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Characterization of forced localization of disordered weakly

coupled micromechanical resonators
Hemin Zhang, Honglong Chang and Weizheng Yuan

The mode localization phenomenon of disordered weakly coupled resonators (WCRs) is being used as a novel transduction scheme

to further enhance the sensitivity of micromechanical resonant sensors. In this paper, two novel characteristics of mode localization

are described. First, we found that the anti-resonance loci behave as a linear function of the stiffness perturbation. The anti-

resonance behavior can be regarded as a new manifestation of mode localization in the frequency domain, and mode localization

occurs at a deeper level as the anti-resonance approaches closer to the resonance. The anti-resonance loci can be used to identify

the symmetry of the WCRs and the locations of the perturbation. Second, by comparing the forced localization responses of the

WCRs under both the single-resonator-driven (SRD) scheme and the double-resonator-driven (DRD) scheme, we demonstrated that

the DRD scheme extends the linear measurement scale while sacrificing a certain amount of sensitivity. We also demonstrated

experimentally that the amplitude ratio-based sensitivity under the DRD scheme is approximately an order of magnitude lower

than that under the SRD scheme, that is, the amplitude ratio-based sensitivity is − 70.44% (Nm−1)−1 under the DRD scheme, while

it is − 785.6% (Nm−1)−1 under the SRD scheme. These characteristics of mode localization are valuable for the design and control of

WCR-based sensors.
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INTRODUCTION

Microelectromechanical systems (MEMS) resonators have been
widely used in various applications such as communications1–3,
medical diagnostics4,5, and inertial navigation6–8. Typically, the
structural parameters of the resonant element change with the
addition of ambient physical/chemical quantities9. Variations of
the physical/chemical quantities can then be measured by
monitoring the shift of the resonant frequency. To date, most
sensing applications are based on the single degree of freedom
(SDOF) resonator. Recently, multi-degrees of freedom (MDOF)
micromechanical coupled resonators have drawn more attention.
Some physicists have used them to explore basic physical
phenomena such as synchronization10,11 and level repulsion12.
For the MEMS community, a more interesting application is to use
MDOF micromechanical coupled resonators in sensors with
ultra-high sensitivity. Researchers have developed strongly coupled
resonators using frequency splitting as the output metric to
improve the sensitivity by more than 20%13. Using weakly coupled
resonators (WCRs) and taking the eigenstate or amplitude ratio as
the output metric can enhance the sensitivity by more than 2
orders of magnitude14. A variety of sensors based on WCRs with
different degrees of sensitivity enhancement have been imple-
mented, such as mass sensors14–17, electrometers18,19, stiffness
sensors20,21, accelerometers22, and tilt sensors23.
Mode localization is the theoretical basis for the sensitivity

improvement of WCRs-based sensors. As a manifestation of
Anderson localization24 in the field of structural dynamics, mode
localization25–30 has been studied for more than three decades.
When mode localization occurs, the WCRs exhibit drastic energy
confinement on a specific mode. Energy confinement, which is the

essential characteristic of the mode localization, can be described
as “the vibrational energy injected into the structure by an
external source cannot propagate over arbitrarily large distances
but is instead substantially confined to a region close to the
source”27. Therefore, the energy confinement of the mode
localization can be regarded as the spatial redistribution of the
vibrational energy.
The eigenvalue loci veering29 of the WCRs is another well-

known characteristic and describes the phenomenon in which the
frequency loci of the vibration modes diverge and do not
intersect as they approach one another. Energy confinement
and eigenvalue loci veering are two different manifestations
of the same phenomenon, and they cover the two important
parameters of the coupled systems, i.e., the eigenstates and
eigenvalues. These two characteristics of WCRs have been experi-
mentally verified using micromechanical resonators in previous
studies19,31. In this paper, two additional characteristics of the
mode localization of disordered WCRs are explored. It would be
helpful to the MEMS community to understand and apply this new
sensing mechanism to their sensors.
First, we found and verified that the anti-resonance loci behave

