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Abstract

The aim of this paper is threefold. Firstly, to present a representative set of large-scale weather regimes for each month of 

the year over the Euro-Atlantic region and compare them amongst three commonly employed global reanalyses. Secondly, 

to measure the impact of the weather regimes on near-surface wind speed variability. Lastly, to validate the regime’s abil-

ity to reconstruct monthly wind speed anomalies. Wind speed reconstruction provides critical information on the role of 

weather regimes as source of predictability of wind speed, by identifying areas where wind is poorly or highly influenced 

by weather regimes as a whole. Conclusions are extracted about the adequacy of weather regimes to characterize local wind 

speed variability over Europe.

Keywords Weather regimes · Sources of predictability · Reanalysis intercomparison · Wind speed · Wind energy · Climate 

services

1 Introduction

Synoptic climatology traditionally classifies the complex 

dynamics of large-scale atmospheric circulation in a few 

recurrent and quasi-stationary (persistent) patterns called 

’weather regimes’ (WRs). They result from the interaction 

between synoptic-scale and planetary-scale atmospheric 

waves (Ghil and Robertson 2002), as the atmosphere tends to 

persist in the same WR for 3–7 days before transitioning to 

a different one (Fereday 2017). WRs were extensively used 

to investigate atmospheric variability (Philipp et al. 2010; 

Hannachi et al. 2017), particularly at mid-latitudes in the 

Euro-Atlantic region (Yiou and Nogaj 2004; Peña-Angulo 

et al. 2016; Raymond et al. 2018), North America (Coleman 

and Rogers 2007; Roller et al. 2016; Vigaud et al. 2018) and 

Pacific (Wilson et al. 2013; Lorrey and Fauchereau 2018).

Different assumptions should be considered in the 

assessment of the WRs. The optimal number of WRs to 

describe the atmospheric circulation strongly depends on 

the variable(s), classification method, spatial domain and 

period chosen, and often vary from 2 to 10 WRs (Casado 

et al. 2009). WRs are usually defined by classifying a circu-

lation variable such as geopotential height, sea level pres-

sure (SLP) and/or wind components. Most of the studies on 

WRs in the Euro-Atlantic region focus on the winter season 

(Fil and Dubus 2005; Ferranti and Corti 2011; Vrac et al. 

2014; Ferranti et al. 2015; Thornton et al. 2017), because in 

this period WRs are more stable in time (more persistent), 

and have a stronger influence on local climate (Cassou et al. 

2004).

In literature, four optimal wintertime (DJF) WRs are iden-

tified in the Euro-Atlantic region (Yiou et al. 2008; Cassou 

et al. 2004; Ferranti et al. 2015). Two of them are consistent 

with the spatial patterns of the two opposite phases of the 

North Atlantic Oscillation or NAO (Trigo et al. 2004; Hur-

rell and Deser 2009), and are therefore called “NAO+” and 

“NAO−” regimes. A third WR is called “Blocking” (BL), 

since it shows a strong and positive anomaly centred over 

Scandinavia and a weaker negative anomaly over the Atlan-

tic Ocean, similar to the atmospheric flow during blocking 
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events in Europe (Tyrlis and Hoskins 2008). The fourth WR 

is called “Atlantic Ridge” (AR), as it is represented by a 

positive anomaly over the Atlantic Ocean and a negative one 

over Scandinavia, similar to the negative phase of the East 

Atlantic pattern (Barnston and Livezey 1987).

WRs classifications can also be defined in summer (Cas-

sou et al. 2005), albeit with different patterns from winter 

and usually employing geopotential height instead of SLP 

to reduce spatial noise (Guemas et al. 2010; Quesada et al. 

2012). In spring and autumn, the higher spatial variability of 

the atmospheric circulation makes more difficult to identify 

a set of persistent WRs (Yiou et al. 2008).

Studies comparing how different reanalyses characterize 

large-scale atmospheric circulation are typically restricted to 

regions with few observations, such as the tropics or the Arc-

tic (Kumar et al. 2013; Nygård et al. 2016). Well-observed 

regions, such as the extratropical region of the Northern 

Hemisphere, are less studied (Carvalho et al. 2014), since it 

is assumed that differences between reanalyses are small or 

negligible (Dell’Aquila et al. 2016). Recently, a comprehen-

sive reanalysis comparison of WRs over Europe in winter 

was published by Stryhal and Huth (2017).

WRs are often classified at seasonal or annual time scale, 

using all the days corresponding to a specific season or year 

(Neal et al. 2016; Grams et al. 2017; Fereday 2017). Plenty 

of classifications are available in literature and no one was 

found to be superior to the others (see the comprehensive 

review of Hannachi et al. 2017)

Many users in various sectors of the society (renewable 

energy, agriculture, insurance, health, etc.) ask for precise 

regime classifications, tailored to their needs. They are inter-

ested in knowing and understanding the impact of WRs on 

variables or indicators related to their activities, which can 

vary substantially from one month to the next. Changes in 

WR monthly frequencies, in fact, often determine most part 

of the variation of monthly anomalies of climate variables 

such as sea surface temperature (Polo et al. 2013), precipi-

tation (Beck et al. 2007) or wind speed (Couto et al. 2015) 

over the Euro-Atlantic region. For this reason, WRs can be 

useful in many wind energy applications. Exceptions can be 

found in those areas or periods in which large-scale circula-

tion is less related to local winds, such as in regions with 

complex orography (Salameh et al. 2009) or in the summer 

season (Dünkeloh and Jacobeit 2003).

