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Abstract

In females with X-linked genetic disorders, wild-type and mutant cells coexist within brain tissue 

because of X-chromosome inactivation, posing challenges for interpreting the effects of X-linked 

mutant alleles on gene expression. We present a single-nucleus RNA sequencing approach that 

resolves mosaicism by using SNPs in genes expressed in cis with the X-linked mutation to 

determine which nuclei express the mutant allele even when the mutant gene is not detected. This 

approach enables gene expression comparisons between mutant and wild-type cells within the 

same individual, eliminating variability introduced by comparisons to controls with different 

genetic backgrounds. We apply this approach to mosaic female mouse models and humans with 

Rett syndrome, an X-linked neurodevelopmental disorder caused by mutations in the methyl-

DNA-binding protein MECP2 and observe that cell-type-specific DNA methylation predicts the 

degree of gene up-regulation in MECP2-mutant neurons. This approach can be broadly applied to 

study gene expression in mosaic X-linked disorders.
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INTRODUCTION

The diversity of cell types in the brain has largely precluded the characterization of cell-

type-specific features of neurodevelopmental diseases. For X-linked neurodevelopmental 

disorders, this cellular heterogeneity poses an additional challenge in females where random 

X-chromosome inactivation (XCI) results in a mixture of wild-type and mutant cells within 

the brain of the same individual1.

These challenges are exemplified by Rett syndrome, an X-linked neurodevelopmental 

disorder predominantly affecting girls and characterized by speech delay, repetitive hand 

movements, seizures, and autism-like behavior2. Rett syndrome is caused by mutations in 

the MECP2 gene on the X chromosome, and disease severity is thought to be correlated with 

the fraction of brain cells expressing the mutant allele after X-inactivation1,3. In individuals 

with Rett syndrome, neural circuits will thus consist of wild-type and mutant cells, raising 

the possibility that both cell-autonomous and non-cell-autonomous effects contribute to the 

pathophysiology of Rett syndrome at the cellular and circuit levels. Better understanding of 

these effects of the MECP2 mutation will be critical for developing targeted therapeutics, but 

it has been difficult to distinguish gene expression in MECP2-mutant neurons from that of 

normal neurons within the same brain.

MECP2 encodes a nuclear protein that is enriched in neurons, binds to methylated cytosines 

broadly across the genome and has been suggested to act as a transcriptional repressor by 

recruiting co-repressor complexes (e.g. NCOR) to sites of methylated DNA2,4–7. Consistent 

with this finding, we have found in male mice where all cells express a single allele of 

Mecp2, that when MeCP2 function is disrupted, genes with the highest level of gene body 

DNA methylation and MeCP2 binding in wild-type neurons exhibit the largest degree of up-

regulation in gene expression in Mecp2-mutant neurons8–10. However, numerous reports 

have proposed additional functions of MeCP2 at specific loci, including the regulation of 

mRNA splicing, transcriptional activation, and chromatin structure2,11–14. At present, it is 

not clear whether these effects are due to direct or indirect actions of MeCP2. Notably, since 

these previous studies of MeCP2 function have mostly focused on male hemizygous animals 

in which all cells lack functional MeCP2, the extent to which the effects observed in male 

mice accurately reflect the effects of MeCP2 loss in the mosaic brains of female 

heterozygous mice or humans with Rett syndrome remains unclear.

The recent development of high-throughput single-cell RNA sequencing (scRNA-seq) 

technologies has revolutionized gene expression analysis of complex tissues and enabled the 

characterization of cell-type-specific transcriptional programs in various brain regions in 

mice and humans15–17. While these advances have permitted the identification and 

characterization of unique cell types within complex tissues, until now it has not been 

possible, even with scRNA-seq, to reliably distinguish between cells that express the wild-

type or mutant allele in mosaic females with X-linked disorders because the sequencing 

reads generated from single cells rarely include the disease-causing mutations. Here, we 

describe an approach, single-cell SNP-seq, that reliably determines whether individual cells 

derived from mosaic murine and post-mortem human brain express the wild-type or mutant 

X-chromosome allele, enabling gene expression profiles of wild-type and mutant cells from 
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the same individual to be distinguished from each other. Using this approach, we find that in 

the brains of female heterozygous mouse models and humans with Rett syndrome, MECP2 

selectively and cell-autonomously represses the expression of highly methylated genes in a 

cell-type-specific manner in wild-type but not MECP2-mutant neurons. The methods and 

analyses outlined here for Rett syndrome can be broadly applied to the characterization of 

gene expression patterns in additional mosaic X-linked disorders such as Fragile X 

syndrome, CDKL5 deficiency disorder, X-linked intellectual disability, and multiple X-

linked genetic causes of autism.

RESULTS

Single-cell SNP sequencing in mouse models of Rett syndrome

Droplet-based high-throughput scRNA-seq methods employ poly-A transcript selection in 

which the majority of sequence information is restricted to the distal 3’ end of genes, a 

region that often does not include the disease-causing mutations under investigation15,16. 