as a linear function of the stiffness perturbation. It is strange that
the anti-resonance32 locations of the disordered WCRs, which play
an important role in vibration control and dynamic model
updating33, have seldom been linked to mode localization in the
past, although the anti-resonance indicates a valley in the
vibrational magnitude of the frequency domain34. Several aspects
of the linear anti-resonance behavior are very meaningful. With
the anti-resonance approaching a certain mode (the resonance
point), the vibrational energy will be confined to the other mode,
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which qualitatively indicates the occurrence of mode localization.
Furthermore, the proportions of vibrational energy in the two
modes of the disordered weakly coupled resonators are
established to quantitatively characterize the mode localization.
Mode localization occurs at a deeper level as the anti-resonance
approaches the resonance more closely, and the proportions of
vibrational energy can be used to determine the upper and lower
limits of the measurement range of the mode-localized sensors.
Therefore, the anti-resonance behavior can be regarded as a new
and succinct manifestation of mode localization. As an application,
the anti-resonance behavior can be used to identify which
resonator is perturbed by observing whether the anti-resonance
frequency changes.
Second, we found that the amplitude ratio or frequency-based

sensitivity under the double-resonator-driven (DRD) scheme is
approximately an order of magnitude lower than that under the
single-resonator-driven (SRD) scheme, while the linear measure-
ment range under the DRD scheme is extended by a factor of more
than three. Under the SRD scheme, a single resonator is directly
driven, while under the DRD scheme, both coupled resonators are
driven simultaneously by forces with equal magnitude and of the
same phase. The DRD scheme is very useful to the MEMS
community for sensor design because it is easier to stabilize the
resonator in a specific mode than in the SRD scheme.

MATERIALS AND METHODS

Responses of disordered WCRs

In this paper, a 2-DOF WCR system is taken as an example for
theoretical modeling. It can be modeled as the linearly coupled
chains of two spring-mass-damper systems, as shown in Figure 1a.
In the WCRs, the coupling force is much smaller than the elastic
force; i.e., kc≪k. For two identical coupled resonators (m1=m2=m,
k1= k2= k) with a small stiffness perturbation δ on Resonator 2, the
dynamic equations of the model can be written as

d2x1
dt2

þ o

Q
dx1
dt

þ o
2 1þ κð Þx1 - κo2x2 ¼ f 1

m
d2x2
dt2

þ o

Q
dx2
dt

þ o
2 1þ κ þ δð Þx2 - κo2x1 ¼ f 2

m

)

ð1Þ

where ω is the frequency of the driving force, Q is the quality factor,

κ= kc/k is the coupling factor, δ=Δk/k is the stiffness perturbation
on Resonator 2, x1 and x2 are the displacements of the two masses,
and f1 and f2 are the driving forces applied to the two masses.
In the 2-DoF system, the two vibration modes are the in-phase

mode (first mode), in which the two masses move in the same
direction, and the out-of-phase mode (second mode), in which the
two masses move in opposite directions. The eigenvalues and
amplitude ratios of the two modes with no perturbation (Δk=0) are:

o
2
1 ¼ o

2
0;o

2
2 ¼ 1þ 2κð Þo2

0; u1 ¼ 1; u2 ¼ - 1 ð2Þ
where o0 ¼

ffiffiffiffiffiffiffiffiffi

k=m
p

, ω1 and ω2 are the resonant frequencies and u1
and u2 are the amplitude ratios of the first and second modes. In this
paper, a short beam was used to mechanically couple the two
resonators. Therefore, the coupling factor κ is positive, so that the
first mode (in-phase mode) is the lower-order mode, and the second
mode (out-of-phase mode) is the higher-order mode.
According to Equation (1), the vibrational displacements of the

two masses under the SRD (f1≠0, f2= 0) and DRD (f1= f2= f)
schemes are, respectively, written as:
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where subscripts S and D represent the SRD and DRD schemes,
respectively, and Λ is the denominator of the transfer function,
which is written as:
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o0