Another approach to characterize the variability of 

large-scale atmospheric circulation is represented by the 

leading Empirical Orthogonal Functions (EOFs) of any 

variable describing the large scale flow, like geopotential 

height or sea level pressure. Like WRs, also the EOFs refer 

to recurring and persisting large-scale circulation patterns 

(Wallace and Gutzler 1981; Hurrell 1996; Tippett et al. 

2008; Gonzalez-Reviriego et al. 2015). However, they 

typically last for several weeks or months and span vaster 

geographical area than WRs (Thompson and Wallace 

1998). WRs can also be defined by clustering the leading 

EOFs (Fereday et al. 2008). Moreover, the EOFs are sym-

metric, as the centres of action of both the positive and 

negative phases are in the same location but with opposite 

sign, while the centres of the WRs are in different posi-

tions, as the k-means analysis seeks the most steady states 

(Barrier et al. 2014). Finally, WRs can also be defined by 

clustering the leading EOFs (Fereday et al. 2008); in this 

case, WRs simply depict the interplay between the EOFs 

phases (Zubiate et al. 2017).

The ongoing interest of the scientific community in 

understanding the mechanisms driving monthly wind 

speed variability resulted in the publication of several 

studies. Couto et al. (2015) detected a strong association 

between some WRs and sudden variations of the wind 

power production in Portugal, aiming at developing a diag-

nostic warning system. Kempton et al. (2010) analysed 

the main synoptic systems transiting the U.S East Coast 

to determine the optimal configuration of offshore wind 

sites, which minimize wind power fluctuations. Grams 

et al. (2017) performed a similar study for the European 

region, exploring in detail the relationship between wind 

power generation and WRs defined at annual time scale, 

demonstrating that Euro-Atlantic WRs determine impor-

tant local wind electricity surpluses and deficits, which 

can last up to a few weeks, seriously limiting the adoption 

of wind energy as a major source of power generation. 

Finally, Zubiate et al. (2017) measured the sensitivity of 

winter wind speed to the three leading EOFs in the Euro-

Atlantic region, identifying where wind speed variability 

is influenced by the leading EOFs.

Unlike many previous studies, the main goal of this paper 

is not that of identifying a small set of WRs for the Euro-

Atlantic region with almost constant spatial patterns through 

all the year. Instead, it consists in generating a representa-

tive set of WRs to study their impact on 10-m wind speed, 

month by month. This work also tries to identify regions 

that, due to their location and to their link with WRs, might 

play a strategic role in future renewable energy generation. 

It complements the study of Grams et al. (2017), by employ-

ing a monthly-based WR classification, and with a different 

number of WRs and reanalysis choice.

The paper is organized as follows. Section 2 introduces 

the three reanalysis datasets employed and describes the 

methodology to generate the monthly WRs. Section  3 

exhibits the main results of the study in terms of WRs pat-

terns and frequencies for different reanalyses, their impact 

on wind speed and their skill in reconstructing wind speed. 

The optimal number of WRs, the main differences between 

WR classifications in literature and the choice of the more 

appropriate reanalysis for operational products are discussed 

in Sect. 4. Finally, conclusions are drawn in Sect. 5.
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2  Data and methodology

2.1  Data and pre‑processing

This study employs daily-mean fields of SLP and 10-m 

wind speed from three gridded global reanalysis datasets: 

JRA-55 (Kobayashi et al. 2015), ERA-Interim (Dee et al. 

2011) and NCEP-NCAR Reanalysis 1 (Kalnay et al. 1996, 

henceforth NCEP). Each dataset has a different spatial 

resolution: 1.25◦ (JRA-55), 0.75◦ (ERA-Interim) and 2.5◦ 

(NCEP). For a detailed characterization of 10-m wind 

speed, see Marcos et al. (2018). For a comparison of the 

uncertainty affecting near-surface wind speed trends from 

different reanalyses, see Torralba et al. (2017b). Usually, 

100-m wind speed is preferred to 10-m for wind power 

studies, as it corresponds to the height of a typical wind 

turbine. However, neither of the three chosen global rea-

nalysis provides wind data directly at 100-m height. Wind 

data at this height can still be inferred by interpolating 

wind reanalysis data at nearby levels, but these approaches 

require stability assumptions. For simplicity, this work is 

based on 10-m wind speed.

Energy companies are often interested in knowing the 

observed daily sequence of weather regimes in the region 

surrounding their wind farms for the previous month, 

along with the impact of each regime on wind speed, to 

be able to attribute the months with a lower than normal 

energy production to atmospheric dynamics, rather than 

to human causes. In this case, reanalysis data need to be 

updated frequently, to be able to provide the product to 

the company within the shortest period possible, typically 

once for month. Since ERA-Interim reanalysis is updated 

once every 3–4 months, it is not possible to develop a 

monthly product based on the data of the previous month, 

but only on the data of 3–4 months before the current one, 

which is usually too late to be useful to the companies.

