a
transmission close to unity. Such time-bandwidth consider-
ations are developed formally in Sec. I B 2.

B. Interpretation

In this section we provide an explanation of the results
found in the above phase space simulations. We first discuss
the effects of decoherences on the losses and atomic noise
introduced during the light propagation. We will show that
excess noise can be understood as a preservation of the ca-
nonical commutation relations of the field in the presence of
gain in the medium. We will quantify this by solving the
Heisenberg-Langevin equations in the weak probe approxi-
mation in the case of information delay, and compare it with
a more general theory of amplification and attenuation. We
then describe the mapping and readout of the information
encoded on the probe, derive boundaries for optimum stor-
age, and quantify the maximum information that can be
stored in this system. As in our numerical simulations, the
process will be solved with the coupling beam switched off
abruptly.

1. The role of decoherences

We will here focus on the noise properties of the EIT as a
delay line to explain the excess noise observed. From the
interaction Hamiltonian Eq. �8�, we can obtain a set of
Heisenberg-Langevin equations

̇̂11 = �̂33 + �c�̂22 − ̂11� − igÊ̂31 + ig�Ê†̂13 + F̂11,

̇̂22 = �̂33 + �c�̂11 − ̂22� − i�ĉ32 + i�c
�̂23 + F̂22,

̇̂13 = − �� + �0/2 + �c/2�̂13 + igÊ�̂11 − ̂33� + i�ĉ12 + F̂13,

̇̂32 = − �� + �0/2 + �c/2�̂32 + i�c
��̂33 − ̂22�

− i g�Ê†̂12 + F̂32,

̇̂12 = − ��0 + �c�̂12 − igÊ̂32 + i�c
�̂13 + F̂12,

�

�z
Ê =

igN

c
̂13 �17�

and ̇̂33=−�̇̂11+ ̇̂22�. We have included the decays of the
atomic dipole operators, and their associated Langevin noise

operators F̂ij describing the coupling of the atoms to vacuum
modes of large reservoirs. The expressions for the Langevin
correlations are calculated using the Einstein generalized
equations �24,37�. and the nonzero contributions are given in
Appendix B. The system of Eqs. �17� will be solved to first

order in Ê, �c /�, and �0 /�. To ensure an efficient pumping
into the dark state, therefore an optimum electromagnetically
induced transparency, we will also assume
��c�2� ���0 ,��c�.

We first perform a steady-state analysis of this system in
this approximate regime. From the last three Bloch equa-
tions, we get a relation between the coherences and the popu-
lations terms. Using this result, the first two Bloch equations
and the population preservation relation, an expression for
the populations can be obtained to first order in the weak
probe approximation. Assuming the coupling beam Rabi fre-
quency to be real and satisfying �c

2� ���0 ,��c�, the atomic
steady states are finally found to first order in �c /�

�̂11� = 1 − 2
�c

�
, �̂22� =

�c

�
, �̂33� =

�c

�
,

�̂12� = −
g�Ê�
�c

, �̂13� =
ig�0

�c
2 �Ê� , �̂23� =

i�c

�c
. �18�

We note that the atoms are not fully pumped in the state
�1� due to population exchange �c, and therefore a nonzero
dipole �̂23� appears on the coupling beam transition. In this
paper, however, we have assumed that the coupling beam is
not depleted. In order for these solutions to be consistent, we
then need to find the regimes where the coupling beam is
negligibly absorbed. We do so by solving the following Max-
well equation for the coupling beam propagation:

��c�z�
�z

=
ig2N

c
�̂23� , �19�

the solution for which is

�c
2�z� = �c

2�0� + 2d��cz/L , �20�

where d= g2NL
�c is the optical depth of the medium seen by the

probe field without control field and decoherence. Although
the coupling beam intensity is absorbed linearly through the
medium, a negligible depletion is guaranteed under the con-
dition

�c
2

��c
� 2d �21�

which we will require in all the following calculations. This
condition is verified in the above numerical analysis and the
one presented in the last section. We also note that because
of the pure dephasing �0 a dipole �̂13� is created on the
probe transition. A portion of the mean probe field is then
absorbed by the medium by an amount e−�0L, where �0

= gN
c

�0

�c
2 .

We will now calculate the evolution of the probe quantum
field as it propagates through the medium in the same ap-
proximate regime. To simplify the equations, the fast-
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decaying atomic variables will be adiabatically eliminated
�1 /T��, where T is a characteristic time scale�, making
these equations valid over time scales larger than the spon-
taneous emission decay time, which is the regime of interest
for EIT. It was noticed in Ref. �13� that this adiabatic ap-
proximation is actually less severe even when ground-state
decoherence is taken into account. By solving the Maxwell
equation for the probe field and substituting it back into the
equation of motion for ̂13 we find that 1 /T���1+d� is, in
fact, a sufficient condition.

We follow the same procedure as in Ref. �24� and solve
the equations in the Fourier domain. Using the steady state
solutions listed above, we can eliminate the second-order
terms in the probe field and negligible Langevin noise con-
tributions using Appendix B.

