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Abstract

This work establishes a characterization theorem for (generalized) Young mea-
sures generated by symmetric derivatives of functions of bounded deformation
(BD) in the spirit of the classical Kinderlehrer—Pedregal theorem. Our result places
such Young measures in duality with symmetric-quasiconvex functions with linear
growth. The “local” proof strategy combines blow-up arguments with the singu-
lar structure theorem in BD (the analogue of Alberti’s rank-one theorem in BV),
which was recently proved by the authors. As an application of our characterization
theorem we show how an atomic part in a BD-Young measure can be split off in
generating sequences.

1. Introduction

Young measures quantitatively describe the asymptotic oscillations in L”-weak-
ly converging sequences. They were introduced in [48—50] and later developed into
an important tool in modern PDE theory and the calculus of variations in [8,9,44,45]
and many other works. In order to deal with concentration effects as well, DiPerna
and Majda extended the framework to so-called “generalized” Young measures,
see [2,17,21,28,30,43]. In the following we will refer also to these objects simply
as “Young measures”.

When considering generating sequences that satisfy a differential constraint
like curl-freeness (i.e. the generating sequence is a sequence of gradients), the
problem immediately arises to characterize the resulting class of Young measures.
In applications, these results provide very valuable information on the allowed
oscillations and concentrations that are possible under this differential constraint,
which usually constitutes a strong restriction.

The first general classification results are due to Kinderlehrer and Pedregal
[23,24], who characterized classical gradient Young measures, i.e. those generated
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by gradients of W!-7-bounded sequences, 1 < p < oo. Their theorems put such
gradient Young measures in duality with quasiconvex functions as introduced by
Morrey [34]. For generalized Young measures the corresponding result was proved
in [21] (also see [22]) and numerous other characterization results in the spirit of
the Kinderlehrer—Pedregal theorems have since appeared, see for instance [11,19,
20,29].

Characterization theorems are of particular use in the relaxation of minimization
problems for non-convex integral functionals, where one passes from a functional
defined on functions to one defined on Young measures. A Kinderlehrer—Pedregal-
type theorem allows one to restrict the class of Young measures over which to
minimize. This is explained in detail (for classical Young measures) in [36]. A
similar application is possible for generalized Young measures.

The characterization of generalized BV-Young measures was first achieved in
[28]. A different, “local” proof was given in [40], another improvement is in [25,
Theorem 6.2]. All of these arguments crucially use Alberti’s rank-one theorem [1]
(see [31] for a short and elegant new proof) and thus, since this theorem is specific
to BV, extensions to further BV-like spaces have been prohibited so far. The only
partial result for a characterization beyond BV seems to be in [7], but that result
is limited to first-order operators (which does not cover BD) and also additional
technical conditions have to be assumed.

We now explain briefly the framework underlying this work and introduce some
notation to state our main result; precise definitions are given in Section 2. Given an
L!-bounded sequence of maps v = RV (Q ¢ R?), the Fundamental Theorem
of (generalized) Young measure theory states that there exists a subsequence of the
v;’s (which we do not relabel) such that for all continuous f : Q x RY — R with
the property that the recession function

/7 tA/
o A) = tim L)
x'—x t
A=A
— 00

xeQ, AeRN

exists, it holds that
/f(x, vj(x)) dx — «f, v» = /;2<f(x, ., vx> dx + /ﬁ(foo(x, ), vj?o) dry, (%),

where (Vy)ye, (vj?o)xeﬁ are parametrized families of probability measures on
RN and 9BV (the unit sphere in RN ), respectively, and A, is a positive, finite Borel
measure on 2. Together, we call v = (v, A, V{°) the (generalized) Young measure
generated by the (subsequence of the) v;’s.

In plasticity theory [41,42,47], one often deals with sequences of uniformly

L!-bounded symmetric gradients
1 T
Euj = Q(Vuj —G—Vuj).
It is an important problem to characterize the (generalized) Young measures v

generated by such sequences (£u ;). We call such v BD-Young measures and write
v € BDY(L2), since all BD-functions [41,42,47] can be reached as weak* limits
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of sequences (u;) as above. Recall that a function u € LY(©2; RY) lies in the
space BD(£2) of functions of bounded deformation if its distributional symmetrized
derivative Eu is a bounded Radon measure on €2 taking values in Rfyxnfl.

Our main result is the following:

Theorem 1.1. Let v € Y(2; Rg’yﬁl) be a (generalized) Young measure. Then, v is
a BD-Young measure, v € BDY (), if and only if there exists u € BD(Q2) with
[v] = Eu and for all symmetric-quasiconvex h € C(RZ*%) with linear growth at

sym
infinity, the Jensen-type inequality

di,
dcd

di,
dcd

h((id,vx>+(id,vfj°) (x))g(h,vx)+(h#,vf°> €9)

holds at L -almost every x € Q.

Here, the generalized recession function h*: RN — R of amap h: RY — R
with linear growth at infinity, i.e. |h(A)| < C(1 + |A|) for some constant C > 0,
is given as

h(tA
h*(A) := lim sup ( ), A eRV.
A=A !
11— 00

We remark that the use of the generalized recession function can in general not

be avoided since not every quasiconvex function with linear growth at infinity

has a (strong) recession function (and one needs to test with all those, but see

[25, Theorem 6.2]). Further, a bounded Borel function f: Rfyfnd — R is called

symmetric-quasiconvex if with Ey 1= (Vi + Vy 1) /2,

f(A) < ][ fA+EY(H) dy forall y € Wy™(D; R?) and all A € RE?
D

sym *

dxd
sym

{f,v) — min, v e BDY(Q) (1.1)

For a suitable integrand f: Q2 x R — R, the minimum principle

can be seen as the extension-relaxation of the minimum principle

dESu .
/ f(x, Eu(x)) dx +/ f°°<x, (x)) d|E’u| — min, u € BD().
Q Q d|E*ul

(1.2)
The point is that (1.2) may not be solvable if f is not symmetric-quasiconvex,
whereas (1.1) always has a solution. In this situation, our main Theorem 1.1 then
gives (abstract) restrictions on the Young measures to be considered in (1.1). An-
other type of relaxation involving the symmetric-quasiconvex envelope of f is

investigated in [5] within the framework of general linear PDE side-constraints.
Our proof of Theorem 1.1 roughly follows the “local” strategy developed in [40]
for the characterization of BV-Young measures. The necessity part follows from
a lower semicontinuity theorem, in this case the BD-lower semicontinuity result
from [38], as usual. For the sufficiency part, we first characterize “special” Young
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measures that can be generated by sequences in BD, see Section 3. These “spe-
cial” Young measures originate from a blow-up procedure and are called tangent
Young measures. There are two types: regular and singular tangent Young measures,
depending on whether regular (Lebesgue measure-like) effects or singular effects
dominate around the blow-up point.

For the regular tangent Young measures the classical methods of Kinderlehrer
& Pedregal [23,24] are applicable. In order to deal with singular tangent measures,
we first need to strengthen the result on “good blow-ups” for Young measures
with a BD-barycenter from [38], see Lemma 2.14, which is also interesting in
its own right. We combine this lemma with the analogue of Alberti’s rank-one
theorem in BD from [16], which imposes strong constraints on the underlying
BD-deformation (discussed in Remark 3.6). Glueing tangent BD-Young measures
together, see Lemma 4.2, we then prove Theorem 1.1 in Section 4.

We stress that our argument crucially rests on the BD-analogue of Alberti’s
rank-one theorem recently proved by the authors in [16], see Theorem 2.12. The
reason is that this result explains the local structure of singularities that can occur in
BD-functions (more precisely, in the singular part of the symmetric derivative). A
weaker version of this argument was already pivotal in the work [38]. However, to
prove Theorem 1.1, the strong version of [16] is needed. Technically, in one of the
proof steps to establish Theorem 1.1 we need to create “artificial concentrations” by
compressing symmetric gradients in one direction. This is only possible if we know
precisely what these singularities look like, see Lemma 3.5 and also Remark 3.6
for details. It is not clear to us if the use of Theorem 2.12 can be avoided to prove
Theorem 1.1.

As another very useful technical tool, we utilize the BD-analogue of the sur-
prising observation by Kirchheim and Kristensen [25] that the singular part of a
BV-Young measure is unconstrained. Without this observation, a weaker character-
ization result could be established, where, however a second, singular Jensen-type
inequality needs to be required. Indeed, it was shown in Theorem 4 of [38] that in
the situation of our theorem automatically also the singular Jensen inequality

n* (id, v)) < (h#, V) for Aj-almost every x € Q

X

holds. It is remarkable (and due to the observations in [25] alluded to above) that
this is, however, not needed to prove the characterization result.

The third central new ingredient in the proof is an argument yielding “very
good” blow-ups at singular points, which are not only two-dimensional, but even
one-dimensional (plus an affine part). This is achieved by iterating the blow-up
construction (using the observation that “blow-ups of blow-ups are blow-ups”); see
Lemma 2.14 for details.

As a (technical) application of Theorem 1.1, we show how our result can be
used to split off an atomic part from a BD-Young measure in generating sequences,
see Theorem 5.1.
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2. Setup and Preliminary Results

In this section we recall all the notation and technical tools that will be employed
in the subsequent sections. In particular, we collect many results from the framework
of generalized Young measure, usually specialized to the BD-case.

2.1. Functions of Bounded Deformation

The space BD was introduced in [32,41,42,47] for applications in plasticity
theory, much of the theory relevant to this work is developed in [3,6,13,26,46,47].

As a standing assumption throughout this whole work, let  C R? be an open
domain with Lipschitz boundary; in the following proofs we implicitly assume d >
2, but the main results are (trivially) true also for d = 1 since then BV and BD agree
and (symmetric-)quasiconvexity is just convexity. The space BD(2) of functions
of bounded deformation is defined as the space of functions u € L'(Q: RY) such
that the distributional symmetric derivative

_ Du + Du”
- 2

Eu :

is (representable as) a finite Radon measure Eu € M(Q; Rfyxnf). Clearly, BD(2)
is a Banach space under the norm ||u||gp(q) = llull.1 (@:Rd) T |Eu|($2).