As ERA-Interim is not delivered in real-time, the alter-

natives for the development of tailored products for the 

users, consist in completing the ERA-Interim sample with 

the ECMWF operational analysis, which is available in 

near real time, or in using a different reanalysis like JRA-

55 or NCEP, both available with a delay of a few days only. 

However, the NCEP dataset is coarser than the JRA-55 

reanalysis ( 2.5◦ instead of 1.25◦ ), so the latter dataset is 

usually preferred. For this reason, in this work only the 

results for the JRA-55 are shown, along with the com-

parison with the results for the other two reanalyses. Indi-

vidual results for ERA-Interim and NCEP can be found in 

the supplementary material.

The original resolution of the reanalyses was employed 

for all analyses, including k-means. Only two measures 

are based on interpolated data: the spatial correlations 

between regime anomalies (“pattern correlations”) and the 

ones between wind speed anomalies, to be able to compare 

the WR patterns between reanalyses with different resolu-

tions. For this purpose, a bilinear interpolation of ERA-

Interim and JRA-55 was performed to the same resolution 

of NCEP data, the one with the lowest resolution ( 2.5◦).

Data from 1981 to 2016 (36 years) for the Euro-Atlantic 

region ( 27
◦N–81

◦ N, 85.5◦W–45◦ E) are used for classify-

ing WRs. Daily-mean data were computed as an average 

of 6-h data (00, 06, 12 and 18 UTC). Daily anomalies for 

both SLP and 10-m wind speed were computed from the 

daily climatology of the respective dataset for the period 

1981–2016. Anomalies were filtered with a LOESS poly-

nomial regression with a degree of smoothing � = 0.35 

optimized to remove the annual cycle and smooth out the 

short-term variability of the climatological estimates (Mahl-

stein et al. 2015). Before classifying the WRs, daily gridded 

SLP anomalies were weighted by the cosine of the latitude, 

in order to ensure equal area weighting at each grid point. 

Daily 10-m wind speed was used to measure the impact of 

the monthly WRs on wind.

2.2  Weather regimes

Several methodologies were developed for classifying WRs 

(Philipp et al. 2010). The most popular methods are based 

on non-linear clustering algorithms (Esteban et al. 2006; 

Fereday et al. 2008; Huth et al. 2008; Sanchez-Gomez et al. 

2008; Dawson et al. 2012). Between all the clustering tech-

niques, one of the most commonly employed in the literature 

is the k-means algorithm (Hartigan and Wong 1979), which 

was previously shown to be useful in identifying WRs (Rob-

ertson and Ghil 1999; Stahl et al. 2006; Boé et al. 2007).

The k-means algorithm was chosen in this study to obtain 

the monthly WRs classification of daily SLP anomalies over 

the Euro-Atlantic region. This algorithm minimizes the sum 

over all clusters of the within-cluster SLP variance (V). Its 

main caveat is that the optimal number of clusters k is not 

defined a priori. For this reason, the ’elbow criteria’ was 

chosen for selecting the lowest number of clusters that mini-

mize V (Kodinariya and Makwana 2013). The optimal num-

ber of clusters is found when V almost stops decreasing with 

the increase of k.

In this work, for each individual reanalysis and month of 

the year, a set of k = 4 preferred WRs was generated by the 

k-means, corresponding to the more robust WR partition dur-

ing winter months (Michelangeli et al. 1995). Due to the ran-

dom process employed by the k-means cluster algorithm to 

identify the four optimal regime centres, the average monthly 

frequency of occurrence associated with each regime is not 

uniquely determined, but can vary of a few percent points 

when repeating the cluster analysis, because of the different 

position of the cluster centroids. SLP daily anomalies can also 
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be filtered prior to the clustering to reduce their dimensions, 

by performing a principal component analysis (PCA, see Pre-

isendorfer 1988). In this work, PCA filtering was not applied, 

to take into account also the more extreme SLP values.

The intercomparison of the WR classifications obtained 

from the chosen reanalyses was performed by different met-

rics. As each reanalysis is characterized by a slightly different 

daily WR time series, the first metric simply counts the number 

of days when the pair of chosen reanalyses associates different 

WRs to the same day (Stryhal and Huth 2017). This number 

was converted to a frequency by dividing it for the total num-

ber of days in the month considered during 1981–2016. The 

second and the third metrics measure respectively the spatial 

and temporal correlations between two correspondent WR pat-

terns or WR monthly frequencies of pairs of reanalyses during 

1981–2016.

The impact of a monthly WR on wind speed was measured 

by averaging the normalised wind speed anomalies for all days 

associated to a given WR and month. The normalised anoma-

lies were obtained by dividing the daily wind speed anomalies 

by the climatological (monthly) average wind speed at a given 

point. This allows to better discern the impact over land, where 

wind speed is usually lower (in absolute value) than over the 

sea. A two-tailed Student’s t-test was performed to assess the 

level of significance of the wind speed impact figures.

