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Characterization of Electrostatically
Coupled Microcantilevers

Mariateresa Napoli, Wenhua Zhang, Student Member, IEEE, Student Member, ASME,
Kimberly Turner, Member, IEEE, Member, ASME, and Bassam Bamieh, Senior Member, IEEE

Abstract—The use of tightly packed arrays of probes can
achieve the much desirable goal of increasing the throughput of
scanning probe devices. However the proximity of the probes in-
duces coupling in their dynamics, which increases the complexity
of the overall device. In this paper we analyze and model the
behavior of a pair of electrostatically and mechanically coupled
microcantilevers. For the common case of periodic driving voltage,
we show that the underlying linearized dynamics are governed
by a pair of coupled Mathieu equations. We provide experimental
evidence that confirms the validity of the mathematical model
proposed, which is verified by finite element simulations as well.
The coefficients of electrostatic and mechanical coupling are
estimated respectively by frequency identification methods and
noise analysis. Finally, we discuss parametric resonance for cou-
pled oscillators and include a mapping of the first order coupled
parametric resonance region. [1253]

Index Terms—Electrostatically actuated microcantilevers,
multiprobe devices, parametric resonance, system identification.

I. INTRODUCTION

O
VER the past years, research in the field of scanning probe

technology and electromechanical devices in general, has

been characterized by two main trends, namely miniaturiza-

tion and parallelizing. Indeed, the use of array architectures of

micro probes not only significantly increases the throughput of

the device, it enhances its functionality as well, allowing for

more complex, multipurpose instruments. Examples of such de-

vices can be found in data storage and retrieval applications [1],

biosensors [2], and multiprobe scanning devices [3] to cite but

a few.

Currently, these multiprobe devices are designed with large

spacing between the individual elements [1]–[6]. This essen-

tially decouples the dynamics of the individual probes, that

can be considered to behave as isolated units. The drawback

of this configuration is, of course, a decrease in the potential

throughput of the system.

The device that we consider in this paper consists of a pair of

closely spaced microcantilevers. The extension to the case of an

array of tightly packed cantilevers is not conceptually difficult

and is obtained as a generalization of the analysis we present

here. Cantilever geometries are particularly interesting, due to
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their wide range of applications, including small force detec-

tion [7], [8], AFM, mechanical filters for telecommunication

[9]–[12], and chemical sensor arrays [13]. In our design each

microcantilever constitutes the movable plate of a capacitor and

its displacement is controlled by the voltage applied across the

plates. We have preferred capacitive actuation over other inte-

grated schemes (e.g., piezoelectric [5], [6], [14], piezoresistive

[15], [16], thermal [17]) because it offers both electrostatic ac-

tuation as well as integrated detection, without the need for an

additional position sensing device. As a matter of fact, we are

currently studying the implementation of a detection scheme for

displacement based on the measurement of the current through

the cantilevers [18].

In this paper we present a mathematical model that explic-

itly incorporates the dynamical coupling between the microcan-

tilevers. Using simple parallel plate theory and for the common

case of sinusoidal forcing, we have demonstrated [19] that the

dynamics of each isolated cantilever are governed by a Mathieu

equation. Here we show that the close spacing and the fact that

the cantilevers are connected to a common base introduces a

coupling in their dynamics, which is both electrostatic and me-

chanical. In particular, we show that the system is governed by

a pair of coupled Mathieu equations. We produce experimental

evidence that validates the mathematical model proposed, in-

cluding a mapping of the first instability region of the Mathieu

equation. The natural frequency of each isolated beam and the

electrical and mechanical coupling coefficients are determined

from the identification of the experimental data. These results

are also validated by finite element simulation methods.

The paper is organized as follows. In Section II, we develop

the mathematical model of the electrostatically actuated can-

tilever pair. In Section III, we present the experimental results

that validate the model. In the linear regime of operation, we

identify from experimental data the coefficients of mechanical

and electrostatic coupling. We prove that parametric resonance

can be induced in coupled oscillators and include the mapping

of the first instability region of the coupled Mathieu equation.

In Section IV, finally we present our conclusions.