Moreover, these methods typically sample a fraction of the total transcripts per cell, which 

further limits the ability to reliably detect the expressed mutant allele even when the variant 

of interest lies within the 3’ sequenced region. For the same reason, a failure to detect 

expression of a given gene in mutant cells is not a reliable way to discriminate between 

mutant and wild-type cells. However, we reasoned that single nucleotide polymorphisms 

(SNPs) that differ between the two X chromosomes and are within genes expressed in cis 
with the mutant allele might provide a reliable way to determine whether a given cell 

expresses the mutant or wild-type allele, hereafter defined as the cell’s transcriptotype.

To determine the utility of this approach, we first attempted to distinguish between cells 

expressing wild-type or mutant alleles in female Mecp2+/− mice. These mice were generated 

by deleting the majority of the Mecp2 gene (exons 3 and 4) and recapitulate key features of 

Rett syndrome18. The absence of Mecp2 expression is not a reliable indicator of a mutant 

cell, however, both because expression of the Mecp2 3’ UTR is still detectable at low levels 

in mutant cells and because scRNA-seq only captures a fraction of genes per cell. Thus, we 

searched expressed genes for SNPs that were maintained in cis with the mutant Mecp2 allele 

during the process of backcrossing the 129/OlaHsd strain of mice in which the Mecp2-
mutant mice were generated. Despite extensive backcrossing (>38 generations at Jackson 

Labs) of the Mecp2-mutant mice with the C57BL/6J strain, we identified four 129P2/

OlaHsd-specific SNPs in cis with the Mecp2-mutant allele that were present in the expressed 

3’ UTR regions of two genes that are closely linked to Mecp2 and well sampled in the 

scRNA-seq datasets (Supplementary Fig. 1).

We performed scRNA-seq on visual cortex from five adult (12-to-20-week-old) female 

Mecp2+/− mice and obtained 12,451 cells that passed initial quality-control tests. Consistent 

with data from wild-type cortex19, cells from Mecp2+/− cortex were clustered into eight 

major cell types using the Seurat single-cell analysis pipeline20 (Supplementary Fig. 2A). 

We focused on excitatory neurons because they have previously been directly implicated in 

Rett syndrome pathophysiology21,22 and are the most abundant cell type in our dataset (Fig. 

1A). Sequencing reads encompassing the identified strain-specific SNPs allowed 1,289 out 

of 5,761 excitatory neurons to be identified as expressing either the wild-type or mutant 
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Mecp2 allele (Fig. 1B, Supplementary Fig. 2B). In support of the SNP-based transcriptotype 

classification, the resulting Mecp2-mutant population of cells exhibited significantly reduced 

levels of the Mecp2 transcript relative to wild-type cells, or groups of excitatory neurons 

with randomly assigned transcriptotypes (Fig. 1C). Gene expression analysis of the 

transcriptotyped mutant versus wild-type cells identified 734 differentially expressed genes 

(366 that were up-regulated, 368 that were down-regulated, false-discovery rate (FDR) < 

0.1, Supplementary Table 1). By contrast, only four significantly misregulated genes were 

identified when cell populations with randomly assigned transcriptotypes were compared 

(Fig. 1D). These data indicate that we can successfully study gene expression in wild-type 

and mutant cells by single-cell SNP-seq, making it possible to address whether MeCP2 

function in mosaic females is accurately modeled in male hemizygous mice in which all 

cells express the mutant form of the protein.

Previous reports in male mice indicate that gene bodies of MeCP2-repressed genes are 

highly methylated, have increased levels of MeCP2 binding, and tend to be long compared 

to genes that are not repressed by MeCP28,10,23–25. These previous observations of MeCP2 

dysfunction provided a molecular signature for assessing the ability of single-cell RNA 

sequencing data to detect relevant gene expression changes in mosaic tissue. Consistent with 

previous observations, we found that in mosaic female mice the degree of gene up-regulation 

in Mecp2-mutant compared to wild-type excitatory neurons directly correlates with gene 

body DNA methylation (Pearson’s r = 0.38) as well as the length of highly-methylated genes 

(Pearson’s r = 0.10) (Fig. 1E,G). In the brains of mosaic female Mecp2+/− mice, we also 

observed that the degree of gene up-regulation in mutant-expressing excitatory neurons 

directly correlates with increasing levels of gene body MeCP2 binding in excitatory neurons 

(ChIP1, Pearson’s r = 0.41; ChIP2, Pearson’s r = 0.31) (Fig. 1F). MeCP2 binding was 

characterized by chromatin immunoprecipitation of MeCP2 in CaMKIIα-positive excitatory 

neurons isolated from wild-type male mice using INTACT, a method in which genetically 

tagged nuclei can be immune-purified26. These findings suggest that the up-regulation of 

highly methylated genes is a cell-autonomous signature of MeCP2 dysfunction, consistent 

with the observation that Rett syndrome severity correlates with the number of MeCP2-

mutant cells1. Notably, the differentially expressed genes between mutant and wild-type 

excitatory neurons within mosaic female heterozygous mice significantly overlap with the 

misregulated genes we identified when comparing excitatory neurons from male Mecp2-

mutant mice and their wild-type controls (hypergeometric test, P = 7.2 × 10−14, 

Supplementary Fig. 3, Supplementary Tables 2-5). Thus, by resolving mosaicism with 

single-cell SNP-seq in a female mouse model of Rett syndrome and comparing the patterns 

of cell-type-specific gene misregulation to those of male mouse models (Supplementary Fig. 