2.3  Reconstructed wind speed by WRs

To assess the effectiveness of the WRs in describing the 10-m 

wind speed, the mean daily wind speed was reconstructed. The 

reconstruction has been performed in a leave-one-out cross-

validation framework, in which the year to be reconstructed is 

excluded from the estimation of the observed impact of WRs 

on 10-m wind speed. Firstly, the observed impact Ir,m,y(lat,lon) 

of a given regime r in month m and year y on wind speed 

anomalies was measured by averaging the normalised wind 

speed anomalies w
r,m

(d, lat, lon) for all days d associated to 

regime r and month m during 1981–2016, excluding year y:

with N the number of days belonging to regime r and month 

m during 1981, ..., y-1, y+1, ..., 2016.

Subsequently, WRs were employed to reconstruct the 

mean monthly wind speed anomaly Wm,y(lat,lon) as the lin-

ear combination of the WR monthly impact Ir,m,y and the WR 

frequencies:

(1)Ir,m,y(lat, lon) =

N
∑

d=1

1

N
wr,m(d, lat, lon),

(2)Wm,y(lat, lon) =
1

Nmy

4
∑

r=1

Ir,m,y(lat, lon) ⋅ Nrmy

being Nmy the total number of days in month m and year 

y and Nrmy the number of days belonging to the weather 

regime r, month m and year y.

Finally, to assess the wind speed reconstruction, recon-

structed mean monthly wind speed anomalies W were com-

pared to the observed ones over period 1981–2016 with 

four different metrics. The first one is the Pearson’s correla-

tion between the reconstructed and observed time series. 

It ranges from − 1 to 1, values closer to 1 indicate that the 

reconstructed wind speed is similar to the observed one. 

The second metric is the standard deviation ratio between 

the reconstructed and observed series and it ranges from 

0 to 1, with values close to 1 indicating a high similarity 

between the reconstructed and observed wind speeds vari-

ability. The third one is the Pearson’s correlation between 

the reconstructed and observed time series of the 95th per-

centile of 6-h wind speed (read below), and it ranges from 

− 1 to 1. The last metric is the difference between the mean 

reconstructed and original wind speed time series, therefore 

a difference equal to zero represents a perfect agreement 

between the means of the reconstructed and original wind 

speed anomalies.

The 95th percentile of wind speed was obtained in cross-

validation with a similar approach to that used to reconstruct 

the time series of the mean wind speed. However, in order to 

improve the robustness of the measure of the 95th percentile 

thresholds, monthly anomalies were not reconstructed from 

the daily wind speed anomalies but from the 6-h wind speed 

anomalies. In this case, as the k-means clustering was still 

performed with daily SLP anomalies, all the four 6-h wind 

speed values within the same day were associated to the 

same daily WR.

3  Results

3.1  Weather regime patterns and frequencies

The spatial patterns of the SLP anomalies of the monthly 

WRs from JRA-55 for 1981–2016 are shown in Figs. 1 (for 

boreal winter and spring months) and 2 (for boreal sum-

mer and autumn months). SLP patterns are characterized by 

the number and position of their centroids, their shapes and 

intensity. A brief description of the spatial patterns for each 

month of the year is given in Table 1 of the supplementary 

material.

Even if WR patterns shown in Figs. 1 and 2 are classified 

at monthly scale, many of them resemble the four winter-

time WR patterns (NAO+, NAO−, blocking and Atlantic 

ridge) described in the introduction. However, by adopting 

a monthly classification, regimes not present in the winter-

time classification emerge too. Some examples are the third 

more frequent regime in January, characterized by a negative 
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centroid to the west of UK (see Fig. 1), or the second more 

frequent regimes in April and May, both characterized by 

positive anomalies over continental Europe and negative 

ones over the Atlantic Ocean.

As a consequence of classifying each month separately, 

the WR patterns are usually quite different from those of 

the previous or following month. However, some spatial 

patterns are similar for many consecutive months, par-

ticularly from November to March, and only the order of 

the WRs inside the sequence varies from one month to 

the next. For example, the patterns of the second more 

frequent WR in December are similar to those of the first 

more frequent WR in January and to those of the second 

more frequent WR in February. On the contrary, from 

April to October, the spatial patterns of the WRs are more 

variable from 1 month to the next. Many WR patterns in 

the winter months also resemble the annual WR patterns 

defined in Grams et al. (2017).

Fig. 1  Spatial SLP anomalies (hPa) of the four monthly regimes from 

December (top row) to May (bottom row) for the JRA-55 reanalysis. 

Regimes are shown, from left to right, in decreasing order of average 

monthly frequency (1981–2016), indicated by a % above each map. 

Black lines separate regions with positive and negative anomalies
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The average monthly frequency of occurrence of each 

of the four WRs ranges between 17 and 36%. August is 

the month with the highest observed frequency range: 

17.7–35.2% (Fig. 2). Summer months also have globally 

weaker patterns than other months (i.e: less intense ones, 

regardless the sign), as large-scale atmospheric circulation 

systems are less prominent in summer than in winter, as 

a consequence of the increased atmospheric convection 

during summer (Beck et al. 2007).

To quantify the differences between the WRs obtained for 

each reanalysis, the percentage of days classified with differ-

ent WRs for pairs of reanalyses are shown in Table 1. The 

spatial and temporal correlations between two correspond-

ent WR patterns (or WR monthly frequencies in case of 

temporal correlations) from pairs of different reanalyses are 

included in Tables 2 and 3 of the supplementary material.