� �4

- 2þ 2κ þ δþ 1

Q2

� �

o

o0

� �2

þ 1þ 2κ þ δþ δκð Þ
"

- j
1

Q
2

o

o0

� �3

- 2þ 2κ þ δð Þo
o0

" ##

ð4Þ

Under the SRD scheme (Figure 1a), it can be observed that the
magnitude of the second mode is much larger than that of the
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Figure 1 (a) Model of disordered weakly coupled resonators under the SRD scheme. (b) Model of disordered weakly coupled resonators under
the DRD scheme. (c) and (d) Responses of Resonator 1 and Resonator 2 with different stiffness perturbations under the SRD scheme. (e and f)
Responses of Resonator 1 and Resonator 2 with different stiffness perturbations under the DRD scheme.
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first mode when δo0, which means that the vibrational energy of
Resonator 1 is mostly confined to the second mode (Figure 1c) in
the frequency domain. When δ increases from negative to
positive, the energy that was confined to the second mode
gradually transfers to the first mode. The energy is equally
distributed between the two modes when δ= 0. When δ40, the
vibrational energy is predominantly confined to the first mode. For
Resonator 2 (Figure 1d), the vibrational energy is always evenly
distributed between the two modes, and the vibrational energy
reaches a maximum when δ= 0. The phenomenon in which the
vibration is confined to a specific mode is termed energy
confinement27 and is always regarded as the essence of mode
localization.
Usually, in the MEMS field, the DRD scheme is used to ensure

that the coupled resonators vibrate in a certain mode, such as the
in-phase mode. We can see from Figures 1e and f that when δ= 0,
the vibrational energy is completely confined to the first mode for
both Resonator 1 and Resonator 2. With the variation of δ, for
Resonator 1, the vibrational energy of the second mode may
exceed that of the first mode at a certain value where δo0. This
indicates that the structural disorder will make the vibrational
energy of the WCRs not ideally locked in a certain mode, even
with the DRD scheme.

Anti-resonances of disordered WCRs

In the 2-DoF vibration system, the resonances represent the
resonant frequencies of the mass-stiffness matrix and the poles of
the transfer functions and appear in the frequency domain where
the magnitude reaches a maximum. According to Equation (4), the
expressions of the poles are

o
2
i ¼ 1þ κ þ 1

2
δþ�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 4κ2
p

� �

o
2
0; i ¼ 1; 2 ð5Þ

where the subscript i represents the ith vibration mode. The

resonant frequencies of the two modes versus the stiffness
perturbation are shown in Figures 2a and b. From Figure 2a, we
can see that the poles (resonances) of the two modes repulse
quickly when they approach each other at the veering
point (the point where the two resonance loci separate from
each other). This is the eigenvalue loci veering phenomenon and
is regarded as another important manifestation of mode
localization.
In classical vibration measurement, it is known that for a 2-DOF

system, there will be an anti-resonance between the two vibration
peaks35. The anti-resonance represents the zero of the transfer
function and is always accompanied by a vibrational magnitude
valley in the frequency domain. When Resonator 2 is perturbed,
zeroes of the two resonators under the two driving schemes as
functions of the stiffness perturbation are:
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ZS2 ZD2

� �

¼
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p

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2κ þ δ
p

o0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2κ
p

o0

� �

ð6Þ

where ZS1, ZS2 represent zeros of Resonator 1 and Resonator 2
under the SRD scheme and ZD1, ZD2 represent zeros of Resonator 1
and Resonator 2 under the DRD scheme, respectively.
On the basis of Equation (6), we can obtain the anti-resonance