4), we have identified a reproducible set of cell-autonomous MeCP2-dependent genes in 

excitatory neurons.

While our data indicate that the relationships between MeCP2-dependent gene expression 

and gene body DNA methylation, MeCP2 occupancy, and gene length are cell-autonomous, 

it has been difficult to characterize if there are also non-cell-autonomous effects of Mecp2-
mutant cells on wild-type cells within the same tissue. Previous attempts to identify such 

effects have relied on tagged forms of MeCP2 that were not expressed at normal levels27. 

We overcame these challenges by using scRNA-seq to compare wild-type excitatory neurons 
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(671 cells) from five female Mecp2+/− mice with wild-type excitatory neurons from four 

female Mecp2+/+ control mice (671 sampled cells). We observed 233 differentially 

expressed genes (FDR < 0.1) between these conditions, many of which involve key neuronal 

processes such as neuronal activity-dependent gene expression and neurotrophin signaling 

(Supplementary Table 6). Importantly, these differentially expressed genes between wild-

type cells from Mecp2+/− and Mecp2+/+ mice do not appear to be directly repressed by 

MeCP2 (e.g. their degree of gene misregulation does not correlate with the level of gene 

body DNA methylation (permutation test, P = 0.55) or gene length (permutation test, P = 

0.73) (Supplementary Fig. 5). These data suggest that gene expression abnormalities are 

present in wild-type cells from Mecp2+/− mice and are likely due to indirect effects of 

neighboring Mecp2-mutant cells. This non-cell-autonomous misregulation of gene 

expression in wild-type neurons of mosaic individuals with Rett syndrome could in principle 

contribute to disease pathophysiology.

Single-nucleus SNP sequencing of human Rett brain tissue

Given the successful implementation of single-cell SNP-seq in rodent models of Rett 

syndrome, we reasoned that this method could also be used to characterize MECP2-
dependent gene expression changes in post-mortem human Rett brain tissue. This approach 

is potentially powerful because mutant and wild-type cells of the same age and genetic 

background can be compared directly in a single experiment, largely eliminating the 

transcriptional consequences of genetic variation that are introduced when comparing donor 

samples to unrelated age-matched controls (an especially important advantage in the study 

of Rett syndrome where the differences in gene expression are expected to be small in 

magnitude2).

We performed single-nucleus RNA sequencing on occipital cortex from three post-mortem 

females with Rett syndrome, each harboring the second most common nonsense mutation (c.

763C>T) in a single MECP2 allele that generates the R255X truncated gene product lacking 

the MECP2 transcriptional repressor domain (Supplementary Fig. 6). We isolated nuclei for 

these experiments because nuclei are more reliably extracted than entire cells from post-

mortem tissue samples and can provide sufficient gene expression information for cell type 

classification and analysis28. We successfully sequenced a total of 43,558 nuclei, with 

30,293 nuclei passing the minimum required threshold of 500 uniquely expressed genes. In 

line with previous single-cell/single-nucleus RNA-seq experiments15,16,19, the nuclei 

analyzed had an average of 2,800 transcripts per nucleus from 1,671 unique genes. Using 

Seurat20 and known excitatory neuron and interneuron marker genes19, the nuclei cluster 

into a large excitatory population (18,545 nuclei) and multiple distinct interneuron 

populations (5,952 nuclei total) (Fig. 2A). The heterogeneity of cells in the interneuron 

cluster prompted us to further subdivide this population into their known functional classes 

by the expression of specific marker genes (e.g. VIP, PVALB, SST, or CCK) (Fig. 2A, 

Supplementary Fig. 7).

Once each nucleus was assigned to its respective cell type cluster, we next turned to 

identifying its transcriptotype. Because there were no sequencing reads that included the 

R255 position of MECP2, we reasoned that the large number of SNPs that differ between an 
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individual’s two X chromosomes might allow us to identify allele-specific SNPs that are in 

cis with the mutant MECP2 locus and therefore expressed only in MECP2-mutant neurons. 

To identify the transcriptotype-specific SNPs in each Rett donor, we took advantage of an 

MECP2-specific antibody that was raised against a region of the C-terminus that is truncated 

by the R255X mutation. We used this antibody to separate high-staining (MECP2high) and 

low-staining (MECP2low) nuclei by fluorescence-activated sorting (Fig. 2B). Sanger 

sequencing of isolated cDNA from the two populations confirmed that the MECP2high 

population expressed wild-type MECP2 and that the MECP2low population expressed the 

R255X mutant MECP2.

Having isolated the two populations from each donor, we next performed total RNA 

sequencing on both populations and identified between 69–75 allele-specific SNPs that were 

uniquely expressed in MECP2high nuclei (Supplementary Fig. 8, see methods). Expression 

of these allele- and transcriptotype-specific SNPs was then queried in the corresponding 

single-nucleus RNA-seq dataset from the same donor sample and used to assign the 

corresponding wild-type or R255X MECP2 transcriptotypes (Fig. 2C). Using the allele-

specific SNPs identified from each Rett donor, we could assign transcriptotypes to 16,627 

nuclei, or 55% of the nuclei assayed (Fig. 2D); the remaining 45% of nuclei were excluded 

from further analysis. The ratio of wild-type to mutant nuclei was approximately even across 

the three donor samples (donor 1 = 49% WT, 51% R255X; donor 2 = 51% WT, 49% 

R255X; donor 3 = 42% WT, 58% R255X), which suggests that there was not significant 

skewing of XCI and that Rett syndrome in the three donors is likely due to the loss of 

MECP2 function in approximately 50% of brain cells.