Results suggest that the correspondence between the 

three reanalyses is very high and with highly significant 

Fig. 2  As Fig. 1, but from June to November months
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correlations, with the exception of the months of April and 

July, when the largest differences are detected. Figures ana-

logue to Figs. 1 and 2 but representing the SLP patterns 

derived from ERA-Interim and NCEP are shown in Figs. 1, 

2, 3 and 4 of the supplementary material. Results are also 

consistent with the WR comparison between NCEP and 

JRA-55 performed by Stryhal and Huth (2017) in DJF, as in 

this season they also detected less than 8% of days classified 

with different WRs.

At a first glance, NCEP seems to be the reanalysis that 

differs the most from the others, particularly in April, 

when the % of different days raise to 37% for both the 

ERA-Interim and NCEP pair and the JRA-55 and NCEP 

pair (Table 1); in this month, the shape and position of 

the centroids of the second more frequent regime of 

NCEP (third row and second column in Fig. 3) are also 

profoundly different from those of any ERA-Interim or 

JRA-55 regime (first two rows in Fig. 3). However, these 

differences are not really due to NCEP data, but are intro-

duced by the classification process: in fact, they disappear 

if the k-means clustering is performed after the spatial 

interpolation of the reanalysis (see Sect. 2), as it levels out 

the total number of grid points of the reanalysis. In this 

way, the clustering is applied to the same number of points 

and consequently in April the resulting regimes are almost 

identical for the three reanalysis (results not shown).

On the contrary, the high discrepancies observed in July 

for all the three pairs of reanalysis in Table 1 are invariant to 

a change of the order of the classification steps. Moreover, in 

July more than one regime exhibits different spatial patterns 

between the three reanalysis (see Figs. 2 and 4 of the supple-

mentary material). During other months, the percentage of 

days belonging to a different WR between pairs of reanalysis 

is acceptable, as it doesn’t exceed 3% (Table 1) and both 

spatial and temporal correlations are significant and above 

r≥0.98 (Tables 2 and 3 of the supplementary material).

Fig. 3  Spatial SLP anomalies (hPa) of the four monthly regimes of 

April for JRA-55 reanalysis (top), ERA-Interim (centre) and NCEP 

(bottom). Regimes are shown, from left to right, in decreasing order 

of average monthly frequency (1981–2016), indicated by a % above 

each map. Black lines separate regions with positive and negative 

anomalies

Table 1  Percentage of days 

classified with different WRs 

for pairs of different reanalyses 

during period 1981–2016

Bold numbers show percentages higher than 3%

Reanalysis Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

JRA-55 vs ERA-Interim 0.9 1.3 0.1 1.7 1.2 1.3 30.7 0.8 2.1 1.0 0.6 1.4

JRA-55 vs NCEP 1.4 0.9 1.1 36.9 2.1 2.1 25.4 2.2 1.6 1.7 1.4 1.6

ERA-Interim vs NCEP 1.8 1.8 1.1 37.0 2.6 2.8 24.6 2.1 1.7 2.2 1.9 2.2
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3.2  Regime impact on wind speed

The assessment of the WRs on wind speed is focused on 

continental Europe and surrounding shores. The spatial pat-

terns of the impact of the four monthly WRs on daily 10-m 

wind speed for JRA-55 are presented in Figs. 4 and 5. Impact 

maps for the other two reanalyses can be found in Figs. 5, 

6, 7 and 8 of the supplementary material, as well as a short 

description of the spatial patterns of each impact map for 

JRA-55 (Table 4 of the supplementary material).

Both ERA-Interim and NCEP present spatial patterns 

very similar to those of JRA-55 (apart the different resolu-

tion), except in April and July, due to the different patterns 

of the SLP anomalies described in Sect. 3.1 (see Fig. 3).

It is evident from Figs. 4 and 5 that the influence of WRs 

on wind speed presents a strong inter-monthly variation. 

WRs can significantly alter average wind speed in Europe, 

up to ± 50% of its climatological value for certain WRs 

and months, especially from December to March (Fig. 4), 

as already demonstrated in the work of Grams et al. (2017).

WR influence drops considerably in April, and it is very 

low in May and June. It increases in July and August, even if 

summer months are expected to show a weaker link between 

large-scale circulation and local climate (Efthymiadis et al. 

2007), i.e: WR impact is expected to be weaker in summer 

months. Such an increase of the impact in July and August 

is due to the definition of impact adopted in this study, as the 

% referred to the monthly wind speed climatology. Average 

wind speed is lower in summer months than in winter ones, 

so the % impact is higher in summer months, even if the 

absolute impact (in m/s) doesn’t change.

Northern, western and southeastern Europe wind speed is 

often affected in a different way by WRs. The spatial impact 

patterns present a bipolar structure with a clear north-south 

gradient when wind anomalies are associated to WRs 

whose SLP patterns resembles the wintertime NAO+ or 

NAO− regime, as in the case of the first and fourth more 

frequent WRs in December (Fig. 4).

WRs determine a severe decline of wind speed over cen-

tral Europe when their SLP patterns are higher than normal 

over Scandinavia, as for example in the second most frequent 

December WR, when the wind anomalies are the most nega-

tive and with the most widespread impact over Europe. On 

the contrary, higher than normal wind speeds over central 

Europe are observed in correspondence to WRs with SLP 

patterns similar to the one of the third more frequent WR 

in December (Fig. 1), which resembles the pattern of the 

wintertime AR regime.