We split Eu according to the Lebesgue—Radon—-Nikodym decomposition as

. dEu
T dcd

c Ll(Q, Rdxd)’

Eu=Eul'+ Eu, Eu: sym
where the approximate symmetrized gradient £u is the Radon—Nikodym deriva-
tive of Eu with respect to Lebesgue measure and E*u is the singular part of Eu
(with respect to £9).

Since there is no Korn inequality in L!, see [12,25,35], it can be shown that
BV(2: RY) is a proper subspace of BD(€2). See [13] for further results in this
direction.

A rigid deformation is a skew-symmetric affine map r: R — R9, i.e. u is of
the form

r(x) = ug + Rx, where ug € R4, R € ngzfi‘
We have the following Poincaré inequality: for each u € BD(€2) there exists a rigid
deformation r such that

||lu + V”Ld/(d—l)(Q;Rd) < C|Eu|(R2), 2.1)

where C = C(L2) only depends on the domain 2. This is shown for example in
[47] or see [46, Remark I1.2.5].

Finally, we will also define the symmetric tensor product a © b := (a @ b +
b®a)/2 = (abT + ba’)/2 of two vectors a, b € RY.
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2.2. Symmetric-Quasiconvexity

The appropriate generalized convexity notion related to symmetrized gradients
is the following: we call a bounded Borel function f': Rg’yﬁf’ — R symmetric-
quasiconvex if
f(A) < ][Df(A +&Y(y)dy forally € Wy™®(D;RY) and all A € RE:S,
where D C R? is any bounded Lipschitz domain. Similar assertions to the ones
for quasiconvex functions hold, cf. [18] and [10]. In particular, if f has linear
growth at infinity, we may replace the space W(l)’C>o (D; R?) in the above formula by
W(l) ! (D; Rd). It can further be shown, see [20, Proposition 3.4], that any symmetric-
quasiconvex f is convex in the directions R(a ® b) for any a, b € R\ {0}.

The symmetric-quasiconvex envelope SQf : Rg’yfr‘f — R of a Borel function
fiREOE - Ris

SQf(A) = sup{ g(A) : g symmetric-quasiconvex and g < f }.

This expression is either identically —oo or finite and symmetric-quasiconvex.
Analogously to the case for usual quasiconvexity (cf. [15,23]), for continuous f,
the symmetric-quasiconvex envelope can be written as

SOf(A) =inf{][ f(A+Ey(@)dz ¥ eW(l)’OO(D;Rd)}.
D

2.3. Generalized Young Measures

The following theory is mostly from [2,28,38], where also proofs and examples
can be found.

Let again Q C R? be a bounded Lipschitz domain. For f € C(Q x RY) and
g € C(Q x BY), where B" denotes the open unit ball in RV, we let

~

(Rf)(x, A) == (1—|A|)f(x,1 AA|), xeQ AeBY, and (2.2)

(R '9)(x, A) = (1+|A|)g(x, >, xeQ, AeRV.

1+ [A]
Clearly, R"'Rf = f and RR™'g = g. Define
E(Q;RY):={ f € C(2 x RY) : Rf extends continuously onto  x BV }.

In particular, f € E(Q;RY) has linear growth at infinity, i.e. there exists a
constant M > 0 (in fact, M = || Rf || xpN)) With

|f(x,A) <M1 +|A]) forallx € Q, AeRV.
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Furthermore, for all f € E(Q; RY), the (strong) recession function f°°: Q x
RN — R, defined as
/’ tA/ o
PR A = im L9 G ARV, 2.3)
x'—x t
A'—A
11— 00
exists and takes finite values. Clearly, f°° is positively 1-homogeneous in A, thatis
F®(x,2A) = af>(x, A) foralla > 0.1t can be shown thatin fact f € C(Q; RY)
is in the class ELQ; RY) if and only if f° exists in the sense (2.3).
For f € C(Q x RY) with linear growth at infinity, f° _may not exist, but we
can always define the generalized recession function f#: Q@ x RV — R via

t 9

F*(x, A) := lim sup xeQ, AeRV.

x'—x
A'—>A
t—00
It is easy to see that f¥ is always positively 1-homogeneous and upper semicontin-
uous in its second argument. In many other works, f* is just called the “recession
function”, but here the distinction to our (strong) recession function f° is impor-
tant.
A (generalized) Young measure v € Y(Q; RY) c E(2; RY)* on the open
set 2 C R? with values in RN is a triple v = (vy, A,, V2°) consisting of:

(i) a parametrized family of probability measures (vy),eq C M1 (RVY), called
the oscillation measure;
(ii) a positive finite measure A, € M_(Q), called the concentration measure;
and
(iii) a parametrized family of probability measures (V{°), . C M; (SN,
called the concentration-direction measure,

for which we require that

(iv) the map x — v, is weakly* measurable with respect to £, i.e. the function
x> (f(x, ), vy)is L£4-measurable for all bounded Borel functions fiQx
RN - R;

(v) the map x — v{° is weakly* measurable with respect to A, ; and

(Vi) x > (|+], vx) € L1().

Equivalently to (i)—(vi), one may require

(vy) € L3.(92; M (RY)), Ay € My (Q),
(1) € LK, Ay M (SV 1Y), x> (], vx) e LY(Q).

The duality pairing between f € E(Q; RY) and v € Y(Q; RV) is given as
(f.v) = fg (G, ),y dx + fﬁ (£ x. +), v) diy ()

;:// f(x,A)dvx(A)dHﬁ/ £ A) dvP(A) diy (o).
o JrN a Jamy
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The weak™* convergence v; X vin Y(2; Rﬁ) c E(Q; RY)* is then defined with
respect to this duality pairing. If (y;) C M(€2; RY) is a sequence of measures with
sup; |y;1(€2) < oo, then we say that the sequence (y;) generates a Young measure

v € Y(Q; RY), in symbols y; X v, ifforall f € E(: RY) it holds that

dy; o dy; s
f(x,ﬁ(x)) EdLQ‘Ff <x’W}|(X)) |Vj|
S ) L+ (2, ) A in M(Q).

Here, yj? is the singular part of y; with respect to Lebesgue measure. Equivalently,

Y . *
we could have defined y; — v by requiring that §,, — v, where §,,; are “elementary
Young measures” that are naturally associated with the y;.

Also, for v € Y(L2; RY) we define the barycenter as the measure
[v] == (id, ve) £7L Q@ + (id, v°) A, € M( RY).

The following is the central compactness result in Y(2; RY):

Lemma 2.1. (Compactness) Let (v;) C Y(£2; RN) be such that
sup; ((]l ® |-, v.,')) < 00.

Then, (v;) is weakly* sequentially relatively compact in Y (2; RN), i.e. there exists
a subsequence (not relabeled) such that v A vandv € Y(Q:; RN).

In particular, if (y;) C M (Q; RV) is a sequence of measures with sup i il ()
< 00 as above, then there exists a subsequence (not relabeled) and v € Y(£2; RM)
such that y; X

By a standard density argument it suffices to check weak*-convergence of

Young measures by testing with a countable set of integrands only, which is equiv-
alent to the separability of the space E(2; RV):

Lemma 2.2. There exists a countable family {¢; ® he}ren C E(2; RM), where

¢ € C(Q) and hy € CRYN) such that for vi,v2 € Y(2 RN) the following
implication holds:

«W ® hy, V]» = (((pe ® hy, vz)} foralll e N — v =v;.

Moreover, all hy can be chosen Lipschitz continuous and each hy has either compact
support or is positively 1-homogeneous.
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2.4. BD-Young Measures

A Young measurein Y (£2; Rfyﬁl) iscalled a BD-Young measure, v € BDY(2),
if it can be generated by a sequence of BD-symmetric derivatives. That is, for all

v € BDY(£2), there exists a (necessarily norm-bounded) sequence (u;) C BD(2)

with Eu X v. When working with BDY (€2), the appropriate space of integrands
iIsE(Q; Rfyxnﬁi), since it is clear that both v, and v{° only take values in Rfyxnfl when-
everv € BDY (). Itis easy to see that for a BD-Young measure v € BDY (£2) there
exists u € BD(Q) satisfying Eu = [v]L_2; any such u is called an underlying
deformation of v.

The following results about BD-Young measures constitute a “calculus” for
BD-Young measures, which will be used frequently in the sequel see [28,37,38]
for proofs (the first reference treats BV-Young measures, but the proofs adapt line-

by-line).
Lemma 2.3. (Good generating sequences) Let v € BDY (). Then:

(i) There exists a generating sequence (u;) C BD(2) N C*>(Q; R?) with Eu; X
vy

(ii) If, additionally, 1, (02) = O, then the u; from (i) can be chosen to satisfy
ujloq = ulyq, where u € BD(2) is any underlying deformation of v.

The proof of this result can be found in [28, Lemma 4].

Lemma 2.4. (Averaging) Let v € BDY(R2) satisfy A,(02) = 0. Also, assume
[v] = Eu for some u € BD(R2) satisfying on e of the following two properties:

(1) u agrees with an affine map on the boundary 92; or
(i) 2 is a cuboid with one face normal € € S*~' = dB? and u is &-directional,
that is u(x) = nh(x - &) with h € BV(R) for some 1 € R%.

Then, there exists a Young measure v € BDY () acting on f € E(Q2; R4X?) as

sym
()= [ fireom)ayas
A ()

+/Q][§(f (x, +), V%) day(y) - o] dx. (2.4)

More precisely:

(1) The oscillation measure (Vy)y is Ed-essentially constant in x and for all h €

C(R‘Siyff) with linear growth at infinity it holds that

(h, 5) = ][Q<h, widy ae:

(2) The concentration measure A is a multiple of Lebesgue measure, 1 = aldl
Q, where o = A, (2)/|2|;



1096 Guipo DE PHILIPPIS & FILIP RINDLER

(3) The concentration-direction measure (V°)y is £d—essentially (Ay-essentially)
constant and for all h*>° € C(dBL*?) it holds that

sym

(h, 52°) = ][Q(h"o V) () ae.