II. MODEL DESCRIPTION

Fig. 1 shows the geometry of our device. It consists of two

microbeams connected to the same base, each forming a mi-

crocapacitor, with the second plates (rigid) placed underneath

the (movable) cantilevers visible in the picture. The vertical dis-

placement of each cantilever can be independently controlled by

applying a voltage across the plates. Though each cantilever is

1057-7157/$20.00 © 2005 IEEE
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Fig. 1. SEM micrograph of the device. The insets show details of the
mechanical connection to the base and between the cantilevers.

independently actuated, its dynamics are influenced by the pres-

ence of the other cantilever. More precisely, the coupling is both

mechanical, because the microbeams are connected to the same

base, and electrostatic, due to the fringing fields generated by

the capacitor nearby.

The force acting on each microbeam consists of several com-

ponents, and the overall linearized equation of motion for the

vertical displacement , of each cantilever can be

written as

(1)

where and are respectively the normalized damping co-

efficient and the natural resonant frequency of the th cantilever.

Here, expresses the electrostatic force between the capac-

itor plates of the -th cantilever, while and are re-

spectively the mechanical and electrostatic coupling forces. By

using simple parallel plate theory, the linearized expression of

can be shown to be

where is the permittivity in vacuum,

is the gap between the electrodes, is the area of the capacitor

plates, their mass, and is the voltage applied.

The mechanical coupling force , which will turn out to

be relatively large, originates from the fact that the cantilevers

are connected to the base through an overhang as shown in

Fig. 2.

For we have adopted a lumped-parameters description,

and modeled the mechanical coupling force as a spring like

force, proportional to the difference in the vertical displacement

of the cantilevers

(2)

The value of is a function of both the lateral distance between

the probes and the thickness of the overhang. Intuitively, one

expects this value to be higher as the lateral distance decreases

and the thickness increases. However, the derivation of the exact

dependence of from these parameters requires to solve the

Fig. 2. Micrograph showing the overhang between anchor and cantilevers
base, responsible for the mechanical coupling.

Fig. 3. Schematic of the electrostatic coupling model.

complex PDEs derived from a continuum mechanics description

of the problem.

As far as the electrostatic coupling is concerned, we consider

that the voltage applied to each capacitor results in a charge

induced on each cantilever, that can be expressed as [20]

The interaction between these induced charges is described via a

point charge model. The idea is shown schematically in Fig. 3.

Each cantilever is represented as a charged particle and the

mutual interaction is described by Coulomb’s law

We assume that the lateral stiffness of the cantilevers is large

enough to prevent any lateral motion, so that the only compo-

nent of the force that really affects their behavior is the vertical,

whose first order approximation is

where the coefficients have been scaled by the mass, to

be consistent with (1).
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For the special case of , and after few alge-

braic steps, the equation of motion for the pair can be written,

in compact vector form as

where , ,

, ,

, and ; or equiva-

lently, introducing the vector , and

defining the appropriate matrices

(3)

where represents a small perturbation parameter. The results

presented in the next Section will justify this notation.

Equation (3) represents a system of periodic differential equa-

tions, which we refer to as vector Mathieu equation, since its al-

gebraic structure is reminiscent of the famous Mathieu equation.

In the absence of coupling, they reduce to a pair of independent

scalar Mathieu equations, which indeed describe the dynamics

of an isolated beam [19]. In the next section, we provide exper-

imental data to validate the model proposed and demonstrate

how the coupling, often considered a drawback, can instead be

advantageously exploited from an engineering point of view.

III. EXPERIMENTAL VALIDATION OF THE MODEL

The device we have used in our experimental setup consisted

of two highly doped polysilicon can-

tilevers, fabricated using the MUMPS/CRONOS process [21],

with a gap between the electrodes of about 2 and separated

by a distance of 5 (see Fig. 1). The mechanical response of

the cantilevers was tested in vacuum , using laser

vibrometry [22] to measure displacement and velocity near the

free end of each cantilever, when electrostatically driven with

different ac voltage signals.