Differently from SLP anomalies, wind anomalies display 

low pattern (spatial) correlations between pairs of different 

reanalyses, of 0.90 or lower for many months (even if cor-

relations are always significant at the confidence level of 

95%), as shown by the bold numbers in Table 2. Minimum 

pattern correlations values (down to r = 0.12) are measured 

in April and July, as a consequence of the different SLP pat-

terns generated in these months (see Sect. 3.1).

The majority of the lowest correlation values are detected 

when comparing NCEP to the other reanalyses, denoting the 

presence of a systematic bias in NCEP reanalysis. It is also 

evident from Table 2 that impact maps from JRA-55 and 

ERA-Interim are very similar (except in July), with pattern 

correlations of 0.93 or higher.

WRs with negative wind speed anomalies over central 

Europe in Figs. 4 and 5 not only are associated to higher than 

normal SLP anomalies over central and northern Europe 

(Figs. 1 and 2), but often they are also flanked by areas with 

positive wind speed anomalies, particularly Iberian Penin-

sula, the whole Balkan region (up to the Black Sea), north-

ern Scandinavia, Iceland and the Adriatic Sea, in agreement 

with Grams et al. (2017).

3.3  Reconstruction of wind speed by WRs

Both the methodology and the spatial domain of the clus-

tering usually determine sub-areas inside the study region 

where the influence of WRs on wind speed is higher or 

lower than the rest of the domain, and where WRs can bet-

ter or worse reconstruct monthly wind speed. To understand 

where and when the influence of the WR classification on 

wind speed is high or low, and to assess its goodness in 

reconstructing monthly wind speed, a leave-one-out cross-

validation of the wind speed reconstructed by the four WRs 

was performed. Results were summarized in Fig. 6 for Janu-

ary, April, July and October. Results for the other months 

can be found in Figs. 9, 10, 11 and 12 of the supplementary 

material.

The correlations between observed mean wind speed and 

the one reconstructed by WRs are shown on the top row of 

Fig. 6. They are highest (r ≥ 0.5) in January and in northern 

and western Europe, particularly in England, Spain, Portu-

gal, Denmark, in the northern part of France, Germany and 

Poland and in the southern part of Sweden and Norway. 

Similar results are found for all months from November to 

March. Lowest correlations are measured from April to July, 

particularly in Eastern Europe, North Africa, Middle East 

and in the Mediterranean Basin. In the North Sea, a key 

region for European wind power generation, correlations are 

often positive and in January are always above 0.5.

The second row of Fig. 6 presents the ratio between the 

reconstructed and observed wind speed standard deviation. 

It is always lower than 0.6, and it has a spatial distribution 

very similar to that of the mean wind speed correlations 

previously described. Values are quite low and represent the 

main limitation of the wind speed reconstruction.

The third row of figures illustrates the temporal correla-

tions between observed and reconstructed 95th percentile of 
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Fig. 4  Average (1981–2016) 

JRA-55 10-m wind speed rela-

tive anomalies (in %) for each 

of the four monthly regimes 

from December (top row) to 

May (bottom row). Regimes 

are shown, from left to right, 

in decreasing order of average 

monthly frequency of occur-

rence (1981–2016), as in Fig. 1. 

Contour lines show associated 

SLP anomalies, with a separa-

tion of 2 hPa. Bold black lines 

show null anomalies, while 

dashed lines show negative 

ones. Black points indicate 

areas where anomalies are 

significantly different from zero 

(t-test at 99% confidence level)
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Fig. 5  As Fig. 4, but from June 

to November
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wind speed. Their values are similar to those of the mean wind 

speed (first row), even though positive correlations are glob-

ally ∼ 0.1 lower, while negative ones are globally ∼ 0.1 higher 

(i.e: less negative than correlations of the first row). Finally, 

the mean wind speed bias is shown in the last row of Fig. 6. It 

is negligible over the whole European region, as it is always 

lower than 0.15% of mean wind speed. Moreover, the bias 

is never significant for a paired t-test with a 90% confidence 

level.

The more interesting feature of Fig. 6, from the point of 

view of wind energy generation, is that it identifies other 

countries beyond those closer to the North Sea where wind 

speed is still influenced by WRs, like the Iberian Peninsula, 

Iceland, northern Scandinavia and to a lesser extent the Gulf 

of Lion (southern France), the Black Sea and the Aegean Sea 

(between Greece and Turkey). In such regions, the goodness 

of the reconstruction during many months of the year (mean 

wind speed correlation of 0.3–0.6) allows to infer that a good 

amount of wind variability can be attributed to the change 

of the monthly frequencies of occurrence of the WRs, a key 

factor when developing tailored products for the wind energy 

sector.

Some of the above regions, particularly northern Scandina-

via, southern Spain and the Aegean Sea, are also characterized 

by high average yearly wind speeds (7–10 m/s) and are far 

enough from the North Sea to exhibit positive wind anomalies 

when they are negative over central Europe (Figs. 4, 5). Thus, 

they might play an important role in future electricity gen-

eration, by reducing the high intermittency of total produced 

European wind power.