behaviors of the coupled resonators as functions of the stiffness
perturbation. Under the SRD scheme, there is an anti-resonance
for Resonator 1, and there is no anti-resonance for Resonator 2, as
the green diamond line shows in Figure 2a, while under the DRD
scheme, there are anti-resonances for both Resonator 1 and
Resonator 2. The anti-resonance loci of the two resonators both
cross with the resonance loci of the second mode. The anti-
resonance loci of Resonator 1 vary linearly with the stiffness
perturbation, while the anti-resonances of Resonator 2 are always
constant.
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Figure 2 (a) Poles and zeroes of the two resonators under the SRD scheme. (b) Poles and zeroes of the two resonators under the DRD scheme.
(c) Vibrational energy distribution of Resonator 1 under the SRD and DRD schemes. (d) Vibrational energy distribution of Resonator 2 under
the SRD and DRD schemes. Here, the quality factor (Q) was set to 10 000 and the coupling factor (κ) was set to 0.001.
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When Resonator 1 is perturbed, the anti-resonances (zeroes)
under the SRD scheme can be similarly derived as
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ZS2
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ZD2
0

� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

1þ κ
p

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2κ
p

o0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2κ þ δ
p

o0

� �

ð7Þ

From Equation (7), it can be concluded that the anti-resonances of
Resonator 1 under the SRD scheme are not related to the stiffness
perturbation δ, which is different from the linear behavior, as
shown in Figure 2a. Therefore, the anti-resonance behavior can be
used to identify which resonator is perturbed. This is quite useful
in the eventual application of mass sensing.
For example, frequencies of the zero points under SRD scheme

when Resonator 1 is assumed to be perturbed by an additional
mass Δm can be written as:

ZmS1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk þ kcÞ=m
p

ð8Þ
where ZmS1 means the anti-resonance frequency of Resonator 1
with mass perturbation added to Resonator 1. From Equation (8),
it can be concluded that the anti-resonance frequency is
independent of the mass perturbation Δm. In contrast, when
Resonator 2 is assumed to be perturbed, the derived anti-
resonance frequency is:

ZmS1
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk þ kcÞ= mþ Δmð Þ
p

ð9Þ
where ZmS1

0
is the anti-resonance frequency of Resonator 1 with

mass perturbation added to Resonator 2. It can be concluded from
Equation (9) that the anti-resonance frequency is approximately a
linear function of Δm in a small range of Δm≪m. Therefore, we
can identify which resonator is applied with a mass perturbation
by observing whether the anti-resonance frequency changes.

Quantitative description of localization

To quantitatively describe the level of the mode localization, we
calculated the proportions of vibrational energy of the two modes
based on Equations (3) and (4). The vibrational energy is based on
the potential energy formula E ¼ 1

2
mx2. The quantitative energy

distributions of Resonator 1 under the SRD scheme are shown by
the blue squares in Figure 2c. The energy proportions of the first
and second modes are each 50% at the veering point, but
they become 9.32 and 90.68%, respectively, when δ decreases
to − 0.003. The energy distributions in the two modes exchange
with each other when δ is inverted to 0.003. This indicates that
when δ is far from zero, the vibrational energy is mostly confined
to a particular mode and not distributed between in the two
modes. In contrast, for Resonator 2 under the SRD scheme, as
shown by the blue squares in Figure 2d, the vibrational energy is
always evenly distributed between the two modes, both with and
without stiffness perturbation.
Interestingly, for Resonator 1 under the DRD scheme, as shown

by the red circles in Figure 2c, it can be observed that the
vibrational energy split in the first and second modes is 100 and
0% at the veering point, while an even energy proportion appears
at the point where δ=− 0.0021. For Resonator 2 under the DRD
scheme, as shown by the red circles in Figure 2d, an even split
appears when δ= 0.0021. This indicates that the vibrational energy
is inclined to be predominantly confined to the first mode when δ
approaches zero from the even energy proportion point, which is
different from the variation trend under the SRD scheme. This can
be explained by the fact that the second mode shape ([1, − 1]) of
the tuned system is ideally orthogonal to the external force vector
[1, 1]T, which makes the magnitude of the second mode 0 at the
veering point. With an increase of the stiffness perturbation, the
eigenvector of the second mode is no longer equal to the ideal
value ([1, − 1]) because the amplitude ratio varies with the change

in the stiffness perturbation: u2 ¼ - δ -
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 4κ2
p

� �

=2κ. Thus,

the eigenvector of the second mode will no longer be orthogonal

to the external force vector, and the energy proportion of the
second mode would therefore not be equal to 0 with the increase
of the stiffness perturbation. The vibrational energy proportions,
as shown in Figures 2c and d, can be used as a quantitative
characterization of the level of the mode localization. A
“localization factor”36 (γ) has been used to describe the level of
the mode localization.