The Maxwell equation for the field amplitude quadratures
can be solved to give

Ê�z,�� = Ê�0,��e−����z

−
gN

c
	

0

z

ds e−�����z−s�� − i�d

����
F̂12�s,��

+
gN

c
	

0

z

ds e−�����z−s� i�c

����
F̂13�s,�� , �22�

where ����=�c
2− i���+�d /2�; �d=�0+�c is the total deco-

herence rate and the susceptibility of the medium is given by

���� =
g2N

c

��d − i���̂11 − ̂33� − i�̂32��c

����
. �23�

The first part of Eq. �22� describes the absorption and phase
shift of the probe propagating with a group velocity given by
vg=−� / Im������ inside the EIT medium. The last two
terms in Eq. �22� correspond to atomic noise added to the
field due to decoherence.

We now calculate the power spectrum of the output state
as a function of the input state using Eqs. �2� and �22� and
the Langevin correlations listed in Appendix B. First we note
that

2Re������ =
�c

2��F̂12,F̂12
† �� + �2��F̂13,F̂13

† ��
������2

, �24�

which links the linear absorption with the atomic noise, a
direct consequence of the fluctuation dissipation theorem.
This allows us to obtain

S��z,�� = 	�z,��Sin
���� + �1 − 	�z,����1 + Nf� , �25�

where 	�z ,��=e−2Re������z, and

Nf = 2
�c

2�F̂12
† F̂12� + �2�F̂13

† F̂13�

�c
2��F̂12,F̂12

† �� + �2��F̂13,F̂13
† ��

=
4�c�c

2

2�0�c
2 + �2�2� + �0 − 3�c�

. �26�

We note that the noise power spectrum is phase indepen-
dent, indicating that the response of the medium is the same

for both quadratures of the field. The normally ordered
Langevin correlations are responsible for excess noise on the
output field. Using the notation defined previously we have
Vnoise

� �z ,��= �1−	�z ,���Nf. When they are all zero, Nf =0,
and the preservation of the commutation relations of the out-
put field is ensured by the antinormally ordered Langevin
correlations as V��z ,��=1 in that case. From the Langevin

correlations calculated in Appendix B, we see that �F̂13
† F̂13�

=0 to first order in �c /�. This means that the spontaneous
emission does not contribute to the excess noise. However,

�F̂12
† F̂12�=4�c so the only noise contribution arises from the

population shuffling terms.
In order to understand why population exchange between

the ground states is responsible for noise, we will simplify
the equations further and concentrate on sideband frequen-
cies close to the carrier. We first solve for the steady states
with the population shuffling terms �c�̂11− ̂22� and �c�̂22

− ̂11� as the only source of decoherence. We find a new
solution for the atomic polarization

�̂13� = −
i�c

�c
2 �Ê� �27�

and insert it into the Maxwell equation to obtain

�Ê�z�� = �Êin�eaz, �28�

where

a =
gN

c

�c

�c
2 . �29�

This expression corresponds to a population exchange driven
amplification of the probe field inside the medium, the en-
ergy for which will be provided by the coupling beam, up to
a limit set by Eq. �21�.

This shuffling term alone is, however, not physically re-
alistic. As can be seen from the stochastic equation listed in
Appendix B and Eqs. �17�, the Liouvillian L�1,2�

coll also in-
cludes an off diagonal ground-state dephasing with mean rate
�c giving an extra linear loss �c= gN

c

�c

�c
2 similar to �0. When

solving for the steady state in this case, we find the net trans-
mission close to zero frequency to be unity. The losses in fact
exactly compensate for the gain, and the EIT medium no
longer performs amplification. Even though the transmission
that includes L�1,2�

coll gives no net amplification, this underlying
gain term results in excess noise on the output.

Using Eq. �26� close to �=0 and for �0�0 we find the
noise to be

Vnoise = 2
�c

�0
�1 − e�a−�0−�c�z� �30�

and for �0=0, Vnoise=2az. A similar expression can in fact be
found in the theory of two beam coupling developed in Ref.
�38�. The presence of excess noise on the output field can be
recognized from the theory of phase-insensitive quantum
amplifiers. In Ref. �39� the signal to noise ratio of the optical
field was shown to degrade in the presence of gain, and extra
noise has to be inserted in the field equations to preserve the

HÉTET et al. PHYSICAL REVIEW A 77, 012323 �2008�

012323-6



commutation relations. More precisely, it was shown that the
output of an ideal linear amplifier with a gain factor G
1,
relates to the input state by

Êout = GÊin + G − 1Ê�
†, �31�

where Ê�
† is a vacuum mode of the reservoir. The power

spectrum at the output of an ideal phase-insensitive amplifier
is then given by Sout

� =GSin
�+G−1.

We will now follow the approach of Jeffers et al. �40� and
develop a general theory for amplification and attenuation of
a traveling wave. By artificially concatenating m amplifying
and attenuating infinitesimal slices with linear amplification
1+a��z and attenuation 1−��z, where �z=z /m, we will cal-
culate the noise properties of the field using Eq. �31�, and
compare it with the previous result based on the Heisenberg-
Langevin equations. The power spectrum of the field at a
slice m can be found to be

Sm
� = 
1 +

�a� − ��z
m

�m

�Sin
� − 1� + 1

+ 2a��
j=1

m 
1 +
�a� − ��z

m
�m−j

. �32�

By going to the limit m→� therefore converting the discrete

slices into a continuous array, when ��a� we get

S��z� = 	��z�Sin
� + �1 − 	��z���1 + Nf�� , �33�

where

Nf� =
2a�

� − a�
and 	��z� = e�a�−��z. �34�

This general treatment allows us to assess the amount of
excess noise present at the output of a system when gain and
attenuation are known quantities. Equation �30� can readily
be recovered by replacing a� by a and � by �0+�c in the
EIT system close to zero frequency, which validates this in-
terpretation.