Remark 2.5. We remark that one may consider any averaged Young measure as in
the preceding lemma to be defined on any bounded Lipschitz domain D  R¢, so
that v € BDY (D) and (2.4) is replaced by

= [ Flrewom) e

da, “Q)
/][f (x, ), 150} dau (y) - o

forany f € E(D; Rdde) This can be achieved by a covering argument analogous
to the proof of Lemma 2.4 in [28, Proposition 7] (covering D with rescaled copies
of Q).

The proof of case (i) is contained in [28, Proposition 7], the proof of (ii) is similar,
but requires an additional standard staircase (piecewise affine) construction to glue
the rescaled versions of u together without incurring an additional jump part. Let
2 and (u;) be as in (ii). First, by Lemma 2.3 we may assume that there exists a

sequence (#;) C BD(Q2) N C*®(; R9) with Eu; 1) vand ujlpe = ulsq. For
every j € Nletaj, € R? be defined such that the similar rescaled sets kI =
aju + j_IQ, k=1,....7,l=1,..., jd_l, form a cover of 2. We furthermore
assume that the €2, are arranged in a regular grid with Qi (I =1, ..., jd_l)
lying in the k’th slice in &-direction.

Furthermore, denote by y € R? the difference between the trace of u on the
face of u in the positive &-direction and u in the negative &-direction; note that
because of the assumption that u has the shape u(x) = nh(x - §), y is a constant
vector. Then define

k
1 . . |
=Uj X —aijx))+y— if x Eajx + Q,
j( ): b ](]( J )) Vj J J

0 otherwise.

It is easy to see that w; € WL(Q: R™) (recall that ujlpe = ulyge). For the weak
derivative we get

Vuj(jx —ap) ifx eaj+ 7',

Vwi(x) =
i) 0 otherwise.

Note that the staircase term yk/j is chosen precisely to annihilate the jumps over

the slice boundaries in direction &; over the other boundaries there are no jumps

by the assumption on the shape of «. It can now be checked, following line-by-line

the proof of [28, Proposition 7], that the w; generate v as required in the lemma.
A special case is the following corollary:
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Corollary 2.6. (Generalized Riemann—Lebesgue lemma) Let u € BD(2) that sat-
isfied (i) or (ii) from the previous lemma. Then, for every open bounded Lipschitz
domain D C R? there exists v € BDY (D) that acts on f € E(D; RExdy g

sym

(5 v) / ][ fx, Eu(y)) dy dx

) )
el /][ ( dIEu |(”)d'E I d.

Moreover, A, (0€2) = 0.
We will also need the following approximation result, see [28, Proposition 8].

Lemma 2.7. (Approximation) Let v € BDY(Q) satisfy 1,(02) = 0. Also, as-
sume that [v] = Eu for u € BD(2) satisfying one of the conditions (i), (ii) from
Lemma 2.4. Then, for all k € N, there exists a partition (Cy;); of (Ed + Ay)-almost
all 0f§ into open sets Cy, | = 1,..., N(k), with diameters at most 1/k and
(L4 4+ 1,)(3Ck) = 0, and a sequence of Young measures (vy) C BDY () such
that

K -YQ.Rdxd k
Vk v in Y(; sym) as k — oo

and for every f € E(S2; REx4)

sym

N (k)

(£ v = 2_(f: v Cua)),

=1

where vI_Cy; designates the averaged Young measure (as in Lemma 2.4) of the
restriction vI_Cy; of v to Cyy.

2.5. Localization of Young Measures

The paper [38] proved two localization principles for BD-Young measures,
leading to so-called “tangent Young measures”’; here and in the following, for ease
of notation, we leave out the dependence of the spaces on Rfyxnf.

We first define the following regular, or homogeneous, spaces of (tangent)
Young measures for Ag € ngxmd (O being the standard unit cube).

E°:={1®h : 1®hecEQ; R ],

sym
Y2 (Ag) := {0 = (01, 2o, 0°) € Y(Q: RO+ [0] = AL LQ,
oy, ayoo constantin y, A, = al? L_Q forsomea >0 },

BDY™(Ag) := Y 8(Ag) N BDY(Q)
= {0 € Y™(A) : 3(vj) C BD(Q) with Eu; > o }.

The first localization principle then reads as follows:
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dxd
IRsym

measure. Then, for L -almost every xo € S there exists a regular tangent Young
measure

Proposition 2.8. (Localization at regular points) Let v € Y(2; ) be a Young

o €Y (Ag),  where  Ag = (id, vy,) + (id, ”x0>§£d( 0

which satisfies

[o] = Ao CdLQ € Tang([v], x0), Oy =Vy, a.e.,
Ao = dﬁd Y (xo) LY Q € Tang (Ay, X0), 0)?0 =V ae.

Additionally, if v € BDY(Q2), then o € BDY"™®.
Here, Tang (1, xo) contains all (restricted) tangent measures of ;1 € M (£2; RM)
at xo € €, i.e. those measures & € M(Q; RY) such that there exists r, | 0 and

cn > 0 with ¢, T, 11 X o, where T*0:"n (x) := (x — x0)/r, and

T = o (T ™1 = (o + 1)

is the push-forward of p under 7%0-"». A proof for the preceding proposition can
be found in [38, Proposition 1].

We furthermore remark that o in Proposition 2.8 is such that for all open sets
U c Q with £4(@U) = 0, and all h € C(R*?) such that the recession function
h®° exists in the sense of (2.3), it holds that

((]1U®h,o))=[(h, )+ (1% ) S 0 0)}|U|.

For the singular counterpart to Proposition 2.8, we first introduce the following
spaces for any bounded Lipschitz domain D C R? (we again omit mention of Rfyxnfl
for ease of notation):

ES"(D) = { f € E(D; Rfyxn‘li) ¢ f(x, ) positively 1-homogeneous }

YD) 1= (v = (y, h v5°) 1 vy = o ae. ),
BDY*"¢(D) := YS"¢(D; RY*?) N BDY(D).

sym

The duality pairing between ES"8(D) and YS"¢(D) is
(i) ;=ﬁ/ oA dv2°(A) di, (x).
D J OB

Furthermore, we say that the sequence of measures (1 ;) C M(D; Rfyfnd) generates

the singular Young measure v € Y*"2(D), in symbols p j X v, if

d .
/f(x d|'U“J| (X)) dlpjl(x) — «f, 1)>> for all f € ES"¢(D).
M
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Proposition 2.9. (Localization at singular points) Let v € Y (£2; Rg ’I(Tﬁi) be a Young

measure. Then, for 15 -almost every xo € 2 and every bounded Lipschitz domain
D C R4, there exists a singular tangent Young measure

o € Y"¢(D)
satisfying
[o] € Tanp([v], x0), oy =4y a.e,
Ao € Tanp (A}, x0) \ {0}, ayoo = v;’(‘f Ao-dLe..

Additionally, if v € BDY (), then o € BDY*"¢(D).

A proof of this fact can be found in [38, Proposition 2].

2.6. Good Singular Blow-Ups

In this section, as a preparation for the singular analogue of Proposition 3.1,
we establish a result about good blow-ups for BD-Young measures in Lemma 2.14
below.

First, we recall from [38, Theorem 3] the following result. We here state it
in a slightly different fashion, namely for Young measures with a BD-barycenter
instead of BD-generated Young measures.

Lemma 2.10. (Good singular blow-ups) Let v € Y(R2) be a Young measure with
[VILQ = Eu for some u € BD(Q).

For A3 -almost every xo € Q2 and every bounded Lipschitz domain D C RY, there
exists a singular tangent Young measure o € YS"&(D) as in Proposition 2.9 with
[c] = [0]L_D = Ev for some v € BD(D) and the appropriate assertion among
the following holds:

W) If(id, vy) ¢{a©b :a,be R?\ {0} } (this includes the case (id, vr) =0)
then v is equal to an affine function almost everywhere;
(i) If (id, v°) = a © b (a, b € R\ {0}) with a # b, then there exist functions

9 xo
dxd cich that

g1, 8 € BV(R), vy € RY, and a skew-symmetric matrix R € Ry .,

v(x) =vo+ g1(x -a)b+ g2(x - b)a + Rx, x e RY a.e.;

(>iii) If (id, v;?) =a0®a(a € RY\ {0}), then there exists a function g € BV(R),

R4 such that

vo € R? and a skew-symmetric matrix R € Skew

v(x) =v9+g(x-a)a+ Rx, xeR%ae.

Remark 2.11. In the preceding theorem, one sees easily that if v € BDY(£2), then
also o € BDY®*"¢(D) (this is the original statement in [38, Theorem 3]). For us,
however, this fact is not needed.
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The proof is the same as in [38, Theorem 3], where the whole argument is
only concerned with the barycenter and not the generating sequence. Moreover,
we remark that [0](d D) can be achieved by a rescaling of the blow-up sequence
rn 4 0into ar, | 0 for some « € (0, 1) such that [0](d(« D)) = 0 (assuming that
0e D).

The next ingredient we will need is the theorem on the singular structure of
BD-functions, proved in [16]:

Theorem 2.12. Let u € BD(S2). Then, for | ESul|-almost every x € S, there exist
a(x), b(x) € RY\ {0} such that

B ) = a) © bx)

—— ) =alx X).

d|ESu|

This is the BD-analogue of the following celebrated Alberti rank-one theorem

[1]:
Theorem 2.13. (Alberti’s rank-one theorem) Let u € BV (L2). Then, for |D*ul-
almost every x € Q, there exist a(x), b(x) € R4 \ {0} such that

dD%u

d|Dsu|

(x) =a(x) ® b(x).

We will now state and prove a strengthened version of Lemma 2.10. For this,
we first define suitable spaces.
In all of the following, let & € S?~! and denote by Q¢ the rotated unit cube

(1Q¢] = 1) with one face normal §. We first define one-directional versions of
the spaces ES'"8, YS'""2 BDY®"¢ for Ay € Rfyflfl \ {0}, &€ € S¥71; as before, we

dxd.
sym *

EM(E) = {f e B Qg R ¢ fO, ) = -5, 9],
Y2 (Ag, €) i= {0 = (0x, 2o, 07°) € Y™ (Qg; RGED ¢ [0] = Ao,

sym

henceforth leave out the dependence of the spaces on R

o oo . .
oy =0y%, Ao 18 E-directional },

BDYSing(AO, E) = Ysing(Ao’ E) N BDYng(Qs)

Here, the &-directionality of A, means that for all Borel sets B C Qg it holds that
Ag(B +v) = Ay (B) forall v L & such that B + v C Qg. Notice that we require
Ag # 0 here (the case Ag = 0 is treated in the next subsection).