γ ¼ - lnκ þ 1
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It can be observed from Equation (10) that the level of the mode
localization depends only upon the perturbation-to-coupling ratio,
and the mode localization becomes more pronounced as this ratio
increases37. Therefore, with a certain coupling factor, the larger
the perturbation is, the deeper the level of mode localization that
will be exhibited.
For the DRD scheme, it is reasonable to believe that the even

energy distribution point shifts from the usually considered
veering point (δ= 0), and the shifted value is based on the
solution of the function XD1 o1

j j ¼ XD1 o2
j jjj . According to

Equations (3) and (5), and using a numerical solution and linear
fitting method, the solution of the equation is δ≈− 2κ. That is,
under the DRD scheme, the point where the vibrational energy is
evenly distributed in the two vibration modes shifts from the
veering point, with a stiffness perturbation of − 2κ for Resonator 1
and 2κ for Resonator 2.

EXPERIMENTS

To verify the theories experimentally, a 2-DoF WCRs device was
designed and fabricated using a silicon-on-insulator (SOI)
process38,39. The device included two double-ended tuning fork
(DETF) resonators coupled by a mechanical beam and four tuning
electrodes around the two DETFs that were used to generate
artificial stiffness perturbations. Therefore, the device performed
as a stiffness sensor. The measurement setup and an SEM image
of the device are shown in Figure 3.
The device was actuated and sensed by gap-variation parallel-

plate capacitors. The designed actuation and sense capacitances
were 27.08 fF and 54.16 fF, respectively. The bias voltage applied
to the WCRs was Vbias= 25 V. A single-to-differential amplifier
(AD8031) was used to generate differential AC sweep signals of
equal magnitude that were opposite in phase, such that in-phase
forces could be generated. It was the SRD scheme when S1 was
open and the DRD scheme when S1 was closed. The motional
current was converted to a voltage by a trans-impedance amplifier
with a gain of 1 MΩ and measured by a dynamic signal analyzer
(Agilent 35670a). The device and measurement circuit were placed
in a vacuum chamber with a pressure of ~ 20 mTorr at room
temperature. The stiffness perturbation Δk was generated by
adjusting the voltage applied to the four independent tuning
electrodes beside Resonator 2. The stiffness perturbation was
calculated based on the formula Δk=− εA·ΔV2/g3, where
ε= 8.85 × 10− 12 F m− 1 is the permittivity of free space,
A= 9600 μm2 was the effective cross-sectional area of the tuning
capacitors, ΔV was the voltage difference between the tuning
electrodes and the WCRs, and g was the capacitor gap of 3 μm.

Feedthrough cancellation

Due to the capacitive driving and sensing methods as introduced
above, the sensing signal of the stiffness sensor was always
accompanied by feedthrough signal. The feedthrough signal was
coupled through the driving ports, substrate and package. It was
found that the feedthrough signal caused artificial anti-resonance
around the resonance frequency40 and also influenced the
location of the zero point between the two resonances for the
WCRs41.
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To investigate the anti-resonances variation due to the stiffness

perturbation but not the feedthrough signal, the feedthrough
signal had to be properly eliminated. The feedthrough cancella-
tion method used a matched device with the same structural size

as the stiffness sensor but that did not resonate. As shown in
Figure 3a, driving signals that were out-of-phase with that added
to the stiffness sensor were generated by two inverting amplifiers
(IA) and applied to the matched device. The bias port of the

matched device was connected to the ground, which meant that
the matched device was not resonating; thus amplitude-
equivalent and phase-opposite compensation currents were
generated. Therefore, by adding the compensation currents to

the sensing electrodes of the stiffness sensor, the sensing signals
inflowing to the trans-impedance amplifiers became feedthrough-
cleaning.