4  Discussion

In this work, the WR paradigm was employed to generate 

a monthly WR classification, characterized by different 

spatial structures than those of the more commonly used 

seasonally- or yearly-defined WR classifications.

The number of WRs for each month was set to four, 

which is the optimal number of WRs employed in win-

ter or summer season in literature (e.g. Hannachi et al. 

2017). Selecting the same number of WRs for each month 

is convenient for many user applications, but it does not 

always correspond to the optimal number of WRs for the 

chosen month, as the intra-cluster variability increases in 

the transition seasons (spring and autumn months), when 

WR patterns show a higher variability than normal, as they 

relate to winter regimes in some years and to summer ones 

in others (Cassou 2008).

In case of JRA-55, the optimal number of WRs detected 

in each month was four (not shown), except in April and 

October, when the optimal number increases to six, based 

on 26 different criteria (Charrad et al. 2014). Thus, users 

interested in applying monthly WRs to analyse climate 

variability with a higher accuracy, should rely on classifi-

cations with a variable number of WRs for month, at least 

in the transition seasons. We are also aware that monthly 

regime classifications are generally less robust than sea-

sonal or annual ones, due to the lower number of data 

employed in the study period.

Table 2  Pattern correlations 

between monthly 10-m wind 

speed anomalies of the two 

corresponding WRs from pairs 

of reanalyses (JRA-55 & ERA-

Interim, JRA-55 & NCEP and 

ERA-Interim & NCEP)

Bold numbers show correlations of 0.90 or lower

Month JRA-55 & ERA-Interim JRA-55 & NCEP ERA-Interim & NCEP

WR 1 WR 2 WR 3 WR 4 WR 1 WR 2 WR 3 WR 4 WR 1 WR 2 WR 3 WR 4

January 0.958 0.976 0.970 0.964 0.881 0.930 0.915 0.899 0.913 0.943 0.931 0.904

February 0.968 0.958 0.963 0.955 0.917 0.858 0.900 0.891 0.927 0.883 0.912 0.902

March 0.962 0.975 0.969 0.961 0.862 0.919 0.893 0.906 0.887 0.935 0.909 0.916

April 0.963 0.971 0.962 0.976 0.540 0.837 0.693 0.123 0.537 0.859 0.699 0.120

May 0.962 0.964 0.946 0.957 0.869 0.899 0.847 0.887 0.896 0.911 0.845 0.905

June 0.933 0.966 0.959 0.943 0.830 0.904 0.877 0.856 0.827 0.907 0.909 0.866

July 0.900 0.611 0.855 0.541 0.787 0.586 0.886 0.721 0.857 0.721 0.769 0.696

August 0.957 0.963 0.967 0.964 0.879 0.899 0.902 0.881 0.886 0.913 0.922 0.890

September 0.966 0.969 0.955 0.973 0.880 0.915 0.860 0.916 0.885 0.913 0.889 0.924

October 0.967 0.969 0.978 0.958 0.914 0.886 0.944 0.864 0.922 0.908 0.954 0.871

November 0.971 0.964 0.951 0.964 0.920 0.899 0.865 0.891 0.926 0.916 0.880 0.903

December 0.973 0.963 0.963 0.963 0.912 0.888 0.896 0.914 0.928 0.906 0.907 0.935
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Annual WR classifications are usually characterized by 

a higher number of WRs (seven or more), to decrease the 

intra-cluster variability (Coleman and Rogers 2007; Fere-

day et al. 2008). Their main advantage over the monthly 

ones consists in having stable regime anomalies through 

the year. In this way, only their frequency of occurrence 

and their impact on wind speed varies from one month to 

the next.

The strong correspondence between the WR patterns of 

the three reanalyses demonstrates that changing the observa-

tional source has little or no influence on the WR classifica-

tion. Therefore, the choice of one of these products for the 

development of climate service applications is conditioned 

on the frequency of update of their data.

JRA-55 shows some advantages for its use in an operational 

context, such as its sub-weekly update frequency and its spatial 

Fig. 6  Leave-one-out cross-validation of the reconstructed 10-m 

wind speed for the months of January, April, July and October (other 

months can be found in Figs. 9, 10, 11 and 12 of the supplementary 

material). Four error metrics are shown from top to bottom, respec-

tively: the temporal correlation between the time series of the recon-

structed and observed monthly mean wind speed anomalies, the ratio 

between the standard deviations of the reconstructed and observed 

time series of monthly mean speed anomalies, the correlation 

between the reconstructed and observed monthly 95th percentile of 

wind speed anomalies, and the mean wind speed bias (in %) Source 

JRA-55 reanalysis
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resolution of 1.25◦ which makes this dataset suitable for the WR 

classification. However, it is not available for commercial use 

and it shows artificial near-surface wind speed trends (Torralba 

et al. 2017a). Thus, products dealing with long-term wind vari-

ability should not rely on JRA-55 reanalysis.

Recently released ERA-5 global reanalysis (https ://cds.

clima te.coper nicus .eu/cdsap p#!/home) is an option that will 

be explored in future works, even if at present its data is 

released with a delay of 2–3 months. Regional reanalyses 

such as those developed in the framework of the ’Uncertain-

ties in ensemble of Regional Reanalyses’ project (UERRA, 

http://www.uerra .eu), instead, only cover a small part of the 

Northern Atlantic, so they can’t be selected to classify WRs 

in the Euro-Atlantic region.