Finally, the spaces Yf)ing(Ao, &), BDY(s)ing(Ao, &) are defined to incorporate the
additional constraint A, (02) = 0.

Lemma 2.14. (Very good singular blow-ups) Let v € Y(2) be a Young measure
with

[VILQ = Eu  for some u € BD(S2).
For A% -almost every xo € S, there exists a singular tangent Young measure

o e Y (E O E)
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such that [o] = [0]L Q¢ = Ev for some v € BD(Qg) of the form
v(x) =vo+gx-En+BE®Nx+ Rx, x¢€ Q;a.e,

where vg € R, B € R, g e BV(R), &, € R?\ {0}, and R € R4xd

skew*

Remark 2.15. We note in passing that this improvement in fact allows one to
slightly simplify the proof of the lower semicontinuity result in [38] as well.

Proof. Let u € BD(Q2) with [v]L_Q = Eu. Then, E*u = (id, v°)A} and
(id, v°) = a(x) © b(x) for Aj-ae.x € Q, (2.5)

and some a(x), b(x) € RY. Indeed, denoting by A} the singular part of X, with
respect to | ESu/, the above holds at | E*u|-almost every x € Q with a(x), b(x) # 0
by Theorem 2.12 and at A}j-almost every x € Q with a(x) = b(x) = 0.

From the previous Lemma 2.10 we get that there exists a singular tangent Young
measure T € Y$"¢(D) to v at A% -almost every xo € €2 that satisfies (i), (ii) or (iii).
We have that for any w € BD(RY) with Ew = [7],

Ew = [t] = (id, v;’g’)kr =(a® b)),
for some a, b € R?. Indeed, by Proposition 2.9 we get Ty = vy for Ar-almost
every y € D, which implies the first equality. Further, if x( is chosen such that (2.5)
holds, we infer (id, r;’o) = (id, vy) = a(xp) ® b(xo) for A,-almost every y € D.

Step 1. If a, b are parallel, say a = b after rescaling, then the statement of the
present lemma follows immediately with o := 7, & := a/|al = b/|b|, D = Q¢
(note that we can choose D in Lemma 2.10 as we like and we can decide beforehand
whether a, b are parallel, see (2.5)). In this case, 0 = T € Y¥"8(a®a, a), as follows
directly from Proposition 2.9 and Lemma 2.10 (iii).

Step 2. Only in the case (id, vy) = a © b with a # b there is something left
to prove. Without loss of generality we assume that @ = e; and b = e, which is
possible after a change of variables. In this case, by Lemma 2.10 we have that for
any w € BD(Q) with Ew = [t] there exist functions g1, g2 € BV(R), wg € R4,

and a skew-symmetric matrix R € Rfkivdv such that

w(y) = wo+g1(yes + g2(vDer + Ry forae.y=(y',...,y) e RL
Moreover,
Dw=(e2®e)Dg1 ® LT+ (e1 ®ex)L! ® Dga ® L2 + RLY,  (2.6)

and D*g; ® £47 1 is singular to £! ® D¥gy @ L4772,

Case (I). If either Dg; or Dg; are the zero measure, the conclusion of the
theorem is trivially true with o := 7, & = ey, n := e, D the standard open
unit cube. So, henceforth assume that both Dg{, Dg> are not the zero measure. In
the following we denote by g/, g, the approximate derivatives of g1, g2, i.e. the
densities of Dgy, Dgs with respect to Lebesgue measure.

Case(11).1f D* g, D® g, = 0, then we may use the regular localization principle,
Proposition 2.8, to construct a non-zero regular tangent Young measure o € Y™8
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of T at yo € RY. We will argue below that in fact o is a singular tangent Young
measure to our original v at xo and that [c] € BD(£2), see Step 3 of the proof.
Case (III). On the other hand, if D*g; # 0 (without loss of generality), then
we claim we can find yg = (so, f, y3, e, yd) € R? with the property that there
exists a non-zero singular tangent Young measure o € Y*"¢(Q) to  at y, and that

1 to+r 1
lim—/ |g§(t)—oc|dt=0 and lim —|D*g2|((tg — r, tg + 7)) =0
01 Jig—r r{0 r

with a constant o € R.

Indeed, notice that second and third conditions hold for £!-almost every fo
because the set of Lebesgue points of g/ has full Lebesgue measure in R and the
Radon-Nikodym derivative of D*g, by £L! is zero £'-almost everywhere. Hence,
they hold for (|D%g;| ® £471)-almost every yo = (50, f0, Y3, ..., Yd) € R by Fu-
bini’s theorem. By the singular localization principle for Young measures, Propo-
sition 2.9, we know that the first property holds for almost every y € R? with
respect to A%. By (2.6), and the fact that [D*g(| ® £471 is singular with respect to
L'® |D*gr| ® L2, we have

|ESw| =le1 @ el (1D g1 @ LY + L1 @ Dl © L977).

Thus, |D’g1| ® £471 + 0 is absolutely continuous with respect to |ESw|.
Furthermore, | E*w| is absolutely continuous with respect to A because

A = V2|(id, v) A8 = V2| ESwl,

s Yxo
since [(id, viy')| = le1 © e2] = 1 /+/2. Thus, the first condition also holds at
(|D*g1| ® L4~ 1)-almost every yo and we find at least one yo = (s, f9, ¥°, . . . » yd)

with the claimed properties.

Step 3. We observe that o is still a singular tangent Young measure to v at the
original point xy if the latter was chosen suitably. Indeed, it can be easily checked
that the property of being a singular tangent Young measure is preserved when
passing to another “inner” (regular or singular) tangent Young measure; the only
non-obvious fact here is that “tangent measures of tangent measures are tangent
measures”, but this is well-known and proved for example in Theorem 14.16 of
[33].

The “inner” blow-up sequence of the BD-primitives of the barycenters has the
form

w () == ri w0 +ra2),  zeRY
with r, | 0 and constants ¢, = r, 4 if we are in case (II) and
1 _ 1
(Lowor @11 T) V2 A:(Q(y0, 7))

if we are in case (IIl). Note that in both cases limsup,_, . r¢c, < oo. To re-
tain a BD-uniformly bounded sequence, it might also be necessary to add an (n-
dependent) rigid deformation to w™, but for ease of notation this is omitted above.

2.7

Cp =
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Then, w™ X vin BD(Q) and v has the property that Ev = [o]. For Ew™
we get

Ew® = (e1 @ e2)(rilen[g (50 +raz") + 50 +raz))] £4(d2)
_i_CnT#yOarn [Dygl ® Ed*] +£1 ® Dsg2 ®£d72])
Letgp € CSO(Rd) and choose R > 0solarge thatsupp o CC Q(0, R) = (—R, R)?.

Using the special properties of our choice of yq together with the fact thatc,, < r,; d
as n — 00, we observe that

Y=o

n

r,i’cnf¢<z> 185(t0 + raz®) — | dz = /(p( )Ig5(?) — al dy
1 /2
< Cllglloo— 1857 — el dy
Tn JOGo.raR)
and this goes to zero as n — 00. Also,

Cn/(p dT#"Oyrn [Cl ® DSg2 ®£d—2]

=cp //fp(y_yo) dD*g>(y2) d(y1, ¥3, -, Ya)

In
|D*g2|(to + (—rn R,y R))
< Cl¢llso —
'n
L9750, 33 - YD) + (R, i R
. T —0 asn— oo
'n

Hence, the e,-directional parts of Ew in the limit converge to the fixed matrix
B(e;®er), where B = alim,,_, oo rff ¢y, (this limit exists after taking a subsequence).
More precisely, in case (II), #r,; 4 and o is a regular tangent Young measure to 7,
thus potentially 8 # 0; otherwise, in case (III) it must hold that 8 = 0 (since ¢, ~
AL(Q (o, )~ Y. The e;-directional parts of E w® clearly stay ej-directional
under the operation of taking weak™* limits. Thus, v is of the required form, with
(¢,n) =(er,e2). O

2.7. Functional Analytic Properties of BDY™¢, BDY*"¢

In this section we prove the following lemma about our tangent Young measure
spaces:

Lemma 2.16. The sets BDY™¢ and BDY*™(a © b, &) are convex and weakly*
closed (with respect to the topology induced as a subset of (E*8)* and ES™8(£)*)
foralla,b e R4\ {0}, £ € {a, b}.

Proof. We only prove the statements for BDY*"2 (a®b, &) since they are more diffi-
cult (for regular BD-Young measures the argument is easier because our underlying
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deformation of the homogeneous Young measure is even affine). We furthermore
assume without loss of generality that £ = a.

Step 1: Weak*-closedness of BDY*™(a®b, a). Let { fn}nen = {@0n @hp}nen C
ES"2(g) be a countable set of integrands that determines Young measure con-
vergence in YS"2(a © b, a), this can be achieved by a reasoning analogous to
Lemma 2.2 (only take &-directional ¢, and positively 1-homogeneous 4,,). Let o
be in the weak* closure of BDY*™(a ® b, a). Then, for every j € N there exists
oj € BDY*"¢(a © b, a) with

1
((fn-0s) = (S + (L @11 o)~ (L@l o)l < - foralln < ).
In particular, o; X 5in ESi"¢(4)* and also in Y(Qu; Rfyﬁ‘]j) since the sequence

(o) is compact in that space. Indeed, (1 ® |+|, o)) is uniformly in j bounded, so
we may use the compactness result from Lemma 2.1. It is not hard to check that the
defining properties of Y¥"¢(a ® b, a) (such as the a-directionality of Ao, y Vo)
are preserved under weak* limits, hence o € Y¥"¢(a © b, a).