According to theoretical derivations using Equations (2) and (6),

the anti-resonance of Resonator 1 under the SRD scheme should
be located at the center of the two peaks, ZS1≈(ω1+ω2)/2, without
stiffness perturbation (δ= 0). Figures 4a and b demonstrate the

measured responses of the stiffness sensors around the veering
point (δ= 0) after feedthrough cancellation. It can be observed
from Figure 4a that the zero point (41185.5 Hz) is very close to the
midpoint (41 182.5 Hz) between the first mode (41 133.5 Hz) and

second mode (41231.5 Hz), which indicates that the feedthrough
signal was almost completely eliminated. However, there was still
a small residual feedthrough signal, because the structural sizes
and wire bonding between the matched device and the stiffness

sensor cannot be completely symmetric. Due to the residual
feedthrough signal, the zero point shifted slightly from the
theoretically predicted point. In addition, extra light anti-
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resonances appear at the points with frequencies lower than the
first mode.

RESULTS AND DISCUSSION

The magnitudes of the frequency responses of the two resonators
to stiffness perturbations under the SRD and DRD schemes were
recorded, and contour plots in the magnitude-frequency-
perturbation plane were obtained. The responses of Resonators
1 and 2 under the SRD scheme are shown in Figures 5a and b,
while the responses under the DRD scheme are shown in
Figures 5c and d, respectively. The color scale bar indicates the
magnitude of the vibration. Figure 5e shows the frequency
difference between the two modes, and Figure 5f shows the
measured vibrational energy distributions of the two modes of
Resonator 1 under the SRD and DRD schemes. In the following, we
will discuss the mode localization, anti-resonance behavior,
veering point shift, energy proportions and sensitivity comparison
of to the results.
We can observe the classical eigenvalue loci veering phenom-

enon from the two frequency loci under both the SRD (Figure 5a)
and DRD schemes (Figure 5c). The resonant frequency lines
(squares and circles) all indicate the phenomenon: the resonant
frequencies of the two modes repulse each other and do not cross
when they approach at the veering point. Considering the
vibrational energy, we can observe from Figures 5a and b that
the vibrational energies (expressed by the color scale) of both
Resonator 1 and Resonator 2 are evenly distributed between the
two modes with equal proportions at the veering point. With the
variation of the stiffness perturbation, the vibrational energy of
Resonator 1 in Figure 5a is no longer evenly distributed between
the two modes, while in Figure 5b, the energy distributions in the

two modes for Resonator 2 are unchanged. For convenience,
the region in which the stiffness perturbation is larger than that of
the veering point is termed the positive region and that in which it
is smaller is termed the negative region. The vibrational energy of
Resonator 1 is predominately confined to the first mode in the
positive region, while it is confined to the second mode in the
negative region, as indicated by the colored magnitude intensities
in Figure 5a. This is the energy confinement phenomenon
mentioned above. With the occurrence of energy confinement,
we can say that mode localization happens.
The anti-resonance frequencies of Resonator 1 vary almost

linearly with the stiffness perturbation under the SRD scheme, as
depicted by the diamonds in Figure 5a. The anti-resonance also
provides information about the energy confinement, whereas the
resonant frequencies cannot. It can be observed that the anti-
resonance is close to the center of the two modes when the stiff-
ness perturbation reaches the veering point of Δk=− 0.532 Nm− 1.
In the positive region, the vibrational energy is predominantly
confined to the first mode because the anti-resonance frequencies
move closer to the second mode and farther from the first mode.
The reverse is true in the negative region, where the vibrational
energy is predominantly confined to the second mode because
the anti-resonance frequencies move closer to the first mode and
farther from the second mode. In summary, the vibrational energy
is always confined to the mode farther from the anti-resonances,
and the location of the anti-resonance can be used as a signal of
the occurrence of energy confinement. In other words, mode
localization occurs at a deeper level as the anti-resonance moves
closer to the resonance. Therefore, the linear anti-resonance
behavior can be regarded as a new manifestation of mode
localization in the frequency domain.
However, it can also be observed from Figure 5 that the