For subsequent analyses, we focused on the excitatory neuron population (SLC17A7-

expressing, 18,545 cells) and on the most abundant subtype of interneurons in our datasets 

(VIP-expressing, 1,839 cells) (Fig. 2A). Importantly, the neuronal subtype clusters were 

similar between wild-type and mutant cells (Supplementary Fig. 9A), enabling the direct 

comparison of gene expression between wild-type and mutant cells of the same neuronal 

subtype. To maximize the number of nuclei and statistical power for cell-type-specific gene 

expression comparisons, we combined nuclei of the same neuronal subtype and 

transcriptotype from the three Rett donors. We identified significant gene expression 

differences between mutant and wild-type excitatory neurons (3,158 genes, Supplementary 

Table 7) and VIP interneurons (237 genes, Supplementary Table 8) (Fig. 2E). Importantly, 

these findings were dependent on proper transcriptotype assignment, as gene expression 

analysis between populations of cells that were randomly assigned transcriptotypes 

consistently recovered ≤ 10 differentially expressed genes (Fig. 2E). It should be noted that 

the difference in numbers of significantly misregulated genes between excitatory neurons 

and VIP interneurons is largely attributable to the greater number of excitatory nuclei 

sampled with higher transcript coverage because the number of misregulated genes are 

similar in excitatory and VIP interneurons if equal numbers of nuclei and transcripts are 

sampled for both cell types (Supplementary Fig. 9B).
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Cell-type-specific DNA methylation patterns predict gene misregulation in Rett syndrome

These new human datasets provided the opportunity to determine whether features described 

in mouse models regarding MECP2-dependent gene expression are also observed in neurons 

from human individuals with Rett syndrome. It is not known, for example, if in fact MECP2 

in human neurons represses highly-methylated long genes in a neuronal subtype-specific 

manner, as has been observed in mice8,10,25. In mice, DNA methylation in both the CG and 

CA dinucleotide contexts recruits MeCP2 binding and contributes to MeCP2-dependent 

gene repression8,29. While both CG and non-CG methylation (mCH, comprised of mCA, 

mCT, and mCC) display cell-type-specific patterns, mCH is significantly more divergent 

across neuronal cell types26,30 and, in mice, contributes to cell-type-specific MeCP2-

dependent gene repression31. To determine whether cell-type-specific patterns of mCH 

predict the degree of MECP2-dependent gene repression in human females with Rett 

syndrome, we compared the set of genes that are differentially expressed in human female 

MECP2-mutant-expressing and wild-type-expressing nuclei with recently published human 

single-cell methylation data from cerebral cortex32. We found that in humans, the degree of 

gene misregulation in MECP2-mutant compared to wild-type excitatory neurons and VIP 

interneurons is directly correlated with the level of gene body mCH in neurons of the 

respective subtype (excitatory neurons, Pearson’s r = 0.22, VIP interneurons, Pearson’s r = 

0.18, Fig. 3A, E). These correlations are dependent on the correct assignment of 

transcriptotype, as gene expression differences between groups of randomly assigned 

transcriptotypes do not correlate with gene body mCH for either excitatory neurons 

(Pearson’s r = −0.01) or VIP interneurons (Pearson’s r = −0.05). The relationship between 

neuronal subtype-specific mCH and MECP2-dependent gene expression is highly 

reproducible and can be observed in each of the three donor samples by directly comparing 

MECP2-mutant and wild-type neurons from the same individual (Supplementary Fig. 10). 

The direct correlation between MECP2-dependent gene repression and gene body mCH for 

each neuronal subtype depends on its subtype-specific DNA methylation patterns, as 

MECP2-dependent gene repression in excitatory neurons does not correlate with the extent 

of gene body mCH from VIP interneurons (Pearson’s r = −0.01, Fig. 3B) and MECP2-

dependent gene repression in VIP interneurons poorly correlates with mCH from excitatory 

neurons (Pearson’s r = 0.05, Fig. 3D). Of note, the direct correlation between MECP2-

dependent gene repression and DNA methylation was also observed in the CG dinucleotide 

context in both excitatory neurons and VIP interneurons (Supplementary Fig. 11).

As described above, for highly methylated genes, gene length predicts the degree of gene 

up-regulation in Mecp2-mutant mice compared with their wild-type counterparts10. 