We need to show also that o is generated by a sequence of symmetric gradients,
which follows by a diagonal argument: select for each j € N a function u; €
BD(Q,) NC®(Qy; Rd) (see Lemma 2.3) with the property that

~.| —

‘fQ Sues Euj () dx = (fu o )| + (€l = (L@ -1, 05| = =

%9

for all n < j. Then, adding a rigid deformation to the u;’s, Poincaré’s inequality
in BD, see (2.1), yields that there exists a (non-relabeled) subsequence such that

Eu; X) uw € BDY(Q,). Clearly, u = o by construction.

Step 2: Convexity of BDY*"2(a © b, a) assuming r(0Q4) = 2, (0Q4) = 0).
Let u,v € BDY*™(qa ® b, a) be such that Au(3Q4) = M(0Q4) = 0 and let
0 € (0, 1). By the approximation principle, Lemma 2.7, we have that both p, v
are weak™* limits of piecewise homogeneous and averaged Young measures. The
partition with respect to which the approximations are piecewise constant can be
chosen the same for both p and v (this can be seen from the proof of the averaging
principle in [28, Section 5.3]). Thus, by the weak™* closedness proved in the first
step, it suffices to show the result for homogeneous, one-directional BD-Young
measures.

Assume now that we have two homogeneous, one-directional BD-Young mea-
sures ji, € BDY*"8(a © b, a) with 1, (3 Q,) = A, (3 Q4) = 0, which we assume
to be defined on a cube with one face orthogonal to a. Indeed, by Remark 2.5 we can
always assume that the averaged Young measures /¢, v are defined on Q, (one can
also argue by inspecting the proof of Lemma 2.7 to conclude that the subdivision
may be chosen to consist of cubes only).

Without loss of generality we further assume a = e; and said cube to be the
unit cube Q = (—1/2,1/2)?. Thus, [it] = Eu, [v] = Ev for u(x) = nbxi,
v(x) = mabx; (we can remove any additional rigid deformation). Indeed, since
(2] = n1(a © b)LYLQ (n1 > 0), the u defined before satisfies Eu = [ji]. Next,
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let (u;), (vj) C BD(Q)NC>(Q; R?) be bounded sequences such that Eu;j X> I,

Evj 1) vandu; =u,v; =vondQ,see Lemma 2.3,

Now split Q into a slice S} = (—1/2,60 — 1/2) x (1/2,1/2)4~! with volume
6 and a slice $» = (6 — 1/2,1/2) x (1/2, 1/2)4~1 with volume 1 — 6. Then cover
S1., S> with disjoint re-scaled copies of Q of side length at most 1/; (for instance
arranged in strips), namely

=<Ul7jk+8jQ>UN1, Sz=(quk+6jQ>UN2,

keN keN

where ¢,8; < 1/j and |N1| = |N2| = 0. Set

8juj<x_gpjk)+“(l7jk) ifx € pjx+e;Q.keN,
w; =
' 8”/( 5 >+U(6]/k)+,3b ifxeqgju+68;0,keN,
with 8 € R suchthatthere is nojump between S; and S>,1.e. 8 = (n1—n2)(0—1/2).
Then,
gu,(#) ifx e pj+e0.keN,

Ewj = x—qu\
Evj(5HL) ifxequ+5;0.keN.

Moreover, (w;) is uniformly bounded in BD(Q) and Ew; X y € BDY* " (4 ©
b, a). Effectively, in S, S» we are repeating the averaging construction also under-
lying Lemma 2.4 and so, similar conclusions to the ones in that lemma hold. In
particular, we get for ¢ ® h € ES"¢(Q) with ¢ € C(Q), h € C(R%*?) that

sym

(e@n, y)= W/S @(x) dx + W/S @(x) dx.

Finally, apply the averaging principle, Lemma 2.4, to y to get 7 € BDY*"¢(q ©
b, a), which by (2.4) has the property

W@hﬁ=ﬂ®hwéwmm

=[o(1ena)+a-often u))]][ o(x) dx
0
0

(e ®h. i)+ 1 =6)p ®h o)

for ¢ ® h as above. This shows the claim for homogeneous, one-directional BD-
Young measures.

Step 3: Convexity of BDY*"#(a © b, a). To conclude the proof we show that
the set of 4 € BDY¥"¢(a © b, a) such that A (0Q4) = 0 is weakly* dense in
BDY®"¢(¢ © b, a). Indeed, assume that a = ej, o € BDY*™(e; © b, e;) and
that for (u;) C BD(Q) N C*(Q; R4 with ujlpp = bg(x1)]sp for some g €
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BV(-1/2,1/2), we have Eu; X o. We consider g to be extended continuously
to all of R. Then, define fora > 1,

u‘}‘(x) = uj(axy, x2, ..., xq).

. Y ; .
It is not hard to see that 5u‘}‘ — o for some 0% € BDY™€(e; O b, eq) with

*o(0Qq) =0and o® Loasa J 1. This and the previous step easily implies the
convexity of BDY*"€(a © b, a). O

3. Local Characterization

We first show the characterization result for tangent Young measures, i.e. those
Young measures originating from Propositions 2.8 and 2.9 above.

3.1. Characterization for Regular Blow-Ups

With the definition of E™8, Y™8(A(), BDY™8(A() from Section 2.5, we have
the following result about the characterization at regular points:

Proposition 3.1. Let o € Y®¢(Ag) for Ag € RY*? and assume that

sym

dig
h(Ag) < (h, oy) + (h*, U;’O)w(y)

dxd

for all symmetric-quasiconvex h € C(RSym

o € BDY™2(Ay).

) with linear growth at infinity. Then,

Our proof here is quite concise since it is very close to Kinderlehrer & Pedregal’s
original argument [23,24] and also essentially the same as the one given for [40,
Proposition 3.2].

Proof. Step 1. First, by Lemma 2.16, the set BDY™#(Aq) is weakly*-closed and
convex (considered as a subset of (E™€)*),

We will show below that for every weakly*-closed affine half-space H in (E™€)*
with BDY™(Ay) C H, we have 0 € H. Then the Hahn-Banach theorem will
imply that o € BDY"™8(Ap). Fix such a weakly* closed half-space H. By standard
arguments from functional analysis, see for example [14, Theorem V.1.3], there
exists fy € E™ such that

H={e" € E®" : "(fy) =« }.
In particular,
(fr,m) =«  forall x € BDY™2(Ay).

We will show {( fy, o)) > k, whereby o0 € H.
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Step 2. For the the symmetric-quasiconvex envelope SQ fy of f it holds that
SQOfu(Ap) > —oo. Indeed, otherwise we could find w € Wk(;’f (BY: R™), that is

w € WhO(B4; R™) and w(x) = Agx for all x € 9B, such that

/ FrEw(y)) dy < k.
]Bd

Then, using the generalized Riemann—-Lebesgue Lemma, Corollary 2.6, there exists
u € BDY™8(Aq) with

(f21. 1) = fB fuEw()) dy <k,

which is a contradiction.
For a fixed ¢ > 0, the function

ge(A) == fy(A) +¢lAl, AeR™4,
lies in E™8. It holds that

SQg:(Ao) = SQOfr(Ao) + €|Ao| > —o0.

Consequently, the function SQg. is symmetric-quasiconvex, see the appendix of
[23]. Moreover SQgc(A) < (M + 1)(1 4+ |A]). By Lemma 2.5 in [27], even
1SQgc(A)| < M(1 + |A|) for some M = M(d, m, M) > 0. Using g, > SQg.,
g > (S Qg.)*, and the assumption,

o 1) dy > 508 (A)BY]. (.1
qrd ) 4y = §Qg:(A0)[B7]. (3.1)

fee) = [ (505:.00)+ (508" o)

Next, take a sequence (w;) C Wi"(ff (B?; R™) with

]{Bd g:(Ewj(y)) dy — SQge(Ao).

Moreover, possibly discarding leading elements of the sequence (w),

SQ8:(Ap) + 1= ]][Bad ge(Ewj(y)) dy = ]][Bd SOfuEwj(y)) +eléw;(y)| dy
&

= SO (A0) +

NEw;lpr

Hence, the sequence (w;) is uniformly bounded in BD(BY) and, up to a subse-
quence, w; X w € BDY(B). Apply Lemma 2.4 to replace 1 by its averaged
version it € BDY™8(Ag). Then,

(e. i) = (e ) = Tim_ /1:5 | 8e(Ewj(y) dy = S Qg (A0) [B|.
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Combining with (3.1), we get

(for o) =(ge. o) —e(1 @11 0)
> S0g:(A)|B!| — el ® ||, o))
(ge. i) —e(1 ®1-1. o)
(< fa i) —e(l@l].0)
—&(1®]1-], 0),

vl

| V

since i1 € BDY™8(Ap) C H. Now lete | 0 to get {( fg, o)) > k. Thus, o € H.
O

3.2. Characterization for Singular Blow-Ups

Here we will prove the singular analogue of Proposition 3.1.

Proposition 3.2. YS‘“g(a Ob &) = BDYsmg( O b,&) forall a,b € R?\ {0},
£ € {a,b).

The preceding proposition is surprising since it says that every singular Young
measure in YSlrlg (a © b, &) is generated by a sequence of symmetric derivatives of
BD- functlons

We first record the following lemma, which is a direct consequence of the main
result in [25]:

Lemma 3.3. Let n € M (X; Rfyxmd) be a probability measure with barycenter
[n] = (id, u) = a © b for some a,b € RY, and let h € C(Rf;;nd) be positively
1-homogeneous and symmetric-quasiconvex. Then, the Jensen-inequality

h(a © b) = h((id, n)) < (h, )
holds.
To prove this result we recall a version of the main result of [25]:

Theorem 3.4. Let h*°: R‘siyfnd — R be positively one-homogeneous and symmetric
quasiconvex. Then, h™ is convex at every matrix a © b for a, b € R%, that is, there
exists an affine function g : Rf;;fl — R with

h°@Ob)=gla®b) and h*™ >g.