measured anti-resonance loci are not completely identical to the
theoretical prediction. Only half of the anti-resonance loci match
the theoretical analysis; that is, the anti-resonance of Resonator 1
in the positive region under both the SRD (Figure 5a) and DRD
schemes (Figure 5b). The discrepancies relative to the theoretical
prediction are due to the residual feedthrough signal, which
induces additional anti-resonances at points with frequencies
lower than the first mode and higher than the second.
Under the DRD scheme, for both Resonator 1 and Resonator 2,

the anti-resonance loci cross the eigenvalue loci of the second
mode at the veering point. The veering point is a special case in
which the second mode completely overlaps with the anti-
resonance such that the vibrational magnitude of the second
mode at the veering point is approximately zero.
From the anti-resonance linear behavior, we know that the

location of the anti-resonance is in good agreement with
the stiffness perturbation. The anti-resonance should be located
at the center of the two modes (resonances) if the two resonators
are structurally symmetric, and the anti-resonance frequency will
shift from the center with the structural asymmetry of the coupled
resonators. In practical applications, by observing the location of
the anti-resonance in the frequency responses, we can identify
whether the coupled resonators are structurally symmetric.
The frequency difference is another commonly used output

metric for model-localized sensors. According to Equation (5), the
theoretical frequency difference between the two modes is

Δo ¼ o2 -o1 �o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 4κ2
p

=2. Thus, the theoretical frequency
difference for the SRD and DRD can be drawn as the green line in
Figure 5e, because the resonant frequency is an inherent property
of the resonators and is independent of the driving scheme. It can
be observed from Figure 5e that the minimum frequency
difference appears at the point of Δk=− 0.532 Nm− 1 (δ=
− 0.00355) under the SRD scheme, and Δk=− 2.58 Nm− 1 (δ=
− 0.0178) under the DRD scheme, while it should theoretically
appear at the veering point, where Δk= 0 Nm− 1. The shift of the
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veering point between the measured SRD line and the theoretical
line is caused by the initial structural asymmetry of the weakly
coupled resonators due to the fabrication tolerances. Although it
is difficult to quantitatively estimate the stiffness and mass
mismatches simultaneously, it is possible to use the obtained
frequency and veering point information to identify one
parameter between them if the other is assumed to be symmetric
or has been precisely measured42.
The vibrational energy proportions of Resonator 1 under the

SRD and DRD schemes are shown in Figure 5f. For the SRD
scheme, the proportion of vibrational energy of the first mode is
equal to that of the second mode at the veering point of
Δk=− 0.532 Nm− 1. In contrast, for the DRD scheme, the propor-
tion of vibrational energy of the first mode is ~ 100% and that
of the second mode tends to 0% at the veering point of
Δk=− 2.58 Nm− 1. The point where the vibrational energy is
evenly divided between the two modes appears at Δk=− 5.97 N
m− 1 (δ=− 0.0398) under the DRD scheme. The vibrational energy
proportions are nicely consistent with the above theoretical

analyses; thus, they provide a quantitative criterion for the level of
the mode localization. In practical sensor design, the vibrational
energy distributions can be used to determine the upper and
lower borders of the measurement range of the mode-localized
sensors. Limited by the detection capability of the capacitance
sensing method of the MEMS sensors, the amplitude will be
difficult to detect if the energy proportion of a particular mode is
too small. For example, as shown in Figure 5f under the DRD
scheme, the perturbation ranges of Δk4− 2.577 Nm− 1 for the
second mode and Δko − 10 Nm− 1 for the first mode cannot be
used because their vibrational energy proportions are too small
(o5%) to be detected. In other words, the linear working range
should be limited to [− 10, − 2.577 Nm− 1] if the first mode is
selected as the working mode.
By calculating the relative variations of the amplitude ratio and

