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Abstract We study, both experimentally and theoretically,

the process of second-harmonic generation by two non-

collinear beams in ferroelectric crystals with a disordered

distribution of ferroelectric domains. We show that this para-

metric process results in generation of second-harmonic

wave in the direction transverse to the propagation of the

fundamental beam. We demonstrate how this effect can be

used for the femtosecond pulse characterization enabling the

estimation of both width and chirp of the pulse.

PACS 42.65.-k · 42.65.Ky · 42.25.Fx

1 Introduction

The use of ultrashort optical pulses has nowadays become

an essential tool in a rapidly increasing number of applica-

tions in both research and industry. Important examples in-
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clude the measurements of the dynamics of complex DNA

molecules, monitoring of chemical reactions, optical com-

munications, and laser micromachining. For the success of

such applications, it is essential to obtain precise knowledge

of the duration and stability of the laser pulses. The exist-

ing techniques of ultrashort pulse measurements usually rely

on optical gating between the pulse and its replica that is

typically realized through a nonlinear optical process, e.g.

parametric process of the generation of the second harmon-

ics [1–5].

Among the different schemes for optical gating, non-

collinear second-harmonic generation (SHG) is known as

one of the best methods for single-shot pulse-duration mea-

surements [6–21]. In this method, two beams cross at a small

angle inside a quadratic nonlinear crystal and, if the phase-

matching conditions are fulfilled, a second-harmonic (SH)

beam is generated in forward direction. The spatial shape of

the generated SH beam represents the correlation function

of the interacting ultrashort pulses.

It is well known that to obtain an efficient SHG the

phase-matching condition has to be fulfilled. This is usu-

ally achieved through techniques such as crystal birefrin-

gence [22], periodic photonic materials [23], or quasi-phase

matching (QPM) [24–26]. Since the angular, frequency, or

temperature conversion bandwidth utilized in these tech-

niques is quite narrow (it decreases with the crystal length),

this requires careful selection and alignment of the crystals

used in a particular application.

Recently, it was shown that quadratic nonlinear processes

can be phase matched in media consisting of antiparallel

nonlinear ferroelectric domains with random sizes and spa-

tial distribution. In such types of disordered media, SHG

phase matching is possible over a broad frequency band-

width, being limited only by the transparency region of the

crystal, and it does not require angular or thermal crystal
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tuning [27]. Needle-like ferroelectric domains are oriented

along the Z-axis (c-axis) of the crystal, creating an effective

two-dimensional nonlinear structure with a constant linear

refractive index, but with randomly alternating sign of the

nonlinear χ (2) tensor components. Such structures can be

considered to be composed of an infinite number of χ (2)

gratings with the corresponding reciprocal vectors having

random magnitudes and orientations within the XY -plane.

An example of such disordered nonlinear media is an un-

poled strontium barium niobate crystal (SBN) with typical

domain sizes ranging between 1 and 8 µm [28, 29]. De-

pending on the direction of propagation of the fundamen-

tal beam, the SHG takes place either in the form of a plane

(when propagating perpendicularly to the c-axis) [30–32] or

a cone (for any other directions). Furthermore, it has been

shown that two-beam interactions can be observed in such

crystals [33]. In particular, planar noncollinear SHG where

the SH signal is emitted in the plane perpendicular to the

plane defined by both beams, has been observed [34].

In this work, we show that the planar SHG resulting from

the non-collinear interaction of a pulse with its own replica

represents the autocorrelation of the pulse. Since the funda-

mental pulse broadens with the propagation inside the crys-

tal due to material dispersion, the autocorrelation trace will

widen correspondingly. This effect can be used for the chirp

characterization of the input femtosecond pulses. The broad

conversion bandwidth provided by the random QPM process

makes possible to use the same crystal for different wave-

lengths without need of realignment.

2 Model

We consider two fundamental beams propagating in the

crystallographic plane XZ of an SBN crystal with the an-

gles −α and +α to the X-axis. Each one of the fundamental

beams generates a SH wave which is emitted in the form of

a cone at the particular angle for which the phase-mismatch

in the direction of the c-axis is compensated [31]. In addi-

tion, the interaction between the two fundamental beams in-

tersecting inside the crystal gives rise to a noncollinear SH

emission in the plane perpendicular to the c-axis (Z-axis)

as schematically shown in Fig. 1. This planar emission ap-

pears as a result of the phase matching of the SHG process at

any direction within the XY -plane due to the continuous set

of reciprocal lattice vectors provided by the randomness of

ferroelectric domain distribution. In particular, the SH emis-

sion can be observed not only in forward but also in trans-

verse direction. The SH signal can be detected by a CCD

camera imaging the crystal XZ-plane from above (Fig. 1).