More precisely, the excitation voltage for driving the de-

vices being tested was generated by a power source (Hewlett

Packard, HP3245A), while the oscillation velocity and position

were measured at the free end of the cantilever using a laser

vibrometer (Polytec, OFV 3001, OFV 511). The laser beam

is focused onto the device using an optical microscope, which

can be positioned over the sample via a computer controlled,

mechanical x-y positioning mechanism. The measurement is

based on interferometry, in which the idea is to split the laser

beam into two (coherent) beams: one that impinges on the

device tested, the other on a reference target. The relation be-

tween the difference in phase and the difference in path length

traversed by the two beams is then translated into displacement

of the beam. Due to the relatively high working frequency

and the small displacement of the cantilevers (

and ), we worked with velocity measurements,

which for high frequencies are more reliable and accurate than

position measurements [23].
The results of these measurements were recorded and ana-

lyzed with a signal analyzer (Hewlett Packard, HP89410A) and

Fig. 4. Schematic of the system transfer functions.

oscilloscope (Tektronics, TDS 420A). The instruments were in-
terfaced to a PC, where data could be stored for further analysis.

A. Linear Regime of Operation

The first set of experiments was performed to characterize the

system in its linear regime of operation, that is for small input

signals . When the amplitude of the voltage applied

in (3) is small, the time-varying coefficients can be neglected

and the device is described by a system of second order ordinary

differential equations

(4)

Because of the coupling, the vibration of each cantilever de-

pends both on its input and on the voltage applied to the other

cantilever. Therefore each cantilever is characterized by two

transfer functions, that describe how each input affects its dy-

namical behavior. Let Gij denote the transfer function from the

voltage input applied to the th cantilever to the velocity output

measured on the th cantilever, when the other voltage input is

set to zero (see Fig. 4 for a schematic representation). The ana-

lytical expression of these transfer functions can be found to be

(5)

where , , ,

,

. Fig. 5 represents the ex-

perimental and fitted data of these frequency responses. Notice

the presence of two peaks in the frequency response of each

single cantilever, a consequence of coupling, predicted by (5)

as well. These frequencies correspond to the so-called normal

modes of the system and their values coincide approximately to

and , respectively. It can be proved that the oscillation

of the microbeams is in phase for and in antiphase for

[24].

By fitting our model to the experimental data, as shown in

Fig. 5, we get that the natural resonant frequencies of the iso-

lated beams are, respectively, and
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Fig. 5. Magnitude of the frequency responses of the coupled cantilevers with different input/output combinations. The circles represent experimental data; the
solid line the fitted data.

, while the quality factors turn out to be

. The difference in the values of and , in spite of the

fact that the beams have the same geometry and material, is to

be attributed to the asymmetry of the anchor in the point where

it connects to the beams, visible in Fig. 1 and also in the Ansys

model of Fig. 8.

1) Identification of Mechanical and Electrostatic Coupling

Coefficients: The coefficient of mechanical coupling has

been estimated using the power spectral density (PSD) of the

vibrations induced by thermal noise. By setting to zero both

inputs, the electrostatic coupling is eliminated and the effect of

can be singled out. More precisely, the location of the peaks

in the frequency responses is in this case solely determined by

. Fig. 6(c) and (d) shows the experimental characterization

of noise, that as expected has a gaussian distribution. From

stochastic filtering theory it is known that the PSD of the

output of a linear system excited by random noise is given

by

(6)

where is the PSD of the input noise. In our case, since the

system has two inputs, and the noise on each of them is mutually

independent, (6) becomes

(7)

where the last equality follows from the fact that and have

the same stochastic description. Since the PSD of thermal

noise is constant, (7) offers a way to extrapolate the value of

from the value of the normal modes. Parts a), b) of Fig. 6 show

the comparison between measured and fitted data after (7). Note

that the region between the two peaks is below the noise level

of our instrumentation, hence a good fit cannot be obtained.

By examining the numerator of and in (5), one can

notice the presence of a resonant zero, visible also in Fig. 5 as a

dip in the magnitude plot of these functions. This zero frequency

is called antiresonance [24], and its value is approximately equal

to . This expression highlights that its ex-

istence is due to the mechanical and electrostatic coupling, and

its location changes with the amplitude of the driving voltage.