5  Conclusions

WRs represent a convenient framework to understand wind 

speed variability in most part of Europe, as they can have 

a large influence on day-to-day wind speed variations. The 

added value of WRs for the development of wind energy 

applications was investigated by validating a monthly WR 

classification employing three different reanalyses (NCEP, 

ERA-Interim and JRA-55) in the Euro-Atlantic region dur-

ing 36 years (1981–2016).

This study also identified, for the first time to the best 

of our knowledge, in which regions and months WRs as a 

whole have a higher or lower impact on wind speed over 

Europe, by investigating their ability to reconstruct wind 

speed. This knowledge complements that of the impact of 

each single WR on wind speed and it is critical for iden-

tifying in which areas WRs can be considered sources of 

predictability of wind speed and effectively employed to 

develop user’s products.

Three goals were identified, namely the reanalysis inter-

comparison of monthly regime patterns and frequencies, the 

intercomparison of the impact of WRs on observed wind 

speed anomalies and the reconstruction of wind speed by 

WRs. For each of these objectives, their main results were 

summarized below with bullet points.

Intercomparison of WR patterns and frequencies

• Even if most of the monthly WR patterns closely resem-

ble winter regimes (NAO+, NAO−, blocking and Atlan-

tic ridge), some regimes that are not present in winter or 

annual classifications emerge.

• Within the same reanalysis, monthly WR patterns are 

similar from November to March and more heterogene-

ous from April to October. During summer, monthly WR 

patterns are usually weaker than during other months.

• WR classifications between different reanalyses can be 

considered equivalent in most of the months. Only two 

exceptions were detected in July and April, when the per-

centage of days classified with different WRs increases 

up to 37%, while pattern correlations drop as low as r = 

0.30.

• Differences highlighted for April in the previous point 

disappear if SLP is interpolated before the k-means 

clustering. This is a perfect example of how results are 

sensitive not only to the reanalysis choice but also to 

the methodology employed to classify WRs (Stryhal and 

Huth 2017).

Intercomparison of the impact of WRs on wind speed

• The influence of WRs on wind speed drops considerably 

in April, and it is very low in May and June.

• As a consequence of the different WR patterns detected 

in April and July for some pairs of reanalyses, also wind 

speed anomalies associated with specific regimes are dif-

ferent during these months.

• The above mentioned-discrepancies were detected when 

comparing NCEP to the other reanalyses, which may 

indicate the presence of a systematic bias in NCEP’s 

wind data.

• WR impact on wind energy resources is in agreement 

with the results presented by Grams et al. (2017), sug-

gesting that they are robust and invariant to a change of 

reanalysis data (JRA-55 instead of ERA-Interim), meth-

odology (the number and type of WRs) and time scale 

(monthly-based WRs instead of yearly-based).

Wind speed reconstruction by WRs

• Temporal correlations between observed mean wind 

speed and the reconstructed one are usually higher than 

r=0.5 from November to March in northern and western 

part of Europe.

• Lowest correlations were measured from April to July 

particularly in Eastern Europe, North Africa and in many 

other countries surrounding the Mediterranean sea.

• The wind speed reconstruction is not able to adequately 

reproduce the ratio between the observed and recon-

structed standard deviation of wind speed, as indicated 

by ratio lower than 0.6.

• The temporal correlations between observed and recon-

structed 95th percentile of wind speed (very high/extreme 

wind speed) exhibit spatial patterns similar to those of 

the mean wind speed correlation, but less intense.

• The bias of the reconstructed wind speed can be consid-

ered negligible and not significant over all Europe.

• There are regions as northern Scandinavia, southern 

Spain and the Aegean Sea with high average yearly wind 

https://cds.climate.copernicus.eu/cdsapp#%21/home
https://cds.climate.copernicus.eu/cdsapp#%21/home
http://www.uerra.eu
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speed (7-10 m/s) and where the overall influence of WRs 

on wind speed is moderate-to-high. Moreover, due to 

their distance from the North Sea, wind generation in 

these regions is not negatively affected by the passage of 

anticyclones over central Europe, where most of Euro-

pean wind power is concentrated. Thus, these regions 

might play an important role in future electricity genera-

tion, by reducing the high intermittency of total produced 

European wind power, as already demonstrated by Grams 

et al. (2017).

Concluding, it is worth noticing that many renewable 

energy applications require not only the historical monthly 

frequency of occurrence of the WRs, but also its accurate 

monthly or seasonal forecasting, as well as improved sub-

seasonal predictability of wind speed (Beerli et al. 2017). 

Recently, it was found that WRs might have more skill than 

temperature or precipitation in predicting important climate 

indices such as droughts (Lavaysse et al. 2018), cold spells 

(Ferranti et al. 2018) or heat waves (Schaller et al. 2018). 

Similarly, future work might prove that WRs have more skill 

than wind in forecasting indices such as wind droughts or 

capacity factor, both critical variables for many renewable 

energy decision-making processes, particularly in those 

European areas where forecasts of these indices have lim-

ited skill.
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