Proof of Lemma 3.3. By the preceding theorem, / is actually convex at matrices
a O b, that is, the Jensen inequality holds for measures with barycenter a © b, such
asour 4. 0O

The following lemma on “artificial concentrations” will be crucial in the sequel:
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Lemma 3.5. Let v € BDY(S), where for some z0 € Q4 R > 0, a € se-1

S=S(z0,R) :={x€ Q4 : |(x—2z0)al <R}

Assume further that there exists a sequence (vj) C BD(S) with Ev; 1) v and
vj(x) = bg(x - a) on S for some b € R? and g € BV(R). Then, there exists
v € BDY*"8(a © b, a) such that

(tenv)=(1®h, D) 3.2)

for all positively 1-homogeneous h € C(R‘slyxn‘f). The condition on the generating

sequence is in particular satisfied if [v] = Eu for some u € BD(S) with the
property that u(x) = bg(x - a) on dS.

Proof. Note thatby Lemma2.3if [v] = Eu for some u € BD(S) with the property
that u(x) = bg(x - a) on 95 there always exists (u;) C BD(S) N C*®(S; R%) with

Eu; X vand u;(x) = bg(x - a) on dS. Hence the second part of the statement
follows from the first.

Up to a translation and a one-dimensional scaling, we can assume that xo = 0
and R = 1. Let

S(zo,r)::{era:|(x—z())~a|<r}, 20 € Qq, ¥ > 0,
and define w; € BD(S) by

uj(jx) ifx e S0,1/)),
w;(x) = 1bg(—=1) ifx-a<-1/j, x € Qg,
bg(+1) ifx-a>1/j,

\%

where g(£1) is defined in the sense of trace. It can be seen that w; generates a
Young measure u € BDY(Q,) with i, = 8o almost everywhere since Ew; — 0
in measure. Furthermore, for all positively 1-homogeneous & € C(Rfyﬁ‘lj), we get
from the a-directionality of g that

(t®h, u)= lim Jh(€uj(jx)) dx
J=00J5(0,1/))

= lim h(€u;) dx

J—>00 Q(l

=(1®h,v).

Now apply the averaging principle, Lemma 2.4, to i to get ¥ € BDY*"¢(a © b, a)
with the property (3.2). Indeed, the maps y +—> ﬁ;’o, X = f);?o are constant (a.e.)
and A; is a multiple of Lebesgue measure, so it only remains to check that [0] =
(a ®b)A;. To see the latter result, it suffices to observe using an integration by parts

that (n being the outward unit normal)
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1= {1 @ id. )

= lim Ewj dx
j—=oo Jo,
= lim w; Ondx

Jj—o00 90,
=b(g(+1) — g(-D) Oa.
Since also A; is a multiple of Lebesgue measure, we conclude [D]=(a © b)A;. O

Remark 3.6. The preceding result is in fact the reason why we need the singular
structure theorem in BD, Theorem 2.12, as opposed to a mere rigidity result as in
[38]. Indeed, the above Lemma will play a key role in the proof of Proposition 3.2
and in order to apply it one is forced to require in the definition of YS"¢(a © b, a)
the a-directionality of A, . Lemma 2.14, which relies on Theorem 2.12, then implies
that it is not restrictive to consider tangent Young measure lying in YS"8(a © b, a),
see Step 2 in the proof of Proposition 4.1.

We can now turn to the main aim of this section:
Proof of Proposition 3.2. Without loss of generality we assume that § = a.
Step 1. We only need to show that for ¢ € Yf)mg(a ® b, a) we also have

o € BDY, ®(a ® b, a) forall a,b € R? \ {0}. Like in Proposition 3.1, we will
employ the Hahn—Banach theorem to show that for any weakly*-closed affine half-
space H C ES"2(q)* with BDY*" (¢ ©b, a) C H itholds thato € H. Then, since
BDY*"(a © b, a) is weakly* closed and convex by Lemma 2.16, it will follow
that o € BDY*"8(q © b, a). There exists fy € E"(a) and x € R such that

H={GeE™0w*" : G(fy) >« }.
Since we assumed BDY®"¢(¢ © b, a) C H, we have in particular
(fu,v) >« forallv € BDY*"(qa © b, a).

We need to show that {( fi, o)) > « in order to conclude that o € H.
Step 2. Fix ¢, 6 > 0. We define

fi(x, A) == fu(x,A) +elAl, xe€ Q4 AecRY

sym *
which lies in ES"8(a). Next, subdivide Q, into slices Sy, ..., S, along the a-axis
(a orthogonal to the “long” face of the slices), that is, the Sy are of the form

Sk =Sk, r) ={x€Qa : |(x—2x)-al <rx}
for some zx € Qu, rr > 0. Assume furthermore that the Sy are chosen in such a
way that
|Rf§(x, A) — Rf5(y,A)| <8 forallx,y € S, A e BEL, (3.3)

since by assumption R f}; is uniformly continuous and one-directional, where R is
defined (2.2). Moreover, we can require A, (0.5;) = Oforallk =1, ..., n. We will
show that in each Sj there exists a point z; at which the following properties hold
for the symmetric-quasiconvex hull SQ f}, (zx, ) of ff;(zk, +):



Characterization of BD-Young Measures 1111

(A) SOfy; (zk, »)isfinite, symmetric-quasiconvex, and positively 1-homogeneous;

(B) There exists a “recovery sequence” (I/f;k)) j C W},’(fa)(Sk; Rf}f;ld ) such that

TGk £y () dx — SOff;(zx,a © b) (3.4)
k

and such that for a constant C,, which is independent of §, it holds that
(k)
sup; 1€V MLt < CelSkl- (3.5)

For the finiteness in (A), by standard arguments for (symmetric-)quasiconvex
functions, see the appendix of [23], we need only show SQ fy (zx,a © b) > —o0
(at one point only). To see SQ fy (zx, a ® b) > —oo, assume to the contrary that
there exists an open slice

S(ZO,r)::{era:|(x—z())~a|<r}, 20 € Qq, ¥ >0,

with the property that SQ fy(z,a © b) = —oo for all z € S(zp, ) (recall that fy,
hence allso SQfu, by definition is a-directional). By definition then we can find
Y. € Wy (Qa; RY) with

K
LEY- () dy < —— — 1
][QafH(Z Yo (y)) dy < o]

Indeed, there exists V. € Wé’oo(Qa; R*) such that

~ K
][Qa fu(z,a @b+ EY,(y)) dy < m—l

Then, the assertion follows with v, (x) := 1/7Z x) +b(x -a).

Furthermore, we can assume that the map z +— ; depends only on z - a (by
the a-directionality of fy), and that by the uniform continuity of Rfy at each
z € S(zo, r) there exists n(z) > 0 such that

| fr(x, A) — fu(z, A)] < AL e S(z.n(z), A e R
L+ 1€l !

Now use the Vitali covering theorem (in R) to cover £¢-almost all of S(zg, r) with
slices S; = S(zj, ri) such that r; < n(z;) (i € N). The generalized Riemann—
Lebesgue lemma, Corollary 2.6, then allows us to find i; € BDY(S;) with under-
lying deformation b(x - a) and

(for. i) = fS | ][Q fir e €z, () dy dx.

Thus, glueing these 1; together and applying Lemma 3.5 separately in each S;, we
get u € BDY®™€(a © b, a) such that
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M

(o we) = D (Sl ma)

I
MR

/ . 4, 00 dy dx

IA

1 Mg H'Mg

<][ Ju @i €Y () dy + 1)|Szl

A
=

)

in contradiction to {( fy, u)) > k, since u € H.

The symmetric-quasiconvexity and the positive 1-homogeneity of S Q f}, (z«., *)
are now easy to see by standard techniques, see for instance the appendix to [23],
which concerns quasiconvexity, but the methods adapt.

To show (B), we first recall that from the fact that for separately convex functions
an upper p-growth bound also implies a lower p-growth bound (with a different
constant), where 1 < p < oo, see Lemma 2.5 in [27]. Thus, it follows that

1SOff 2k A)l < M(1 + |A]) (3.6)

forsome M = M (d. M), whichis independent of z¢.. Let (v ) ; C W, %2 (S¢: RY)
be a minimizing sequence for

Ve f S dn ye W00 (Sk: RY).
k

By definition, this sequence (1//l(.k)) j satisfies (3.4). Further, we may estimate, us-
ing the symmetric-quasiconvexity and SQ fy (zx, A) + e|A| < SOff(zk, A) <
fi(zk, A) that

SQfH<Zk,a@b>+s][ €YY )] dx
][ SOfu (2 £V (1)) + &€y 1V (x)] dx
Sk

< f fatnev @) ax
k
<SOfh(zk.a®b)+1

where we have also discarded some leading elements from the sequence (xp](.k)) i
Thus, by (3.6),

2M(1 +la©bl)+1
EY 0l dx < ; Skl =: CelSkl,
Sk

which is (3.5).
Step 3. Now, with the z;’s chosen in each Sy to satisfy (A), (B), we estimate as
follows, using (3.3) and the Jensen-type inequality from Lemma 3.3,
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(fr. o) = (s o) = (1 @11 )
= Z/S (fr(z, ), 0°) dhg(2) — (1 ® |+, o))

> Zfs (fiz(zk. ). 02%) dho (2) — (e + D)1 @ (1 +1-]). o))
k=1 k

> Z/S (SOfi (ks +), 07°) dig () = (e + T @ (1 +|-]), o))
k=1 " "k

> Y SOffizk a0 b) Ao (S) — (e + )L @A +]-D. o). (3.7

k=1
By (B), for every k = 1, ..., n there exists a “recovery sequence” (wj(»k))j -
1 . k
W, (S R with sup; |9 [0 < Ce| S| and

} fita v ax > sofieuacb.
k

Now define

Ao (S .
wj(x) = w}")(x)m—k'k) + B ifx € 5,

where the % € R are chosen to remove any jumps in the definition of w j (recall
that A, is one-directional and that Ip](.") (x) = b(x-a) for x € 3S). Itis not difficult
to see, using the norm bound (3.5) from (B) and Poincaré’s inequality (2.1), that

after adding some rigid deformations (suppressed in the following) the sequence
(w;); is uniformly bounded in BD(Q,) and that

i@k, Ewj(x)) dx — SOff(zk, a O b)re(S)  fork=1,...,n.
Sk

Combining with (3.7), so far we have shown that
n
li g ; — 1 1 . .
(o) = tim 3 /S it By ) dx = e+ 0L © 1+ 1.