This property gave us a way to estimate the values of the elec-

trostatic coefficients and , as shown in Fig. 7(a) and

(b). As a matter of fact, the shift in the zero location depends

linearly on the voltage applied, and the coefficient of propor-

tionality is given by for and for . In a similar

fashion, the coefficient was estimated from the shift in the

poles with the applied ac voltage. Finally, the coefficient

was estimated by applying the same voltage to both inputs. In

this case the system is specified by only two transfer functions,

whose analytical expression can be easily derived from (4). In

particular, the numerator of the transfer function of cantilever 1

turns out to be

therefore also in this case the location of the antiresonance is

related to the changes in amplitude of the ac voltage applied .



NAPOLI et al.: CHARACTERIZATION OF ELECTROSTATICALLY COUPLED MICROCANTILEVERS 299

Fig. 6. (a) and (b) Fit from PSD of thermal noise to determine�. Circles denote experimental data, the solid line is the fit. (c) and (d) Experimental characterization
of noise distribution (10 samples of the noise signal at the vibrometer output).

It is worth noting that the equivalent stiffnesses corresponding

to these electrostatic coupling parameters are quite large, indi-

cating significant coupling in this system, but two orders of mag-

nitude smaller than the mechanical stiffness of the uncoupled

cantilever, justifying the notation of (8), where they are repre-

sented as a perturbation to a time invariant equation.

2) Finite Element Simulations: We have performed some

simulations using finite element methods to verify the exper-

imental findings. The pair of cantilevers has been modeled

according to the actual physical configuration, as shown in

Fig. 1. In particular, both the anchor and the overhang which

connects the two beams have been explicitly incorporated

in the model. The geometry generated in Ansys is shown in

Fig. 8(a). The values of the first two modes, found by modal

analysis using the element Solid92, match well the values of

the two peaks in the frequency response found experimentally.

Fig. 8(b) and (c) shows the Ansys model corresponding to the

isolated cantilevers. These models have been used to determine

the resonant frequency of the uncoupled cantilevers. Table I

presents the value of some significant parameters obtained by

identification and compares it with the value obtained by finite

elements simulation. The agreement is quite satisfactory.

As the amplitude of the driving signal increases, so do the

values of and and this linear time-invariant approximation

of the system is no longer appropriate. In order to predict and

explain the rich dynamics that the system shows, we have to

return to the original (3).

B. Parametric Resonance

Parametric resonance is a form of mechanical amplification

that can be induced in systems having periodically varying pa-

rameters. In this mode of operation, large responses can be gen-

erated even when the excitation frequency is far away from the

system’s natural frequency. The interest from an engineering

point of view for this phenomenon comes from the fact that it

can greatly enhance the sensitivity of microdevices, which as

their size reduces, find themselves operating closer to noise level

[25].

In [19] we showed that a single electrostatically actuated mi-

crocantilever can exhibit parametric resonance, whose existence

in MEMS devices was first demonstrated in [26]. In this section

we demonstrate that this phenomenon persists also in the case

of coupled cantilevers [27], [28].

Ignoring damping and external excitations, (3) can be written

as

(8)

which can be considered the vector extension of a standard

Mathieu equation. Parametric amplification depends on the

stability properties of (8), and more precisely on the stability of

its periodic solutions [29]. It can be shown that the stability of

these trajectories is equivalent to the stability of the equilibrium

points of the discrete time-invariant system having as its state

matrix the state transition matrix of (8) computed at the period,
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Fig. 7. Experimental estimation of the electrostatic coefficients. K are the coefficients of the electrostatic coupling force, F ; K is the coefficient of the
attractive force, F , between the cantilever and its ground plate.

Fig. 8. Ansys model of the cantilever pair (a) and of the single cantilevers (b)
and (c).

TABLE I
COMPARISON BETWEEN THE VALUE OBTAINED BY TESTING AND FINITE

ELEMENT SIMULATIONS OF SOME RELEVANT PARAMETERS OF THE MODEL

Fig. 9. Schematic representation of the conditions corresponding to a possible
loss in stability for two coupled Mathieu equations.