Consistent with this observation, we find that in humans with Rett syndrome the level of 

gene body methylation together with gene length predicts the degree of gene up-regulation 

in both MECP2-mutant excitatory and VIP interneuronal nuclei (Fig. 3C,F). We further find 

that in human females, as in mice, gene length does not positively correlate with MECP2-

dependent gene repression for lowly methylated genes, underscoring the importance of 

accounting for DNA methylation in the analysis of MECP2-dependent gene regulation in 

humans8,10. These findings in human females with Rett syndrome are consistent with our 

findings in male and female Mecp2-mutant mouse models and indicate that MeCP2 acts 
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through an evolutionarily conserved, cell-autonomous mechanism to preferentially repress 

the expression of highly methylated long genes.

The large number of excitatory neuronal nuclei sequenced from each individual provided 

sufficient power to study gene expression differences between mutant and wild-type nuclei 

of this neuronal subtype within the same individual’s brain (Supplementary Tables 9-14), 

thus eliminating much of the genetic and environmental heterogeneity that is inherent to 

previous studies of MECP2-dependent gene expression33,34. We were thus able to identify 

genes that are consistently misregulated in mutant excitatory neurons across all three Rett 

syndrome donors. This analysis demonstrated a highly significant overlap in affected genes 

across the three Rett donor samples, identifying 537 genes that are consistently up-regulated 

in mutant-MECP2 excitatory neurons compared to wild-type neurons and 395 genes that are 

reproducibly down-regulated (Fig. 4A, Supplementary Fig. 12, Supplementary Table 15). As 

might be predicted, the up-regulated genes had significantly higher levels of gene body 

methylation than the down-regulated genes (Fig. 4B). Genes that control metabolism or 

regulate neuronal processes such as ion transport or nervous system development were 

significantly enriched in the set of up-regulated or down-regulated genes (Fig. 4C,D), and 

misregulation of these genes may contribute to the metabolic and neuronal deficits observed 

in Rett syndrome35. The ability of single-nucleus SNP-seq to reliably transcriptotype and 

reproducibly identify gene expression changes between mutant and wild-type cells within 

the same individual largely overcomes the previous reliance on age-matched controls for 

molecular characterization of mosaic X-linked disorders, and will significantly improve our 

ability to distinguish gene expression differences that are due directly to the mutation under 

investigation rather than to unrelated genomic variation between cases and controls.

We next sought to identify genes that are controlled by MECP2 in both humans and mice, 

reasoning that despite the significant species differences, the evolutionarily conserved 

MECP2 targets might provide an opportunity to investigate MECP2 function in mouse 

models that might be relevant to human pathophysiology. To this end, we identified the 

genes that are up-regulated or down-regulated in excitatory neurons across all three Rett 

syndrome donor samples (537 and 395 genes, respectively) and asked which of these are 

also significantly misregulated in female Mecp2+/− excitatory neurons from mice. We 

identified 58 evolutionarily conserved genes that are up-regulated and 84 genes that are 

down-regulated in MECP2-mutant compared to wild-type excitatory neurons in both mouse 

and human (Fig. 4E, Supplementary Fig. 13, Supplementary Table 16-17). These 

evolutionarily conserved MECP2-regulated genes represent high-confidence MECP2 targets 

in excitatory neurons because of their reproducibility across multiple datasets. However, we 

stress that deeper sequencing would provide greater statistical power and the ability to 

identify many additional evolutionarily conserved MECP2 targets. We note that the high-

confidence evolutionarily conserved genes identified here that are up-regulated in MECP2-

mutant excitatory neurons have significantly higher levels of gene body DNA methylation 

than the set of genes that are down-regulated in MECP2-mutant neurons (Fig. 4F), 

suggesting that the up-regulated gene set may be enriched for direct MECP2 targets. 

However, it seems likely that the misregulation of both MECP2-repressed and MECP2-

activated genes contribute to Rett syndrome pathophysiology as 25% of the MECP2-

repressed genes (enrichment P = 1.0 × 10−6, hypergeometric test) and 13% of the MECP2-
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activated genes (enrichment P = 0.02, hypergeometric test) have been previously shown to 

be mutated in intellectual disability or autism (see methods). Many of the MECP2-repressed 

genes (e.g. AUTS2, RBFOX1) are transcriptional regulators and are known to control 

neuronal gene expression36–38. The MECP2-repressed genes that encode neuronal ion 

channels such as GABRA1 and SCN1B are known to cause epilepsy when mutated39,40 and 

thus could contribute to this comorbidity in individuals with Rett syndrome. The 

evolutionarily conserved genes that are down-regulated in MECP2-mutant neurons include 

the neurotrophin BDNF and the presynaptic adhesion molecule NRXN2, both of which have 

also been shown to contribute to neurological disorders when mutated41,42. Given that the 

selective disruption of Mecp2 in excitatory neurons is sufficient to cause Rett-like 

phenotypes in mice22, further investigation of evolutionarily-conserved MECP2-regulated 

genes in this cell type could both yield new mechanistic insight into MECP2 function and 

help characterize the role of these genes in specific aspects of Rett syndrome 

pathophysiology.