Let ¥ € BDY(Q,) be the BD-Young measure generated by (Ew;); (up to a
non-relabeled subsequence). Note that for 14(®) L_S; we have a generating sequence
with boundary values axb(x - a) + Brb on 9S8k, where ax = As(Sk)/|Sk|. Apply
Lemma 3.5, separately in each Sy, to replace 1 by 2 € BDY*"¢(a © b, a)
with

<<lesk ® fr k. ->,ﬁ<5>>> = lim / i@k Ewj(x)) dx.
k=1 /%ook:l Sk
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o)z (D15 @ fit .50 e +p1 A +10.0)

k=1
> (£ A9) =81+ D, A9) = e+ (L ® 1+ ), o)
> =81+, 2%) = ¢+ &)1 ® (1 + ), o).

Here, for the lastline we used ((f5. 2%) = ((fu, 2¥) = «, since 2©®) € H (recall
that H was such that BDY*"(a ® b, a) C H). Now, first let § — 0, using that the
2®)s are uniformly in the Young measure-sense bounded (since the bound in (3.5)
is independent of §), and then let ¢ | O to arrive at

(fr. o) = .

Hence, 0 € H and the Hahn—Banach argument described at the beginning of the
proof yields the conclusion. O

3.3. Characterization for Zero-Barycenter Singular Blow-Ups
Here, we use the following spaces (where Q = (—1/2, 1/ 2)4 is the unit cube):

ESil’lg(O) = Esing(Q; Rdxd)’

sym

Ysing(o) = {U c Ysing(Q; Rdxd) : [U] = 0},

sym
BDY*"¢(0) := Y*"2(0) N BDY*"¢(Q).

Notice that for o € Y*"2(0) we do not require one-directionality of y > oy°

and A,. We also define the spaces Y(S)ing(O; Rgly’gf), BDY(S)ing (0) with the additional
constraint A, (0€2) = 0.

Proposition 3.7. Y} "¢(0) = BDY} "(0).

The proof of this fact proceeds essentially in the same way as the proof for
Proposition 3.2 in the previous section with some straightforward modifications:

(i) Wherever a direction a or £ is needed, we use a, & = ey;
(i1) The proof of the analogue of Lemma 2.16 is exactly the same;

(ii1) In the proof of the Proposition 3.2, we can no longer assume that fp is one-
directional. Thus, we need to replace the slices S; partitioning Q, = Q with
rescaled cubes Q; covering Q, for instance in a regular lattice; the same holds
for the slices S(zg, r). By averaging via Lemma 2.4, we may also conclude
that we can get i, ¥ € BDY*"8(0).
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4. Proof of Theorem 1.1

First, we remark that the necessity part of our theorem is precisely the assertion
of Theorem 4 of [38]. It remains to show the “sufficiency” part:

Proposition 4.1. Let v € Y(2; Rg;;nd) with [v] = Eu for some u € BD(R2). If for
Rdxd

all symmetric-quasiconvex h € C(Rg

type inequality
. . da da
h((ld, Vi) + (id, v;”)dﬁ; (x)) < (. ve) + (B*, v;"’)dﬁ; (x) (4.1)

holds for L%-almost every x € , then v € BDY(Q).

) with linear growth at infinity the Jensen-

Proof. Note that we may additionally assume A,(9€2) = 0 by embedding the
problem into a larger domain and extending all involved maps by zero to this larger
domain. This introduces an additional singular part, but this does not impinge the
validity of (4.1) on the larger domain and nothing needs to be assumed on the
singular part.

We argue by considering regular and singular points separately.

Step 1. Let xg € Q2 be aregular point, i.e. a point where the regular localization
principle in Proposition 2.8 holds; this is the case for £?-almost every point of
Q. From said result we get the existence of a regular tangent Young measure o €
Y™&(Py), where

Po =i ) + i, w35 70 o)
O_lavX() lﬂva d[:dxo
We claim that o satisfies the Jensen-type inequality assumed in Proposition 3.1.
Indeed,

dx
h(Py) =h((id, Vo) + (id, Uxo)dﬁd (x0)>

= (h’ UXO) + <h#’ XO)dEd (x0)
dAs

= (1. o) + {17, 057 o

at £¢-almost every y. Here we used (4.1) and the properties of regular blow-ups
listed in Proposition 2.8. Thus, Proposition 3.1 yields that

o € BDY™¢(Q).

Step 2. By Lemma 2.14 at Aj-almost every xo € €2, there exists a singular
tangent Young measure o € Y*"2(¢£ @ 1, £) for some & € S?~!, n € R? and with
the properties listed in Proposition 2.9 and such that

[0] =[o]L Q¢ = Ev, for some v € BD(Qg¢).

In particular, again by Lemma 2.14, there exists v € BD(Q¢) with [0] = Ev such
that
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v(x) =vo+gx-En+BE®@Nx+ Rx, xe€ Q¢ae,

for some vy € R, B € R, a function g € BV(R), and a matrix R € R‘:kii.

Furthermore, we have that (by properties of blow-ups, see Theorem 2.44 in [4])

Ev = P, |E | = (d O )}\, (d ) fo Py = i
v v 1d, T :
0 y [Aoldy 0 1E5u]

(x0).

In particular, (id, oy"o ) = Pp for A,-almostevery y € R4, Note that if Py # 0, then
Ao 1s one-directional since Ev = [Dg(x - &) + Bl(n © &) is.

Now, depending on whether Py = 0 or Py = a O b (these are the only two
possibilities by Lemma 2.14), our o lies either in the space YS"¢(Py, &) for & €
{a, b} or in the space Y*"2(0). Also, we may assume that A, (9 Q¢) = Obyasimple
rescaling argument (similar to the one described in Remark 2.11). Consequently,
by either Proposition 3.2 or Proposition 3.7, we infer

o € BDY*"2(Q).
Our proposition, and thus Theorem 1.1, is now implied by the following lemma: O

Lemma 4.2. (Glueing) If v € Y(2; R%%9) has the property that for (L + 15)-

sym
almost every x € 2 there exists a (regular or singular) tangent Young measure
oy € BDY(Q¢(x)) to v at x for some §(x) € S9=1. Then, v € BDY ().

Proof. Step 1. We know that for every tangent Young measure o, there exists a

.. *
sequence of radii r,, | 0 and a sequence of constants ¢, > 0 such that 0™ — &

for
o ®h.o™) = cn«w(' :nxo) ® h, v>>

rd if xg is regular,
cn =

where

n

(L oo @ I+, v)))_l if x¢ is singular.

Here, Q(xq, ry) = xo+r, Q and Q generically denotes the unit cube with one face
normal to a or b if xq is a singular point with @ © b # 0 (see Lemma 2.14) or the
standard unit cube if xq is a regular point or a singular point witha © b = 0. We
require also that A, (3 Q(xp, 7)) = As(0Q) = 0.

We further define

u™(y) = Vf,l_lcn[u(xo +ray) = [Uloworn]. Y€ Q.
where [U10(xg.n) = fp(xy.r,) # 9X- It holds that
Eu™ = cn Ty """ Eu,

where 70" (x) := (x —x¢)/r, and TJOJ" Eu = Euo(T* ")~ = Ey(xg+ry+)
is the push-forward of Eu under 7*0"». Moreover, we can assume that by properties
of blow-ups, see Lemma 3.1 of [39], there is v € BD(Q) with [c] = Ev and such
that
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u™ = v strictly, ie. ™ v and |[Eu™|(Q) — |Ev|(Q).

Next, take a generating sequence (v;) C BD(Q) N C*(Q; RY) of o with
vilap = vlso and define

(n) 1 X — X0
Uj (x) = a—1_ Vi + [M]Q(xo,rn% x € Q(x0,n).
7 Cn T

n n

The trace operator in BD is strictly continuous, see Proposition 3.4 in [6], and
vilap = vlsp. Hence,

/ ’v§n) —ul dHd—1
00(x0,7n)

= d 1/ |Vr{ - JIUJ(Y)—“(x0+rn)’)+[M]Q(x0rn)

_ _/ — ™| dpd= (),

Consequently, since the boundary integral tends to zero asn — oo, forevery k € N
we may select N (xo, k) € N so large that

1
/ 0" —u| dH!! < foralln > N(xo, k) and all j.  (4.2)
0(xo.rn) cnk

dH (y)

Step 2. Let the set R C €2 contain all regular points in €2 and let S C 2 contain
all singular points. We have L4+ 2,)(2\ (RUS)) = 0, where we have also
assumed that R, S are Borel sets.

Now, let {¢p; @ hy} C E(; R‘Siyf]f) be a family of integrands that determine
the Young measure convergence as in Lemma 2.2. It follows from the proof of
the regular localization principle, Proposition 2.8, that every regular xo € R is a

Lebesgue point for

di
) fhe )+ () 0 ).
so we may choose N (xp, k) so large that for all £ < k and n > N (xp, k) it holds
that
Ay diy 1
hy, + (hg° s — (hy, + (h%° , dy < —.
][Q(XO,rn)< ‘ vx) ( I >d£d ) < ¢ ng) ( ¢ XO)d[,d (x0)| dy (4k3)

Moreover, at every singular xo € S we similarly choose N (xo, k) large enough so
that for all £ < k and n > N(xg, k) we have

1
Lo )=zl e = 1 @4

since in the proof of the singular localization principle, Proposition 2.9, it is shown
that every singular xo € S is a A} -Lebesgue point of

x > (h%, v,
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By the Morse covering theorem, see Theorem 5.51 in [4], we can now cover
(£ + A,)-almost all of Q with disjoint (rotated) cubes Q(xq, r,) as constructed
above, where n > N (xg, k) and r,, < 1/k. Let

Q= (U Qi(xi,ri)>UN7 (LY 4+ 2)(N) =0,
i=1

be this cover. We also denote the constructed tangent Young measure at x; (restricted
to Q;)byo; € BDY(Q;), where Q; is aunit cube. We can always require in addition
that 1,(0Q;) = Ay, (0Q;) = 0 (the first condition holds for all but countably many
radii around every point and the second was already assumed above after arescaling
argument) and

- 1
|he; (Qi) = (i T3 23)(Q0)] < o (4.5)

where ¢; is the rescaling constant corresponding to r; and A, is the singular part of
Ay with respect to Lebesgue measure.