In this way, the camera records the evolution of the SH sig-

nal along the propagation of the fundamental beams from

the entrance to the output of the sample.

Fig. 1 Schematic presentation of the interacting geometry

Fig. 2 Beam superposition inside the SBN crystal for the two limiting

cases of (a) long pulses and (b) short pulses. For case (b), as beams

propagate, the emission region moves along the X-axis, giving rise to

the recorded trace

In order to model the generated SH trace we assume that

the two fundamental beams have a Gaussian spatial and tem-

poral profile and cross at an angle 2α inside the crystal. The

corresponding amplitudes can be written as

A1 = A10 exp

(

−
z2

1

2ρ2

)

exp

(

−(t − x1/u)2

2T 2

)

, (1)

A2 = A20 exp

(

−
z2

2

2ρ2

)

exp

(

−(t − x2/u)2

2T 2

)

, (2)

where (x1, z1) and (x2, z2) are the coordinates in reference

systems oriented along the propagation direction of each one

of the beams (Fig. 2), u = c/n is the speed of light in the

crystal. There ρ and T are half beam and pulse width at 1/e

levels in intensity, respectively.

By introducing a common coordinate system for both

beams, corresponding to the X- and Z-axis (x, z) (Fig. 2)

we calculate the SH field generated in the crystal. Assum-
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ing that phase matching is provided by the random QPM

process [35], the SH amplitude is proportional to the nonlin-

ear polarization at doubled frequency:

B(x, z, t) ∝ P (2)(2ω) ∝ d
(2)
eff A1A2. (3)

We have already shown [31] that the generated second-

harmonic signal recorded by a CCD camera actually rep-

resent a cross-correlation function of two interacting pulses.

Therefore, in the case of Gaussian pulses, the SH field can

be represented as

B(x, z, t) = B0(x) exp

(

−
z2 cos2 α + x2 sin2 α

ρ2

)

× exp

(

−
(tu − x cosα)2 + z2 sin2 α

u2T 2
c (x)

)

, (4)

where α denotes the half angle between the wave vectors

of the two intersecting fundamental beams inside the crystal

and B0(x) is an amplitude that will be described below.

With propagation inside the crystal the pulses experi-

ence broadening due to material dispersion, that depends on

the initial chirp of the pulse. We have considered this ef-

fect assuming a chirped pulse (with initial chirp C at the

entrance of the crystal) in a medium with group velocity

dispersion β2 by formally replacing in (4) the pulse dura-

tion, T , by the “complex pulse duration”, Tc [36], T 2
c =

[T 2 − iβ2x(1 + iC)](1 + iC)−1. In such case B0(x) ∝
d

(2)
eff A10A20/[1 − iβ2x(1 + iC)/T 2].

For a broad distribution of the domain sizes, the phase-

matching condition will be fulfilled for all directions in-

side the XY -plane. The generated SH signal is emitted from

the overlapping region of the fundamental beams inside the

crystal in form of a plane as can be seen in Figs. 1 and 2. This

overlapping region is then determined by the spatial extent

of the beam and by the temporal duration of the pulses. For

long pulses, when T ≫ 2ρ tanα/u, the overlapping region is

limited by the spatial dimensions of the beams (correspond-

ing to the big rhombus shown in Fig. 2(a)). In the case of

short pulses, T ≪ 2ρ tanα/u, the overlapping region is lim-

ited by the pulse lengths only and has a form of a small dark

rhombus shown in Fig. 2(b).

Figure 3(a) illustrates emission of the SH (central peak

(in blue)) via the noncollinear interaction of the overlapping

pulse fronts of the two fundamental beams inside the crys-

tal as described by (4) under the condition of “big” radii

(ρ ≫ uT/2 tanα) of the beams. The graph also shows the

background emission of the SH (in pink) by each individual

beam. Only in the region of pulse overlap, a much stronger

SH signal is emitted. Since the detected signal corresponds

to an integration in the time domain, it results in a recorded

continuous trace along the X-direction. The resulting SH in-

tensity emitted due to the overlap of the fundamental beams

Fig. 3 (a) Emission of the SH wave (central peak, blue) via the non-

collinear interaction of the overlapping fundamental pulses inside the

crystal, as described by (4). Background emission of the SH wave by

each beam is shown as well. In this simulation, the beam radii are con-

sidered much bigger than uT/2 tanα, with 2α being the angle between

the beams inside the crystal. (b–e) Theoretically evaluated snap shot

of the spatial profiles of the SH signal for different pulse durations and

chirp parameters



J. Trull et al.

is given by

I2ω(x, z) =
T 4I2ω(0)