DISCUSSION

Here we present a new experimental approach that leverages the power of single-cell or 

single-nucleus RNA sequencing and individual genetic variation to simultaneously 

characterize cell-type-specific gene expression and allele-specific X-chromosome activation 

status in individual cells within mosaic mouse and human brains. This approach has broad 

applicability for studying gene expression abnormalities in X-linked neurodevelopmental 

disorders such as Rett syndrome, Fragile X syndrome, CDKL5 disorder, X-linked 

intellectual disability, and multiple X-linked genetic causes of autism (e.g. NLGN3, 

NLGN4, SLC6A8, PLXNA3, DDX3X, WDR45, CASK) in females where mosaicism 

between wild-type and mutant cells has hindered previous analyses. This method can be 

easily adapted (see Methods) to female mouse models of X-linked disorders that were 

generated in mixed genetic backgrounds by using strain-specific SNPs to identify the cells 

expressing the mutant allele. Moreover, this approach is particularly useful for studying 

mosaic disorders in human samples because the wealth of natural genetic variation across 

individuals provides many opportunities to identify allele-specific SNPs that are expressed 

from the same X-chromosome as the mutant allele under investigation43,44. Indeed, SNPs 

have been recently used in conjunction with scRNA-seq data to determine the sample 

identity of individual cells within a pool of human samples44 and to study genes that escape 

X-chromosome inactivation45.

In addition to validating the single-cell SNP-seq approach, our study provides further insight 

into important aspects of Rett syndrome pathophysiology and the consequences of MECP2 

dysfunction. The inherent X-linked mosaicism in females with Rett syndrome has hampered 

prior efforts to determine if genes that are differentially expressed in Rett and age-matched 

controls are due to the MECP2 mutation itself or a consequence of genetic and 

environmental variation between individuals. Our study overcame these limitations and 

directly assessed the MECP2-dependent gene expression changes in the same cell type and 

genetic background. We found that cell-type-specific patterns of DNA methylation largely 

predict the degree of gene up-regulation within each subtype of mutant MECP2 (R255X)-

expressing neuron from humans with Rett syndrome. Importantly, our approach confirmed 
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that the preferential up-regulation of highly methylated long genes is a cell-autonomous 

molecular signature of MECP2 dysfunction that is conserved between mutant MeCP2 mouse 

models and humans with Rett syndrome.

The relative contribution of gene length and DNA methylation to MECP2-dependent gene 

regulation is complex because long genes tend to have a higher level of gene body 

methylation compared to shorter genes10 (Supplementary Fig. 14). Partial correlation 

analysis was previously used to parse the relative contribution of gene length and DNA 

methylation to MeCP2-dependent gene regulation in mouse cortical tissue and found that the 

total number of gene body methyl-cytosine binding sites within a given gene, rather than 

gene length alone, best predicts MECP2-dependent gene repression8. While our scRNA-seq 

data suggest a role for MECP2 in regulating cell-type-specific gene expression in a DNA 

methylation-dependent manner, MeCP2-dependent gene expression also correlates with 

DNA methylation patterns in whole cortical tissue10,24. This finding is likely explained both 

by an averaging effect due to the most abundant cell type driving the observed DNA 

methylation and gene expression patterns, as well as the presence of commonly methylated 

regions that would be expected to result in similar MECP2-dependent gene expression 

across cell types.

The power of single-cell and single-nucleus RNA sequencing to identify MECP2-regulated 

genes in a given individual with Rett syndrome and in specific cell types enabled the 

identification of MECP2-repressed genes and MECP2-activated genes that are evolutionarily 

conserved in both mouse and human excitatory neurons. While deeper single-cell 

sequencing will provide the statistical power necessary to identify many additional 

conserved MECP2-regulated genes, the set of genes described here has the potential to 

provide some new insight into Rett syndrome pathophysiology and provides an opportunity 

to link mechanistic studies of MECP2 function in mouse models to Rett syndrome in 

humans. Notably, the conserved MECP2-repressed genes have significantly higher levels of 

gene body DNA methylation than the set of conserved MECP2-activated genes. The high 

levels of DNA methylation within the transcribed region of these MECP2-repressed genes, 

taken together with abundant evidence that MECP2 binds preferentially to methyl 

cytosines10,29, suggest that the conserved MECP2-repressed genes are direct targets of 

MECP2. However, it remains to be determined whether the conserved genes that are down-

regulated in the absence of MECP2 are down-regulated due to a secondary change in 

neurons that occurs as a consequence of the disrupted expression of highly methylated genes 

or if these genes are activated directly by MECP2 via a distinct mechanism. It should be 

noted that a previous report suggested that MeCP2 may regulate long gene expression 

through a post-transcriptional mechanism, but in this study gene body DNA methylation was 

not considered27. Reanalysis of the data in this study with respect to DNA methylation 

supports the conclusion that MeCP2 represses gene expression at the level of transcription 

(Supplementary Fig. 15). Additional studies into the regulation of nuclear/nascent RNA by 

MeCP2 will likely reveal valuable new insights into MeCP2’s function.

It remains challenging to reconcile the small magnitude of misregulation that occurs for an 

individual gene when MECP2 is mutated with the dramatic neurological sequelae of Rett 

syndrome. It is possible that the deleterious effect of mutating MECP2 may summate across 
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hundreds to thousands of genes to cause Rett syndrome10 or that only a small subset of the 

misregulated genes are responsible for the neurological phenotypes. It is also possible that 

the kinetics of gene transcription (e.g. elongation rates) are altered in the absence of 

MECP2, which could result in abnormal timing of transcriptional programs in addition to 

subtle changes in steady-state gene expression9. Further study of the proximal mechanisms 

by which MECP2 regulates gene expression is needed to identify therapeutic approaches for 

normalizing the diverse gene expression abnormalities that occur across cell types in Rett 

syndrome.