We will now compare the signal to noise ratio and excess
noise found by the present theory to the results given by the
phase space treatment of Sec. I A in the case of information
delay. The signal to noise ratio for both quadratures is de-
fined by

R��z� =
4����z��2

V��z�
. �35�

Figure 3 shows the evolution of the noise V�z�=1
+Vnoise�z� and the signal to noise ratio as a function of the
depth of propagation in three different situations. We con-
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FIG. 3. Signal to noise ratios and noise results for �a� and �c� the numerical solutions and �b� and �d� the analytical solutions. �i� and �i’�
correspond to �c=0.005� and �0=0; �ii� and �ii’� to �c=0.005� and �0=0.005�; and �iii� and �iii’� to �0=0.005� and �c=0. The same
parameters as for the phase space simulations of light storage of Sec. I A were chosen.

CHARACTERIZATION OF ELECTROMAGNETICALLY- ... PHYSICAL REVIEW A 77, 012323 �2008�

012323-7



sider the following decoherence combinations: ��0 ,�c�
= �0,0.005��, corresponding to curve �i�; ��0 ,�c�
= �0.005� ,0.005��, corresponding to curve �ii�; and ��0 ,�c�
= �0.005� ,0�, corresponding to curve �iii�. Figures 3�a� and
3�b� are the noise results and Figs. 3�c� and 3�d� are the
signal to noise ratio results from the numerical and analytical
approaches, respectively.

Both theories are in good agreement. For curve �iii� there
is no population exchange between the ground state and
therefore the noise never exceeds the shot noise level. For
curve �i�, the noise increases linearly as predicted when �0
=0 whereas for curve �ii�, the noise increases exponentially
according to Eq. �25�.

Figures 3�c� and 3�d� compare the signal to noise ratios
results from the two approaches and again a good agreement
is found between the numerical simulations and the analyti-
cal solutions. Even though the excess noise power is larger
for �i� than for �ii� and �iii�, the signal transmission is 100%
with �c only, therefore the output signal to noise ratio is
larger for �i’� than for �ii’� and �iii’�.

2. Light storage

In this section we present an analytical model of the light
storage protocol. Our treatment describes the transfer of in-
formation from the modulation sidebands of the probe beam
to the atomic coherences in the sample and vice versa, taking
into account the same decoherence effects and the finite op-
tical depth.

We will again consider fast switching and symmetric con-
ditions for the writing and retrieval. Information delay can
then be seen as light storage where the coupling beam has
been switched off and back on immediately afterwards pro-
vided the switching of the control beam does not degrade the
efficiency or introduce noise. It is clear that during writing
and reading the noise can be obtained from the previous
delay study. We can therefore ignore the Langevin operators
at these stages. However, some care will have to be taken to
describe what happens after the switching of the control
beam, since, as opposed to information delay, some photons
will leak through the medium.

The storage process is treated in three steps. First, we
describe the mapping of sidebands of a pulse of duration T to
the atomic coherences in momentum space, the writing
stage. The second step, the storage time discusses the influ-
ence of the decoherences when the coupling beam is off. To
show that no noise is introduced by the switching of the
coupling beam, the Langevin operators will be retained for
this time interval. The last step, the reading stage, is the
mapping of the information stored in momentum space back
to a probe field. We model the relaxation between the ground
states with the decoherence terms �0 and �c introduced pre-
viously, in the same approximate regime �adiabatic elimina-
tion of the probe polarization dynamics, and efficient pump-
ing into the dark state�. Similarly to Ref. �25�, to first order in

Ê, two coupled linear equations can be derived and are given
by


 �

�z
+ d�/L�Ê�z,t� = �̂12�z,t� , �36�


 �

�t
+ �p�̂12�z,t� = �Ê�z,t� , �37�

where we introduced the quantities

�p = �d +
�c

2

�� + �d/2�
, d� = d

��̂11 − ̂33�
� + �d/2

. �38�

�p describes the pumping rate of photons from the coupling
beam and d� the optical depth seen by the probe without
coupling beam and in the presence of population shuffling.
To simplify the notation we also define

� = −
gN

c

�c

� + �d/2
, � = − ig�̂32� −

g�c�̂11 − ̂33�
� + �d/2

.

�39�

As these equations are linear, we can deal with the atomic
and field variables as c numbers.

Writing stage. We introduce the collective ground-state
coherence as the Fourier transform in space of the locally
averaged ground-state coherence operator 12�z , t�,

12�k,t� =
1

L
	

0

L

12�z,t�eikzdz . �40�

After full compression of the probe in the medium this quan-
tity fluctuates with the same standard deviation as the input
field as we will show. During the writing stage the state of
the probe at each point in space can be found using Eqs. �36�
and �37� in the frequency domain. The result is identical to
the deterministic part of Eq. �22�, as expected. We then ob-
tain the mapping of the field in � space to the coherences in
momentum space when integrating Eq. �37�. We consider the
memory to work in the linearly dispersive regime, i.e., the
differential phase shift seen by all the spectral components of
the field is the same. This allows us to change variables from
�0 to k0vg when integrating Eq. �37� and get

12�k,t� =	 dk0Ein„�k0 − k�vg…DW�k0,t� , �41�

where DW is a transfer function quantifying the losses due to
the finite EIT bandwidth, and the finite length of the cell. Its
expression is given in Appendix C. The integration of Eq.
�41� is performed between k−�� / �2vg� and k+�� / �2vg�.