T 4
ch(x + L/2)

exp

(

−
2z2 sin2 α

u2T 2
ch(x + L/2)

)

× exp

(

−
2z2 cos2 α + 2x2 sin2 α

ρ2

)

, (5)

where

Tch(x) = T

[(

1 +
Cβ2x

T 2

)2

+
(

β2x

T 2

)2]1/2

. (6)

If the pulse is “long” the recorded trace corresponds to

the second exponent of (5) and its shape (see Fig. 3(b)) is de-

fined only by the transverse dimensions of the beam and can

not be used for estimation of pulse duration. In the most in-

teresting, from the practical application point of view limit,

of very large ρ, the transverse profile of the SH trace along

X is determined solely by the first exponent in (5). This case

is illustrated on Fig. 3(c, d, e) for two different angles be-

tween the two fundamental beams. If a variable time delay

is introduced for one of the pulses the SH line appears mov-

ing along the Z-direction. The thickness �z(x) of the SH

trace depends directly on the pulse duration

�z(x) =
uTch(x)
√

2 sinα
. (7)

If the width of the SH trace is measured at the input facet

of the crystal (x = 0) we obtain (considering Tch(0) = T ) a

measure of the pulse duration,

T =
(
√

2 sinα
)

�z(0)/u. (8)

The same relation holds for the experimentally measurable

FWHM of the pulse duration, τ , and the FWHM of the trace

transverse profile, τ = (
√

2 sinαext)�zFWHM(0)/c.

Additional information about the pulse can be obtained

if the SH trace is recorded along the nonlinear crystal. De-

pending on the values of the group velocity dispersion β2

and the initial chirp of the pulse C, the width of the trace

may became dependent on the distance measured from the

entrance surface. For β2 and C having the same sign, the

trace width will grow constantly with the increase of dis-

tance from the front surface, while for β2 and C of the op-

posite signs, this width will first reach its minimum at certain

distance and will start growing afterwards. The case of neg-

ative β2 = −466 fs2/mm and C = −4 is shown on Fig. 3(e).

As can be seen from (6) and (7) for known β2 it is sufficient

to measure the width of the trace at a distance x from the

crystal entrance in order to determine the initial chirp of the

pulse:

C =

√

(4�z(0)2�z(x)2/u4) sin4 α − (xβ2)2

xβ2

−
(2�z(0)2/u2) sin2 α

xβ2
. (9)

Comparing Figs. 3(d) and 3(e) we note that the chirp may

strongly affect the spatial profile of the recorded second-

harmonic field, which can be also used in analyzing the

properties of the input pulses.

3 Experimental results and discussions

We have used the method described above to estimate the

width and initial linear pulse chirp of femtosecond pulses

generated by a Ti:Sapphire fs oscillator (Mira, Coherent) op-

erating at 810 nm, with a pulse duration of 180 fs, and a rep-

etition rate of 76 MHz. The incident extraordinary polarized

beam is split in two parts (see Fig. 4) which are incident on

an as-grown unpoled SBN:61 crystal (5 × 5 × 10 mm, all

sides polished, purchased from Altechna Co. Ltd.) under a

given angle. The half-wave plate P was used to adjust the

intensity splitting ratio in the two arms. The crossing angle,

2αext, and the beam widths are selected in order to satisfy

the relation ρ ≫ uT/2 tanα. In different experiments this

angle ranged from 10 to 28 degrees. A variable delay line in

one of the arms ensures that the two pulses coincide inside

the crystal. In addition, this delay line can be used to cali-

brate the temporal scale of the measurements. Changing the

pulse delay by a known amount δt , induces displacement of

the correlation trace in the Z-direction δz = uδt/(2 sinα),

which can be precisely measured.

We note that the bisector of the angle between two funda-

mental beams has to be aligned to coincide (within 1◦–2◦)

with the crystal X-axis. While this alignment is not critical,

it ensures that the SH radiation resulting from the mixing of

the two beams will form a plane coinciding with XY crystal

plane.