Taken together, we have shown that single-cell and single-nucleus SNP sequencing enables 

the cell-type-specific characterization of gene expression in mosaic mouse models and post-

mortem tissue of human brain donors. In the present study, we have leveraged this approach 

to glean new insights into Rett syndrome pathophysiology, and in the future, we envision its 

broad application to the study of additional X-linked disorders in both the brain and other 

tissues.

METHODS:

Mice

All animal experiments were approved by the National Institutes of Health and the Harvard 

Medical School Institutional Animal Care and Use Committee and were conducted in 

compliance with the relevant ethical regulations. Male and female Mecp2 knockout mice 

and their wild-type controls were obtained from Jackson Labs (Stock No. 003890). This line 

was originally generated by Adrian Bird 18. Mice were housed under a standard 12 hr light 

cycle before being placed in constant darkness for 7 days prior to sacrificing. Mecp2 mutant 

mice all demonstrated decreased locomotor activity at time of analysis; male mice were 8 

weeks old and female mice were 12–20 weeks old. Mice of the respective genotype, age, 

and sex were randomly selected for inclusion in the study.

Brain tissue samples from donors with Rett syndrome

Post-mortem cortical tissue (visual cortex, BA17) was obtained from the National Institutes 

of Health NeuroBioBank and Harvard Brain Bank with approval from the coordinating 

foundation Rettsyndrome.org. The study was conducted in compliance with relevant consent 

and ethical considerations. Work was approved by Harvard Medical School and is compliant 

with all ethical regulations. Rett donor samples were genotyped by the NeuroBioBank/

Harvard Brain Bank and were confirmed by Sanger sequencing.

Single-cell isolation from male and female mouse cortex

Single-cell suspensions from adult male and female visual cortex were prepared as described 

in 19. Briefly, mice were euthanized with isofluorane and perfused with an ice-cold choline 

solution. Visual cortices were dissected, chopped into 300-μm fragments, and dissociated 

with papain (Worthington). Cells were then triturated into a single-cell suspension and 

collected by gradient centrifugation.
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Single-nuclei isolation from human post-mortem cortex

Single nuclei suspensions from post-mortem human occipital cortex were collected as 

described previously 26 with minor modifications. Cortical tissue was removed from dry ice 

and placed directly into a Dounce with homogenization buffer (0.25 M sucrose, 25 mM KCl, 

5mM MgCl2, 20 mM Tricine-KOH, pH 7.8, 1 mM DTT, 0.15 mM spermine, 0.5 mM 

spermidine, protease inhibitors, 5 μg/mL actinomycin, 0.04% BSA). After 10 strokes with 

the tight pestle, a 5% IGEPAL (Sigma) solution was added to a final concentration of 0.32% 

and 5 additional strokes with the tight pestle were performed. The tissue homogenate was 

then passed through a 40-μm filter, and diluted 1:1 with OptiPrep and layered onto an 

OptiPrep gradient as described previously 26. After ultracentrifugation, nuclei were collected 

between the 30% and 40% Optiprep layers, confirmed to be single nuclei, and diluted to 

80,000 nuclei/mL for inDrops. All buffers and gradient solutions for nuclei extraction 

contained RNAsin (Promega) and 0.04% BSA.

Nuclei sorting and RNA sequencing

Cortical tissue from each Rett donor was dounce homogenized in Buffer HB (0.25 M 

sucrose, 25 mM KCl, 5 mM MgCl2, 20 mM Tricine-KOH pH 7.8, 1 mM DTT, 0.15 mM 

spermine, 0.5mM spermidine, protease inhibitors). A 5% IGEPAL solution was added to a 

final concentration of 0.16% followed by five additional dounce strokes, then the lysate was 

filtered through a 40-μm strainer. Nuclei were pelleted by centrifuging at 500 g for 5 min at 

4°C and washed once with PBS with 1% BSA. To stain nuclei for sorting, nuclei were 

incubated with a C-terminal MeCP2 antibody46 at 1:500 for 1 hour at 4°C, washed once 

with Wash buffer (PBS with 1% BSA and 0.16% IGEPAL), incubated with a goat anti-rabbit 

647 secondary antibody (Life Technologies, cat# A21244) at 1:500 for 30 min at 4°C, then 

washed once with Wash buffer. All washes were performed by centrifuging at 500g for 5 

min at 4°C. Nuclei were then resuspended in PBS with 1% BSA and sorted on a Sony 

SH800Z Cell Sorter (100 μm nozzle, default laser settings). Nuclei were sorted into TRIzol 

LS (Invitrogen), and total RNA was chloroform extracted and purified with the Qiagen 

RNeasy Micro Kit with on-column DNase treatment. For Sanger sequencing of the MECP2 
R255X mutation, cDNA was generated with the SuperScript III First-strand Synthesis 

System (Invitrogen). The MECP2 R255X region was amplified with Q5 Hot Start High-

Fidelity Master Mix (NEB) with the following primers: MECP2 R255X F: 

AAGATGCCTTTTCAAACTTCG and MECP2 R255X R: CCCAGGGCTCTTACAGGTCT, 

and Sanger sequencing was performed with the MECP2 R255X R primer at the DF/HCC 

DNA Sequencing Facility. To identify monoallelic SNPs in the two populations of nuclei, 

total RNA-seq libraries were generated with the NEBNext Ultra Directional Library Prep 

Kit with rRNA depletion. Libraries were sequenced on an Illumina Nextseq 500 with 85 bp 

single-end reads. Reads were mapped to the hg38 genome with Tophat2.