We now require the frequency where the information is
encoded to be smaller than the pumping rate. This condition
ensure a high efficiency of the writing process as we will see.
In this regime Eq. �41� reduces to

12�k,t� =
�vg

���p
�1 − e−�pt�

�	 dk0Ein��k0 − k�vg�sinc
 k0L

2
� . �42�

This equation describes a down-sampling of the informa-
tion from the probe field to the atoms due to a finite optical
depth. The information is loaded at a rate �p onto the collec-
tive ground-state coherences. This process is much faster
than the time it takes for the pulse to enter the sample �which
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is on the order of T�. When Fourier transforming back to the
spatial coordinate at a time toff�T, we get an expression in
the form of a convolution

12
toff�z� =

�

�p
sinc��kz� � �H�L�Ein�− z/vg�� , �43�

where H�L� is a top hat function defining the atomic sample
boundaries. For the probe pulse to fit the atomic sample we
then require the duration of the pulse to satisfy the relation
T�L /vg. In this case there is no loss of information, and Eq.
�43� can be written

12
toff�z� =

�

�p
Ein�− z/vg� . �44�

The statistics of the probe field is then distributed in space
onto the atomic ground state as it propagates through the
medium, and its energy transferred to the coupling beam.

Storage time. The coupling beam will be switched off at
t= toff and switched back on at a time t= ton. The evolution of
the atomic coherence and of the remaining probe field inside
the medium will here be solved in this interval.

Because Eq. �21� does not hold in this regime, we now
have to consider the spatial dependence of the control beam.
From the general ground-state coherence equation of motion
in Eq. �17�, and the Maxwell equations of the two fields we
get


 �

�t
+ �d�̂12�z,t� =

c

gN

�

�z
�Ê�z,t��c�z,t�� + F̂12�z,t� .

�45�

As the control beam will be at most on the order of gÊ after
the switching, the first term on the right-hand side is on the

order of g2Ê2 /�d. The effect of those extra photons leaking
outside the medium on the ground state coherence is there-
fore negligible and the writing efficiency of the classical in-
formation will not be effected by the switching. This also
means that the populations will not change after the switch-

ing. The Langevin correlations �F̂12�z , t�F̂12
† �z , t�� and

�F̂12
† �z , t�F̂12�z , t�� only depend on the populations so their

value will not differ significantly from the writing and read-
ing stage. Again, the excess noise can be calculated from the
previous delay study. After neglecting those two terms we
obtain

12
ton�z� = e−�d�ton−toff�12

toff�z� �46�

which describes a simple exponential decay of the coher-
ences over time due to a nonzero dephasing rate �d.

Reading stage. To describe the reading stage we evaluate
the coherences in the presence of a field on the probe tran-
sition in momentum space. We first solve for 12�k , t� inde-
pendently of the probe field by combining Eqs. �36� and
�37�. We obtain

12�k,t� = e−��k�t12
ton�k� , �47�

where

��k� = �p −
��

d/L − ik
. �48�

We will follow the same procedure as in the writing stage.
The Maxwell Eq. �36� is solved in � space to give

E�z,�� =	 d�012
ton
� − �0

vg
�DR�z,�0� , �49�

where DR is a transfer function now affecting the transfer
from the atomic coherences to the field and is given in Ap-
pendix C. The integration of Eq. �49� is performed between
�−vg�k /2 and �+vg�k /2. Under the same condition as for
the writing stage �large enough pumping rate �p� we obtain

E�z,�� =
�L

vg�kd�
�1 − e−d�z/L�

�	 d�012
ton
� − �0

vg
�sinc
�0T

2
� . �50�

The down-sampling also occurs when the information is
transferred from the ground-state coherences to the probe
due to the finite optical depth. We can again transform this
expression in time and space to obtain a relation between the
field and the atoms at the output of the sample given by

Eout�t� =
�L

d�
sinc���t� � �H�T�12

ton�− vgt�� . �51�

This expression can be simplified further in the case where
the retrieved probe fits entirely within the atomic sample,
i.e., when the duration of the pulse T satisfies the relation
T�L /vg. There is then no loss of information and Eq. �51�
can be written

Eout�t� =
�L

d�
12

ton�− vgt� . �52�

By continuity arguments one can combine Eqs. �52�, �44�,
and �46� to show that

Eout =
��L

�pd�
e−�d�ton−toff�Ein. �53�

This expression relates the input and output probe states in
the presence of pure dephasing and population exchange be-
tween the ground states in the limit of large density and large
pumping rate �p. One can show that when �d=0, the output
is then the perfect replica of the input state.

The upper bound for T has to be satisfied for the pulse to
fit the atomic sample. With a long input pulse, ��, a high
density or a weak coupling beam is required, whereas for a
short input pulse vg /L can be made larger. On the other hand,
the upper bound for �� defines the minimum EIT bandwidth
tolerable to minimize the losses. A short input pulse will
require a large coupling beam power, whereas a weaker cou-
pling beam power �narrower EIT bandwidth� can be used
with a longer pulse. The time-bandwidth product of the sys-
tem ��pL /vg� is d�, i.e., the number of independent samples
from the probe that can be faithfully stored depends only on
the density. At infinite density one can then store an infinitely
broad probe spectrum. We see that not only does �c introduce
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excess noise on the output probe mode as discussed in the
previous sections, but it also reduces the time bandwidth
product at a given d.