It should be stressed that since the SH signals originat-

ing from each individual beam are emitted in a cone, it is

possible to separate them from the emission coming from

Fig. 4 Experimental setup. M—mirror, BS—polarizing beam splitter,

P—half-wave plates
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Fig. 5 Recorded SH traces corresponding to (a) noncollinear planar

SHG and (b, c) single beam SHG. To obtain the images (b) and (c), the

imaging system is rotated in the YZ-plane

the overlapping pulses which is generated in a plane. This

makes the measurement virtually background-free, as illus-

trated in Fig. 5. Figure 5(a) shows the background-free auto-

correlation trace recorded by the camera pointing vertically

at the crystal. The images in Figs. 5(b, c) depict SH signals

emitted by each separate beam. These images were obtained

by tilting the camera at an angle corresponding to the conical

emission of the SH by each fundamental beam.

Figures 6(a, b) depict the image of the autocorrelation

trace together with its transverse profile dependence as a

function of the distance from the entrance facet of the

crystal. In this particular case, (7) yields the pulse width

τ = 193 fs at the entrance facet of the crystal, and 40%

more, 270 fs, at the output facet of the crystal. The photo

in Fig. 6(c) illustrates the experimental observation of the

SH cross-correlation trace originating from interaction of a

single pulse in a one beam with two consecutive pulses in

the other beam. In this case the interaction results in a for-

mation of two parallel SH traces separated by a distance

corresponding to the temporal separation of both pulses.

The temporal delay between the pulses is 837 fs. Graph in

Fig. 6(d) depicts schematic of this process. We mention that

the accuracy of this measurement depends on the resolu-

tion of the imaging system which can be easily controlled

by choosing the proper magnification. In our experiments

all autocorrelation traces were recorded using a standard

CCD camera (such as, e.g. AVT Marlin, IEEE 1394, reso-

lution 656(h) × 494(v), by Allied Vision Technologies). To

asses the accuracy of our method we compared its results

with those obtained by the commercial Grenouille FROG.

We found very good correspondence in pulse measurements.

For instance, for a Grenouille reconstructed autocorrelation

FWHM of 272.2 fs, our method gave 276 fs.

As was mentioned above, the noncollinear SHG geome-

try discussed here enables us not only to determine the pulse

width but also to obtain information about the initial pulse

chirp. To this end, we should measure the transverse width

Fig. 6 (a) Recorded SH trace for two incident fundamental beams at

810 nm and (b) its corresponding transverse profile. (c) Experimental

observation of the formation of cross-correlation trace, when one of

the fundamental beams carries a sequence of two consecutive pulses.

(d) Schematic illustration of this process

of the autocorrelation trace at different distances from the

front entrance facet of the crystal and then use (7) and (9) to

calculate the chirp parameter C. We demonstrate this in our

experiments using pulses with different initial chirps, real-

ized through different alignment of the laser. The results are

shown in Fig. 7, which depicts the width of the autocorre-

lation signal (data points) as a function of propagation dis-

tance. The lines represent a theoretical fit (using (7)) from

which the chirp parameter C is found. The insets show cor-

responding autocorrelation traces.

An additional advantage of using random QPM with re-

spect to other usual nonlinear techniques is that we can

obtain a SH signal for different polarizations of the input

beam without any further alignment. As expressed in (3),

the resulting SH signal is proportional to d
(2)
eff . The symme-

try of the SBN crystal allows for three different interactions,

namely (eee), (ooe), and (eoo) [37]. The large bandwidth of

the random QPM process allows to simultaneously phase
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Fig. 7 Bottom—evaluation of pulse chirp by measuring the trans-

verse width of the SH trace at different locations inside the crystal.

Dashed lines represent theoretically calculated evolution of the SH sig-

nal for three different values of the incident chirp. Top—two typical

autocorrelation traces recorded in the regime of weak and strong chirp

match all these processes, so we can obtain a SH planar

emission for different input beam polarizations. The most

effective SH emission, however, takes place for the extra-

ordinary beams since the (eee) interaction is driven by the

largest coefficient d33.

4 Conclusions

We have demonstrated that, by employing random quasi-

phase matching [35] in an SBN crystal, we can realize non-

collinear planar second-harmonic generation. By imaging

the second harmonics emitted in the transverse direction,

we have determined the pulse duration and the initial lin-

ear pulse chirp. In addition, such type of nonlinear media

can be used for nonlinear optical interactions with multiple

input wavelengths or input polarizations without any further

alignment or angular tuning due to available broad band-

width provided by the random nonlinear photonic struc-

ture.
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