. In the following, we show that for in (8) the

origin is a strongly stable (for a Definition see [29, p. 117])

equilibrium point of . Then, by definition, the ‘perturbed’

solution, obtained for small values of , will be stable as well.

For , (8) is time-invariant and describes a two-dimen-

sional harmonic oscillator

(9)

The eigenvalues of the corresponding to this equation

are given by

(10)

where the ’s are the eigenvalues of a state space representation

of (9) and are purely imaginary pairs, since there is no damping.

As a consequence, the ’s are on the unit circle. By virtue of

Liouville’s theorem, the product of the ’s, for any value of , is

always equal to 1. Together, these two facts imply that the origin

is strongly stable. As a matter of fact, these conditions constrain

the eigenvalues of the perturbed state transition matrix to move

in complex conjugate pairs along the unit circle, and therefore
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Fig. 10. First region of coupled parametric amplification, with the electric signal applied to one cantilever only. The three tongues correspond respectively to
(a) ! = 2w ; (b) ! = 2w ; (c) ! = w + w . Picture (d) shows the exponential growth of the output inside the region of parametric amplification.

describe stable dynamics. The only cases when the perturbed

system can have unstable eigenvalues, is when at least one pair

of ’s overlaps and is equal to 1, or when the two pairs of

’s overlap, as represented schematically in Fig. 9. In fact, in

these cases the ’s can leave the unit circle, still satisfying the

condition on their product.

This loss of stability corresponds to the cases ,

and , . It is not difficult to prove

that

where the ’s are the eigenvalues of , and correspond

roughly to the resonant frequencies and , defined in

Section III-A.

Hence, in terms of frequency of excitation, parametric reso-

nance can occur when

(11)

It follows that, similarly to the case of a scalar Mathieu equa-

tion, the – parameter space can be divided into tongue-shaped

parametric/nonparametric regions. The values in (11) corre-

spond to the tips of these regions. More precisely, according to

(11) each region of parametric amplification (i.e., each ) for

two coupled Mathieu equations is composed of four subtongues.

In fact, in [30], [31] the authors proved that

is never a critical value, i.e. cannot excite a parametric behavior.

Note that the presence of a damping term, whose existence we

have neglected so far, has the effect of shifting the tongues up-

wards, so that there is a critical voltage amplitude above which

parametric resonance can be induced [32], but does not affect

the stability analysis.

Fig. 10 shows the experimental mapping of the first region

for our pair of cantilevers, where in terms of physical

parameters, corresponds to the input voltage amplitude .

During these experiments one of the inputs was set to zero, while

the other was set to . Which input is

selected is in fact inconsequential, given the symmetry of the

device, and the results can be reproduced using either one of

them. Note that when the input is a square-rooted sinusoid, (11)

needs to be modified, to give and

. Fig. 10(a) and (b) shows the cases corresponding to

the driving frequency being varied around a) , (b) ,

and (c) .

During the parametric amplification regime the beams ex-

hibit an oscillation that is bounded by the system nonlineari-

ties [32]. In fact, for large oscillation amplitudes, both the linear

spring model and the electrostatic force previously introduced

need to be corrected by adding cubic terms [33], [34]. Hence,

(3) becomes

where the matrix , diagonal, describes the effective cubic

stiffness of each beam, which includes both electrostatic and

structural contributions. What we observe when driving the can-

tilever in parametric resonance regime is: in case a) and b) a sub-

harmonic 2:1 oscillation at half the frequency of excitation; in

case c) an oscillation having both frequency components. Note

also that during the transition from nonparametric to parametric

region, the response shows, as expected, a characteristic expo-

nential growth (see Fig. 10(d)) [32].

Fig. 11 offers a comparison of the frequency response of a

cantilever around the parametric resonance region and above the

critical driving voltage. Part a) refers to an isolated cantilever
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Fig. 11. Frequency response above critical driving voltage: (a) single
cantilever and (b) coupled cantilevers in region a) of Fig. 10. Both cantilevers
show qualitatively the same behavior, in any one of the three resonant regions.