This result is similar to the one found in the general case
of time varying coupling beam in Ref. �13�. With a coupling
power calculated by equating the length of the pulse in the
cell with the length of the cell �c

2=d� /T, the condition
Td��1 is obtained. Our condition requires the full width at
half maximum of the pulse to be smaller than the cell length.
As also mentioned in Ref. �13�, the input and output pulse
durations �which are identical in our case� also have to sat-
isfy the relation T�d�1 for the information to be imprinted
onto the atoms before the pulse is absorbed. We note that
provided Eq. �54� holds, the condition �2

��d
�d is sufficient

for T�d�1 to hold. As already mentioned, this is the case in
all the numerical simulations and analytical derivations pre-
sented in this paper.

II. QUANTUM INFORMATION BENCHMARKS

In this section we will investigate the storage of optical
information from a quantum information perspective. We
will benchmark the results obtained in our modeling against
known quantum information criteria. These criteria, which
are fidelity, signal transfer coefficients and conditional vari-
ances, will enable the determination of whether a quantum
strategy has been used in the storage and readout of a quan-
tum state; whether an EIT-based quantum memory is pos-
sible in an experimentally realistic situation, and whether the
output of the storage process is indeed the best clone of its
input.

Figure 4 shows the schematics of our quantum memory
benchmark. It was shown in Ref. �41� that the optimal clas-
sical measure and prepare strategy for optical memory is the
classical teleporter scheme as shown in Fig. 4�b�, and we
therefore benchmark the performance of our EIT quantum
memory against this setup. In this classical scheme, the stor-
age time can be arbitrarily long without additional degrada-
tion. However, two conjugate observables cannot be simul-
taneously measured and stored without paying a quantum of
duty �21,42�. Moreover, the encoding of information onto an
independent beam using amplitude and phase modulators
will also introduce another quantum of noise. In total, the
entire process will incur an additional two quanta of noise
onto the output optical state.

Possibly the best known benchmark in quantum informa-
tion protocols is the fidelity which measures the wave func-
tion overlap between the output and input states. It is given
by

F = ��in��̂out��in� , �54�

which, in the Wigner representation, can be written

F = 2�	 	 Win�X+,X−�Wout�X+,X−�dX+dX−. �55�

For Gaussian states with coherent amplitude �� and power
spectrum S�, the Wigner function is

W�X+,X−� =
2

�S+S−e−�X+ − 2�+�2/2S+−�X− − 2�−�2/2S−
. �56�
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FIG. 4. �Color online� �a� General schematics for characterizing an optical memory. A pair of EPR entangled beams are encoded with
amplitude and phase quadrature information. One of these beams is injected into, stored, and readout from the optical memory while the
other is being propagated in free space. A joint measurement with appropriate delay is then used to measure the quantum correlations
between the quadratures of the two beams. �b� A classical teleporter scheme used as an optical memory. The input state is measured jointly
on both quadratures using two homodyne detection schemes. Analogous to classical teleportation the measured information is stored for time
� before fed-forward onto an independent laser beam with a feed-forward gain, g. The feed-forward gain is analogous to a transmission of
	��� for EIT-based memories. �c� Quantum memory using EIT. The input state is stored in the long lived ground state coherence of three
level atoms in a � configuration.
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The fidelity of the classical teleporter scheme can be eas-
ily calculated �23� using Eqs. �56� and �57� and gives

F =
2e−k+−k−

�2 + Vnoise
+ ��2 + Vnoise

− �
, �57�

where k�=�in
��1−g��2 / �2+Vnoise

� �, Vnoise
� are the noise vari-

ances of the output field for the amplitude and phase quadra-
tures and g� is the feed-forward gain. For an ideal classical
memory with unity gain, g�=1, one can see from the previ-
ous argument that a coherent input state will give Vnoise

� =2,
thus giving a classical limit of F�0.5. It has been shown by
Grosshans and Grangier �43� that when the fidelity of a tele-
porter F�2 /3, the output state is guaranteed to be the best
cloned copy of the input state. This fidelity limit called the
no-cloning limit for teleportation corresponds to the addition
of only one quantum of noise in the entire process.

The use of entanglement in the context of quantum tele-
portation, or for example EIT for quantum memories is nec-
essary to break these limits. We now quantify EIT-based
quantum memories using this criterion. There is a direct
analogy between the feed-forward gain g and the EIT trans-
mission 	���. Figure 5 shows the behavior of F, as defined
in Eq. �58� using g=	���, with varying memory loss for
different coherent state amplitudes. This shows that fidelity is
a state-dependent measure.

The formula for the fidelity can be extended to mixed
input states using

F = �tr��̂in�̂out
�̂in��2. �58�

Jeong et al. �44� showed that this formula can again be used
to benchmark quantum information protocols. Nevertheless,
characterizing quantum memory using the state-dependent
fidelity as a measure will be complicated for exotic mixed
states.