frequency with the stiffness perturbation, we found that under the
DRD scheme, the amplitude ratio-based sensitivity is approxi-
mately an order of magnitude less than that under the SRD
scheme. The detailed and accurate relative amplitude ratio
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variations versus the stiffness perturbations are shown in Figure 6.
From the slopes of the curves, we can see that the amplitude ratio
sensitivity under the DRD scheme is − 70.44% (Nm− 1)−1, while
that under the SRD scheme is − 785.6% (Nm− 1)− 1. It must be
noted that the linear measurement range under the DRD scheme
([− 10, − 4.4 Nm− 1]) is extended compared to that under the SRD
scheme ([− 1.2, − 0.47 Nm− 1]). Although the sensitivities of the
amplitude ratio and frequency under the DRD scheme are not as
large as those under the SRD scheme, the range of linear
measurement is greatly enhanced. Additionally, the weakly
coupled resonators are more easily controlled in the in-phase
mode using the DRD scheme in the analog control circuit,
because the direction of the excitation forces under the DRD
scheme is the same as the in-phase vibrational direction. The DRD
scheme is a better choice for sensing applications of weakly
coupled micromechanical resonators when a particular mode
should be tracked precisely, such as in an accelerometer. In spite
of this, the SRD scheme is still very useful in a situation in which no
closed-loop control is required, such as in mass sensing. Therefore,
different driving schemes can be selected for different applica-
tions, depending on the sensitivity and measurement range
requirements.
Theoretically, the sensitivity of the first mode in the negative

region and sensitivity of the second mode in the positive
region should be equivalent, according to the derivation and
prediction from Figure 1. It can be observed from Figure 6b that
in the symmetry regions with respect to the veering point,
that is, [− 6.39, − 2.57 Nm− 1] in the negative region and [− 2.57,
1.61 Nm− 1] in the positive region, the sensitivity of the first mode
in the negative region is − 70.44% (Nm− 1)− 1, whereas the
sensitivity of the second mode in the positive region is − 65.9%
(Nm− 1)− 1. The two measured sensitivities are very close but not
completely equivalent, and the inequality is mainly caused by the
measurement uncertainty of the amplitude ratio.

CONCLUSIONS

In conclusion, in addition to verifying the two most commonly
used characteristics of disordered WCRs, that is, eigenvalue loci
veering and energy confinement, two new characteristics of mode
localization are discussed.
First, the anti-resonance loci show a linear relationship with

respect to the stiffness perturbation. The practical significance of
the anti-resonance behavior is that it can characterize the mode
localization in the frequency domain and can identify which
resonator is perturbed. However, it should be noted that the linear
anti-resonance behavior is not very suitable as a sensing
mechanism because tracking the anti-resonance introduces larger
measurement errors compared to measuring frequency or
amplitude shifts. The uncertainty/error of the anti-frequency is
related to the phase noise43. The signal-to-noise ratio of the anti-

resonance is difficult to improve because the amplitude of the
anti-resonance is smaller than that of the bias noise.
Second, forced localizations under the SRD and DRD schemes

are explored, and the energy distribution trends of the two modes
versus the stiffness perturbation are established. The established

energy distribution trends can be theoretically used to quantita-
tively characterize the level of mode localization. In practical
mode-localized sensor design, the energy distribution trends can
be used to determine the effective working mode and linear
measurement range of the sensors. In addition to the well-known

sensitivity enhancement of the amplitude ratio readout compared
to the frequency readout, we also demonstrated that forced
localization under the DRD scheme provides an enhanced linear
measurement range while sacrificing a certain degree of

sensitivity. The above consequences will contribute to the
closed-loop control design, effective linear measurement range
determination, and driving of method selection for weakly
coupled resonator-based sensors.
However, the design of the WCRs should be improved in future

work to avoid the certain structural imbalance caused by tuning
the stiffness of the outer tine of the DETF. The locations of the

anti-resonances in this work are still somewhat affected by
residual feedthrough signals; therefore, the feedthrough cancella-
tion method and the driving/sensing schemes should be
optimized to avoid the influence of the electrical parasitic
capacitance in future work.
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