Denote furthermore a generating sequence of o; by (v;-i) )C BD(Q)NC*>®(Q; RY),

for which we additionally require that vj.i) lag; = vV 50, with v the underlying
deformation of o; as in Step 1.

Now, let {pr ® he} C E(Q; Rg;ff) be a family of integrands that determine the
Young measure convergence as in Lemma 2.2. Take an index j (i, k) such that

=

forall ¢ < k. 4.6)

| =

[ o) ay =10, ©near)

In case that x; is singular, the above estimate only needs to hold for those &y
that are positively 1-homogeneous. Define

1 ; X — X; . .
wg = rd_lc-v;l()i’k)< - l) +ulow.py ifx € Qilxi,ri),i €N,
L

i

where [u]ox; ) = le_(x’_ - 4 dx. Notice that, thanks to (4.2), we have for every
i that
1
/ lwe —u| dH™ = —. “.7)
20 1) cik

‘We may then compute
Ewy = Ewy L4 Q+ Efwy,

where

1 i X — X . .
Ewr = Tgv%*k)<r—,-l) ifx € Qi(x;,ri),i €N.

i~
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Moreover, for the singular part E*wy we can estimate, using (4.7), that

E*wi(Q) < Z/ wi — ul dH*!

0Q;(xi,ri)
1
kc;

%8

1

< —((1® 1, v) + I12I).

»|~

Here we used that 3, ¢, ! < (1 ® -1, v) + I2| by the definition of the ¢;’s

In the following we will show that Ewy; generates our Young measure v that
we started with. The last estimate implies that we only need to consider the Young
measure generated by Ewy since the singular part asymptotically vanishes. Thus,
taking ¢y ® h, from the family exhibited above, we get

/ be(@he(Ewi(x)) dx = Z/ (x; ‘Pz(x)h€< Ev;l()z k)(x ; : )) dx.

Step 3. Let x; € R be a regular point. Recall that in this case ridc,- = 1.In

the following computations /4, can be either compactly supported (and in this case
h7° = 0) or positively 1-homogeneous (and in this case h7° = hy). We have for
every fixed £ < k that

@) X — X
g(x)hg( 5 ( )) dx
/Qi(xi,n v Vit ri
Z/ (pg(x,)hg( 5v(l()l k)<ﬂ)) dx
Qi (xj,ri) Ti

= rf’w(xi)/Q he(Ev,-’(l-,k)(y)) dy + E;

=rlp)Lo, ® he,0i) + E;

—rf [ gt (fro )+ 125 G ) a4 5

= /;.(xi ") (pe(x)(<he, l)x) (h[ N X >d£d (.x)) d_x + Ei- (48)

Here E; is an error term that may change from line to line and that can be estimated as

1 1 X — X
|E;| < 2C@(a)g<k) k) / i(xﬁr) ’5 Vi, k)( - >‘ dx, 4.9)

where Cy = ||¢¢lloo + | RA¢|l0os we is @ modulus of continuity for ¢,, and we have
exploited (4.3), (4.6) and thatr; < 1/k.

Step 4. Let x; € S be a singular point and let ¢ be positively 1-homogeneous.
Using (4.4), (4.5), we compute for every fixed £ < k that




1120 Guipo DE PHILIPPIS & FILIP RINDLER

/ (pe(x)hg( Ev% k)(x — )) dx
Qi (xi,ri) Ti
zf (pg(x,)hg( -Evl) k)<ﬂ>) dx
Qi (xi,ri) ! ri

= —(p/g(x,)/ hy 51}]0 )(y)) dy + E;

1
= ;W(xi)((ﬂg,« ® he, 0i)) + E;
L
1
= —@eGi) e, v3T) dho; (Q0) + Ei
L

1 . .
= ;fQ @e(xi)(he, vio) d(ci T )udy)(v) + Ei
l i

=f @e(x)(he, vE°) dAS (x) + Ej, (4.10)
Qi (xi,ri)
where the error term E; can be estimated as
1 1 X — Xj
E-=2c( (_) _> oo ® |+, / e (1)),
i L\ e k + k « Ql(-xl!rl)®| | U>)+ 0i (i i) ](l k) ri
4.11)

and C; and wy are as in (4.9). Here, we used that ci_l = (Lg;x,r) ® |+], V)
(cf. (2.7)) and (4.6).
Step 5.We will now show that

/ Qe (Ewg(x)) dx — (@e @ hy, V) ask — oo. (4.12)
Q
We start from
/ @e(x)he(Ewg(x)) dx
Q
i X =X
= Z/ gOg()C)hg( 5”5(); k)( : )) dx
X;i€R i (xi,ri) T
1 X — X;
+ Zf (pg(x)hg( » SU% k)(—>) dx
xjes ? Qitxiri) Ti i
=1+1I (4.13)

and we distinguish the cases where h, has compact support or is positively 1-
homogeneous.
In the first case we use (4.8) and the error estimate (4.9) to get

1—2/

o (PE(X)(he,Vx) (hge, >d£d(x)) dx + E, 4.14)

where E can be estimated by

|E| < ef[I120 + (1@ |-]. v) + |€ w1 ]



Characterization of BD-Young Measures 1121

and e,f denotes a quantity that goes to 0 as k — oo and ¢ fixed. For the second term
we have

111 < £\ Qi) | - llee ® helloo = (4.15)
)C,'ES
since the union of all Q; (x;, r;) with x; € § has asymptotically vanishing Lebesgue
measure as k — oo. Here, again, é,f denotes a quantity that goes to 0 as k — oo and
¢ fixed. Thus, combining (4.14) and (4.15) we have shown (4.12) for i, compactly
supported.
Let now A, be positively 1-homogeneous. By using (4.8) and (4.9) the first term
in (4.13) can be treated as in (4.14) to get

=y

Xi€R

00 00 )‘V l
W(x)<he,vx)+(he 0 )dﬁd(x)> de +ef,  (4.16)

i (xi,ri)

where again e,‘; — 0 as k — oo and /¢ fixed. For the second term we note that
by (4.10) and (4.11) we have

= Z/ 9o () (e, v3°) A () + &, (4.17)

xi€S i (xi,ri)

where as before é,f — 0 as k — oo and /¢ fixed. Recalling that hy = h3° by
1-homogeneity we deduce by (4.16) and (4.17) that (4.12) holds also in this case.
Step 6. Since ||Ewg||r1 is uniformly bounded, up to a subsequence we have

Ewy X u € BDY(R2). However, by (4.12) also

e @ e, p) = Jim fQ @e(0)he (Ewi (x)) dx = (e @ he, v))

By our choice of {¢p¢ ® h¢}e, from Lemma 2.2 we get v = u € BDY(L2), finishing
the proof. O

5. Atomic Parts of BD-Young Measures

As an application of the characterization theorem, we prove the following split-
ting result for generating sequences, a generalization of the result from Section 6
in [40] (the generalization can also be obtained for BV-Young measures):

Theorem 5.1. Let v € BDY (R2) with 1, (02) = 0 and v € BD(Q). Furthermore,
assume that v has ESv as an atomic part, that is

>0 in M(Q x RExd), (5.1)

sym

Ay @ ve® IEv|®8dm()

Then, there exists a sequence (w;) C BD() NC™(L2; R?) with Ew; A [v]—

Y
and such that Ew; + Ev — v.
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To explain this theorem, we state the following adaptation of Proposition 6 in
[28] on shifts of Young measures (the proof is the same):

Lemma 5.2. (Shifts) Let (u;) be a bounded sequence in BD(2) with E’u; = 0

and assume that Eu X v € BDY(2). If v € BD(R2), then Euj + Ev X “w,
where:

(i) tx = vy * Sgy(x) for L4-a.e. x € Q, that is,
(h,pe) = (R + Ev()). ve). b e C.RED:
(ii) Ay, (3°)x are such that

Esv

" d|ESv|

(F0, ) )y = (0, ) v Ay + [ (x (x)) |ESv]

forall f>* e C(Q x BIB?;;?). In particular,
Ay =+ |ES0).

However, this lemma can only be used to add concentrations, never to remove
them. Theorem 5.1, however, shows that the removal of concentrations is still
possible if Ev is contained as an “atomic part” in v.

Proof of Theorem 5.1. From (5.1) we have that for some Borel-measurable func-
tion b: 2 — [0, 1] it holds that
|ESv| =bA, and v > b(x)8 arsy

AlES Y| (x)°

5.2)

We define 11 € Y(; RE:Y) for h € Co(REY) through
(h, /,Lx) : (f(- — Ev(x)), vx> for £%-ae. x € Q,
N #(x)(ugo — b(x)S asss (X)) for Ay-ae. x € Qif b(x) < 1,

ue = d[ESv]
* for |[ESv|-ae. x € Qifb(x) =1,

V;O = 8 dESv )
d|ESv|

Ay = Ao (dx) — [ESv| = (1 — b(x))A, (dx).

This is indeed a Young measure in Y(2; R%*4) by (5.2). If h € CRL?) is

sym sym
symmetric-quasiconvex with linear growth, then define for £%-almost every x € Q
the shifted function

h(A) := h(A — Ev(x)).

Also & is symmetric-quasiconvex with linear growth and we may estimate using
the Jensen-inequality for the bulk part, (4.1) for v, to get

da = di,
h((id, )+ (id, uf)ﬁ(x)) =h ((id, vy) + (id, vgo)w(x)>

. di,
< (h, vy) + (R, vf:o}@(x)

- # ooy dh
_<h7MX>+<h vu“x )dﬁd(x)v
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~ da
because i* = h and uye = v, ﬁ = % L4 _almost everywhere. Then, our

main characterization result, Theorem 1.1, applies and we get that © € BDY(2).
Hence, by Lemma 2.3, there exists a sequence (w;) C BD(2) N C*(L; ]Rd) with

Y S .
Ew; — . It can be checked easily via the preceding Lemma 5.2 that Ew; + Ev
generates v. O
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