An alternative measure to fidelity for the characterization
of quantum information protocols was proposed by Grangier
et al. �45� for quantum nondemolition measurement and by
Ralph and Lam �21� for quantum teleportation. This alterna-
tive uses the signal transfer coefficients T� and the input-

output conditional variances VCV
� to establish the efficacy of

a process. The conditional variances and signal transfer co-
efficients are defined as

VCV
� = Vout

� −
��X̂in

�X̂out
� ��2

Vin
� , �59�

T� =
Rout

�

Rin
� , �60�

where Rout/in
� is the signal to noise ratio of the output/input

field defined by

Rin/out
� =

4��in/out
� �2

Vin/out
� . �61�

We now define two parameters that take into account the
performances of the system on both conjugate observables

V = VCV
+ VCV

− , �62�

T = T+ + T−. �63�

Figure 6 shows the plot of a TV diagram. Similar to the
fidelity, there are corresponding classical and no-cloning lim-
its in the TV diagram for a teleporter or an optical memory. It
can be shown that a classical teleporter cannot overcome the
T
1 or V�1 limits. By tuning the feed-forward gain g a
classical teleporter will perform at best at the “classical
limit” curve as shown in Fig. 6. Reference �21� shows that
this classical limit can be surpassed using quantum resource
�region A�. With limited quantum resource, it is possible to
have an output state with V�1 �region B� or T
1 �region
D�. When the input state is from a pair of entangled beams,
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this performance corresponds to the preservation of Einstein-
Podolsky-Rosen �EPR� entanglement at the output �46�. With
a stronger quantum resource, T
1 and V�1 can be satisfied
simultaneously. Grosshans and Grangier �43� showed that
under these conditions the output state represents the best
cloned copy of the input. The lower right quadrant of the TV
diagram �region C� therefore corresponds to the no-cloning
regime.

We now characterize the EIT-based quantum memory in
terms of the TV diagram. When an EIT system does not
generate excess noise, the performance of the memory is
described by the linear loss limit line. Assuming that the
transmission through the EIT medium is identical for both
quadratures, it can be shown that V=1−	��� and T
=2	���. We note that the result suggests that an EIT with
linear loss will surpass the classical limit independent of
	���. This is because unlike the classical teleporter, the
output state obtained from a linear loss EIT is not being
measured throughout the transmission. Thus there is no mea-
surement quantum duty for all transmittivities. Moreover, an
input entangled state through a linear loss device will always
preserve some entanglement at the output.

However, when excess noise is introduced in the storage
process, T will decrease and V increase more rapidly. This is
the case if for example some phase insensitive amplification
is involved. Indeed we have seen in the previous section that
G−1 quanta of noise will be introduced for a lossless
memory with a gain G in order to preserve the commutation
relations of the optical field at the output. The performance
of such a lossless and amplifying memory is then described
by the ideal lossless amplifier line on the TV diagram where
one can show that V=G−1 and T=2G / �2G−1�. The opti-
mum situation will be when the gain of the amplifier is unity,
so that T=2 and V=0. As the gain increases the memory no
longer performs in the no-cloning regime and reaches region
D, where no quantum correlation exists between the input
and output states anymore, even though the signal transfer is
always larger than what a classical memory could achieve.

There are other possible sources of noise that do not am-
plify the signal. For example, any transfer between the cou-
pling beam and the probe via nonlinear processes �47� or
nonideal polarizers will contribute to excess noise. We can
introduce the excess noise phenomenologically with Vnoise,
which we can assume to be quadrature independent. The TV
performance is now given by V=1−	���+Vnoise and T
=2	��� / �1+Vnoise�. Unlike classical teleportation and in the
absence of an amplification process, 	��� can only be less
than or equal to unity. If we assume perfect transmittivity
with 	���=1, increasing excess noise produces the unity
gain curve, or unity classical transmission curve in the TV
diagram. We note that although the classical input signal is
perfectly transmitted, the excess noise leads to a degradation
on both T and V.

We will now define the parameters required to reach the
quantum regime in the case when the noise arises from am-
plification and when its origin is not related to any gain in
the medium separately. We plot these quantum regimes with
excess noise versus linear loss in Fig. 7�a�, and memory gain
versus loss in Fig. 7�b�. In particular, to define the graph

shown Fig. 7�b�, we calculated T and V using our theory for
amplification and attenuation with Eq. �33�. Then, we found
the linear gain and linear losses for which the EIT perfor-
mance crosses our benchmarks. The gain �loss� term in Fig. 7
is the total amplification �attenuation� introduced by the
memory defined as e−al and e�l, respectively. For example,
with no population exchange between ground states in EIT,
the gain is 1. These diagrams determine whether an experi-
ment is sufficiently low noise and transmissive for quantum
information storage. The no-cloning limit can only be sur-
passed when 	���
0.5 and Vnoise�1 simultaneously in
both cases. We note that similar figure of merit has recently
been developed by Coudreau et al. �48�, during the course of
this work.