(data from [19]), part b) to coupled cantilevers and to region a)

of Fig. 10. For part b) the data shown corresponds to only one

region and only one of the two cantilevers, because qualitatively

they show the same behavior, in all three resonant regions. Note

also that the flattening of the oscillation amplitude is due to the

cantilever touching the substrate. In both cases, uncoupled a)

and coupled b), the data was collected by applying a square

rooted sinusoidal input and sweeping its frequency from low to

high (“ ” points) and from high to low (“ ” points), as indicated

by the arrows.

What we notice is that when sweeping the frequency from

low to high, in both cases, the entrance to the parametric region

is marked by a sharp jump in the amplitude of the cantilevers

oscillation. Since this transition occurs always at the same fre-

quency, related to the natural frequency of the system, the phe-

nomenon has potentially many applications, ranging from me-

chanical filters to extremely sensitive mass sensors. In the case

of two cantilevers, moreover, one has the advantage of having

three parametric regions and therefore the option of selecting

the frequency range where to work. Note also that the tongues

can be placed as desired, at the design stage of the device, by

tuning the mechanical coupling coefficient.

Inside the parametric region, as the driving frequency in-

creases, the periodic subharmonic solution is stable and shows

decreasing amplitude in case a), and increasing amplitude in

case b). We point out again that the flattening of the output is

an experimental artifact, due to the fact that the cantilever is

touching the substrate. Upon exiting the region, while in case a)

the oscillation is reduced to zero, in case b) the periodic solution

remains stable and its amplitude virtually keeps increasing,

untill it falls back to zero. The location of this second jump is

not predictable and depends on the amplitude of the frequency

increments. If we invert the process and start decreasing the

frequency, the output amplitude starts to increase and keeps

increasing, in both cases, even after leaving the parametric

region. Again, this large periodic solution eventually collapses

to zero at some unpredictable time.

From a dynamical systems point of view, the different be-

havior in Fig. 11(a) and (b) corresponds to a different phase

portrait. In particular, while the single cantilever has a bistable

region only on the left side of the tongue, where both the peri-

odic and the trivial solutions are stable, the coupled cantilevers

have a bistable region on both sides of the tongue. Interestingly,

a single cantilever exhibits a behavior similar to what depicted

in Fig. 11(b) when subject to both harmonic and parametric ex-

citation [35], for instance, when excited by a sinusoidal input

having a small dc offset. Since the electrostatic force depends

on the square of the voltage, this implies that the cantilever is

excited both at the driving frequency and at , implying the

coexistence of both harmonic and parametric forcing.

For the case of two cantilevers this behavior can be explained in-

tuitively by the following approximate argument. From (8) de-

fine and , and consider the case of a

square rooted sinusoidal input: the equation of motion are given

by

(12)

(13)

where , , , ,

, . Ignoring for the moment their

right-hand sides, (12) and (13) represent a pair of uncoupled,

standard Mathieu equations. Hence, their parametric regions of

the first order are obtained for and respec-

tively, which correspond roughly to the peaks of the frequency

responses in Fig. 5 and to the values obtained by the previous

analysis. From the definition of we can infer that and

oscillate in phase at , when excited at : hence

on the RHS of (12) acts as a harmonic excitation, justifying

the phase portrait observed experimentally. A similar argument

can be repeated for (13), where oscillates with opposite phase

from and provides the harmonic excitation.

IV. CONCLUSION

In this paper, we have presented a mathematical model for

a pair of electrostatically actuated microcantilevers, which ex-

plicitly incorporates their dynamical coupling. In our design the

cantilevers, which are connected to a common base, constitute

the movable plate of microcapacitors and their displacement

is independently controlled by the voltage applied across the
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plates. In the case of sinusoidal excitation, we have proved that

their dynamics are regulated by a pair of coupled Mathieu equa-

tions. We have provided experimental validation of the mathe-

matical model, including a mapping of the first region of para-

metric amplification. From this work, many sensing applications

can be realized, utilizing the sharp transitions from nonresonant

to resonant state, which are present in the parametrically res-

onant state. Filters and sensors using this mechanism are being

explored [11], [12]. In addition, an extension to multi-cantilever

arrays is also being investigated. This result offers designers tan-

gible guidelines needed to implement novel parametric devices.
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