Using the numerical model presented in Sec. I A, we in-
vestigate the parameters required to implement the storage of
optical information in the quantum regime. We model the
situation where a medium of length L=12 cm with an
atomic density of 1012 cm3 is used to store an optical signal
encoded on a pulse. The length of the pulse is chosen here to
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FIG. 7. �Color online� Classical, EPR and no-cloning regimes
plotted as a function of EIT linear loss and excess noise in �a�. A is
the nonclassical regime, B is the EPR regime, and C is the no-
cloning regime. These limits are drawn in �b� on a loss-gain plot
and have been derived from Eq. �33�. Contrary to the case of �a�,
with a large enough gain and sufficiently low losses in the memory,
region �d� can be reached.
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be 50 /� and the information is encoded on the quadrature
amplitudes at a sideband frequency �=0.005�. We plot the
evolution of the EIT performance as a function of the deco-
herence rates in Fig. 8. At zero decoherence rates, we note
that �T ,V� is not �2,0� because of the finite optical thickness
of the EIT medium. With the above parameters the bounds in
Eq. �54� are satisfied by only one order of magnitude which
makes the storage process nonideal even in the absence of
dephasing. The no-cloning limit is, however, still beaten in
that case. We see that the evolution of the performances of
the memory with �0 and �c is radically different as predicted
earlier. In both cases, when the decoherence rates increase, T
monotonically decreases and at some decoherence rate value
the quantum regime is no longer reached, but an increase in
�c results in a faster increase of the condition variance, as
expected. It is also important to note that for any value of the
couple ��0 ,�c� the region D is never reached, this is because
the gain term from population exchange is always associated
with loss so the EIT memory never gets within the lossless
amplifier regime.

We also wish to stress the difference between our figure of
merit and the one used in Ref. �13�. The present work con-
siders the signal to noise ratios for both quadratures at a
given sideband frequency, as well as the amount of excess
noise added to the field. The ratio between the total number
of photons between the output and input also provides a
figure of merit for a quantum memory that does not intro-

duce uncorrelated extra photons in the light field output
mode.

III. CONCLUSION

We have developed a quantum multi-mode treatment de-
scribing the storage of the quantum information encoded on
the sideband quadrature amplitudes of a light pulse using
both stochastic simulations and an analytical treatment for
EIT. The two models included the atomic noise and decoher-
ence rates of realistic experiments. In our model we have,
however, assumed an ideal three level atomic structure with
incident light fields that have constant transverse spatial in-
tensities. Transverse mode effects might have important con-
sequences on the efficiency of the memory, but are hard to
model accurately �49,50�. We also assumed a monokinetic
atomic ensemble for which light is exactly tuned on reso-
nance and also neglected the effect of the back coupling from
spontaneous emission into the light field, such as “radiation
trapping” �51�. With these assumptions, the optimum side-
band frequency for which the storage process can be effi-
ciently performed depends mainly on the optical density and
the coupling beam power chosen to set up the EIT. We have
also calculated the time-bandwidth product of the EIT
memory and have shown that it only depends on the atomic
density.

We finally proposed the use of quantum information cri-
teria to benchmark the performance of quantum memories
against an optimal classical measure-and-prepare scheme.
We have shown that for typical decoherence rates in current
experiments quantum information on the sideband quadra-
ture amplitudes can be stored for milliseconds in the no-
cloning regime, in the presence of small amounts of linear
loss and excess noise.
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APPENDIX A

We list here the stochastic equations describing the evo-
lution of the atomic c numbers in the presence of a quantized
probe field and a classical pump for one slice �z of the me-

dium. The c numbers � and � represent the operators Ê†�z , t�
and Ê�z , t�. The atomic variables �3 ,4 ,5 ,6 ,7 ,9 ,
10,11� represent the operators �̂13, ̂23, ̂12, ̂11,
̂22, ̂21, ̂32, ̂31�. The equation for 8 linearly depends on
6 and 7 via the population preservation equation 6+7
+8=1 and is therefore not computed. The noise terms nj
�for j=1 to 18� are all � correlated and follow a Gaussian
distribution, and have been normalized by 1

nA . The variables
ḡ, �0, �c, and Ec are all normalized to the spontaneous emis-
sion rate �:

FIG. 8. �Color online� TV diagrams showing the performance of
the EIT memory. �a� The evolution of its efficiency for three differ-
ent �0 values, the dotted lines representing the loci for a constant �0

and varying �c. �b� The evolution the EIT memory for three differ-
ent �c values, the dotted lines representing the loci for a constant �c

and varying �0.
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̇3 = − �1 + �̄0/2 + �̄c/2�3 + Ēc5 − ��1 − 26 − 7� + ḡ

2�
��/ḡ − 3�n1 + i ḡ

2�
��/ḡ + 3�n2 − ��4 + Ēc3��n3 − in4�

+
1

2�
��̄c + �̄0/2��1 − 7 − 6��in7 + 2n10 + in12� + 2��̄c + �̄0/2�4�n14 − in13� ,

̇4 = − �1 + �̄0/2 + �̄c/2�4 + �9 + Ēc�6 + 27 − 1� + ḡ

2�
�4 − Ēc/ḡ�n1 − i ḡ

2�
�4 + Ēc/ḡ�n2

+ �n3 + in4�/� + ��̄c + �̄0/2��1 − 6 − 7��in15 + n16�/4,

̇5 = − ��̄c + �0�5 − �10 − Ēc3 − ḡ

2�
5�n1 − in2� + ���6 − 7� + ��̄c + �̄0/2�3��n3 − in4�/2 +

1

22�
�n5 − in6�

+
1

2�
�11 + �3 + 1 − 6 − 7 + 2�̄07 + �̄c�6 + 7��in8 + 2n9 + in11� ,

̇6 = 1 − 6 − 7 − �̄c�6 − 7� − �11 − �3 −
�̄c

2ḡ�
�n1 + in2� − �9�n3 − in4�/2

+ �11 + �3 + 1 − 6 − 7
�11 + �3 + 1 − 6 − 7 + 2�̄07 + �̄c�6 + 7��n5 + in6� + �c

2�
�6 + 7��n7 − n12�

−
1
�

�11 + �3 + 1 − 6 − 7n9 + �11 + �3 + 1 − 6 − 7
�11 + �3 + 1 − 6 − 7 + �̄c�6 + 7� + �̄07�n14 − in13�

− �5�in15 + n16�/2 −
�̄c

�
�n18 − in17� ,

̇7 = 1 − 6 − 7 − �̄c�7 − 6� − Ēc�4 + 10� +
�̄c

2ḡ�
�n1 + in2� + �9�n3 − in4�/2 + 2��10 + Ēc3��n5 + in6� + �̄c

2�
�6 + 7�

��n12 − n7� +
1

2�
Ēc�4 + 10� + 1 − 6 − 7�n8 − n11� + 2��4 + Ēc11��n14 − in13� + �5�n16 + in15�/2 +

�̄c

2ḡ�
�n18

− in17� ,

̇9 = − ��̄c + �̄0�9 − �4 − Ēc11 +
1

2�
�11 + �3 + 1 − 6 − 7 + �̄c�6 + 7� + 2�̄07�− in8 + 2n9 − in11� +

1

22�
�n14

+ in13� + ���6 − 7� + ��̄c + �̄0/2�11��in15 + n16�/2 − ḡ

2�
9�in17 + n18� ,

̇10 = − �1 + �̄0/2 + �̄c/2�10 + �5 + Ēc�27 + 6 − 1� + ��̄c + �̄0/2��1 − 6 − 7��n3 − in4�/4 + �n16 − in15�/� + i ḡ

2�
�10

+ Ēc/ḡ�n17 + ḡ

2�
�10 − Ēc/ḡ�n18,

̇11 = − �1 + �̄0/2 + �̄c/2�11 + Ēc9 − ��1 − 26 − 7� + 2��̄0/2 + �̄c�10�n5 + in6� +
1

2�
��̄c + �̄0/2��1 − 6 − 7��− in7

+ 2n10 − in12� − ��10 + Ēc11��in15 + n16� − i ḡ

2�
��/ḡ + 11�n17 + ḡ

2�
��/ḡ − 11�n18. �A1�

The Stratonovitch corrections to the Ito-SDE ��t3 ,�t4 ,�t5 ,�t6 ,�t7 ,�t9 ,�t10,�t11� are
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3�

2�
,
Ēc

2�
,

��c − 1�1 − �6 − �7 + �11 + �3

4�21 − �1 − �c�6 − �1 − �c − �0��7 + �11 + �3�
,

1

4�
,

1

4�
,

��c − 1�1 − �6 − �7 + �11 + �3

4�21 − �1 − �c��6 − �1 − �c − �0��7 + �11 + �3

,
Ēc

2�
,
3�

2�
� . �A2�

They are negligibly small compared to the other variables of the Ito-SDE equations and are not used in the simulations.

APPENDIX B

In this Appendix, we list the nonzero Langevin correlations corresponding to the system of Eqs. �17�.

�F̃13�z1,�1�F̃13
† �z2,�2�� =

��z1 − z2����1 + �2�
nA

� ��� + �c + �0��̂33� + 2��̂11� − �c�̂11 − ̂22�� ,

�F̃13
† �z1,�1�F̃13�z2,�2�� =

��z1 − z2����1 + �2�
nA

� �2��̂33� − 2�� + �0 + �c��̂33�� ,

�F̃13
† �z1,�1�F̃12�z2,�2�� =

��z1 − z2����1 + �2�
nA

� ��c + �0��̂32� ,

�F̃12
† �z1,�1�F̃13�z2,�2�� =

��z1 − z2����1 + �2�
nA

� ��c + �0��̂23� ,

�F̃12�z1,�1�F̃12
† �z2,�2�� =

��z1 − z2����1 + �2�
nA

� ��� + �c + �0��̂33� + �c�̂22 + ̂11� + 2�0�11�� ,

�F̃12
† �z1,�1�F̃12�z2,�2�� =

��z1 − z2����1 + �2�
nA

� ���̂33� + �c�̂22 + ̂11� + 2�0�22�� . �B1�

APPENDIX C

In this appendix we give the transfer function quantifying
the losses and phase shifts introduced during the writing and
reading stages. In the presence of both pure dephasing and
population shuffling, the state of the atoms is given by Eq.
�41�, where the transfer function DW�k0 , t� is

DW�k0,t� =
�vg

��

 e�ik0−�„�k−k0�vg…�L − 1

ik0L − �„�k − k0�vg…L
�

� 
 e��p−i�k−k0�vg�t − 1

�p − i�k − k0�vg
� , �C1�

where ����=Re������.

The state of the light field during the recall stage is given
by Eq. �49� where the transfer function DR�z ,�0� is

DR�z,�0� =
�

�kvg

 e�i�0−��„��−�0�/vg…�t − 1

�i�0 − ����−�0

vg
��T

�
� 
 e�d�/L−i��−�0�/vg�z − 1

d� − i
�−�0

vg
L

� , �C2�

where ���k�=Re���k��. Those transfer functions account for
all the physics involved during the storage process when the
control beam is constant in time, with ground decoherence
rates and finite atomic density.
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