Single-cell/single-nucleus RNA sequencing (inDrops)

Single-cell or single-nuclei suspensions were encapsulated into droplets, lysed, and the RNA 

within each droplet was reverse-transcribed using unique nucleotide barcode as described 

previously15. Cell or nuclei encapsulation was performed in a blinded fashion. 

Approximately 3000 cells were processed per library and sequenced on an Illumina Nextseq 
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500 to achieve at least 5 reads on average per unique molecular index (typically about 500 

million reads per 30,000 droplets collected by inDrops). Transcripts were processed and 

mapped using a previously described pipeline15. Briefly, a custom transcriptome was built 

from Ensembl GRCh38 (GRCm38.85 annotation) and GRCm38 (GRCm38.84 annotation) 

with the referenced pipeline.

Quality control for cell or nuclei inclusion

Cells or nuclei with greater than 500 unique genes detected per cell were included for further 

consideration. Cells or nuclei with greater than 15,000 unique molecular identifiers detected 

were omitted to minimize inclusion of data that represented the common barcoding of two 

or more cells.

Cell type identification by dimensionality reduction

We used the R-package Seurat20 to cluster cells based on similar gene expression profiles. 

The raw counts obtained from the mapping pipeline described above were log normalized 

and scaled to 10,000 transcripts per cell. Variable genes were identified by the 

MeanVariablePlot() function with the following parameters: x.low.cutoff = 0.0125, 

x.high.cutoff = 3, y.cutoff = 0.5. Principle component analysis was then performed, and the 

top 30 principle components were used for the FindClusters() function (kNN clustering) and 

RunTSNE function (for t-distributed stochastic neighbor embedding). Clusters with fewer 

than 100 cells were omitted from further analysis. Classification of cell types were 

determined by visualizing known marker gene expression within each identified cluster. 

Excitatory neurons were marked by the expression of vesicular glutamate transporter 1 

(Slc17a7) and Calcium/Calmodulin Dependent Protein Kinase II Alpha (Camk2a). 

Interneurons were marked by glutamate decarboxylase 1 (Gad1), and were further separated 

into three major subtypes by the expression of parvalbumin (Pvalb), vasoactive intestinal 

peptide (Vip), or somatostatin (Sst). Astrocytes were marked by the expression of aldolase 

dehydrogenase (Aldoc), oligodendrocytes by the expression of Olig1, microglia by the 

expression of Cx3cr1, and endothelial cells by the expression of Cldn5. Cells expressing 

significant levels of two or more of the above marker genes were considered doublets and 

discarded from further analysis.

General approach to single-cell/nucleus SNP sequencing

There are four general strategies to identify SNPs that are in genes expressed in cis with the 

mutant or wild-type form of a gene: 1) Identify cells that have transcripts covering the 

mutated genomic region of interest. Because of low per cell sequencing coverage, it is rare 

that an individual cell will have coverage of this precise genomic region to directly 

determine its transcriptotype. Therefore, the few definitively mutant and wild-type cells can 

be used to search for genomic variation in the expressed X-chromosome genes between 

mutant and wild-type cells. This provides a set of allele-specific SNPs that can be used in 

addition to the gene of interest itself to increase the likelihood that a given cell can be 

transcriptotyped; 2) Long-read DNA sequencing to directly confirm which SNPs are in cis 
with the wild-type and mutant gene of interest. This approach would start by identifying 

SNPs in the single-cell RNA sequencing dataset (e.g. half of the reads mapping to the 

reference nucleotide and the other half mapping to an alternate nucleotide) and perform 
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long-read DNA sequencing (e.g. Pacific Biosciences, Oxford Nanopore) to directly confirm 

which neighboring SNPs are in cis. Once the allele containing a SNP is confirmed to be 

expressed in cis with either the wild-type or mutant allele of interest, this SNP can be used 

in turn to identify additional allele-specific SNPs as described in approach 1; 3) Identify 

SNPs that are in cis with the mutant allele by sequencing members of the donor’s family. 

For example, if the mutation is inherited, DNA sequencing of the X-chromosome of each 

parent can provide the set of allele-specific SNPs that are unique to the wild-type or mutant 

alleles. This approach has been employed to catalogue XCI status of human cells 45 and is 

the approach we used for the analysis of the Mecp2 mutant mouse; and 4) Separate wild-

type and mutant cells from an individual sample and perform deep RNA sequencing to 

identify the set of expressed SNPs that are unique to the wild-type or mutant population of 

cells. This is the approach we used to transcriptotype cells from the human Rett syndrome 

brain donors.

An additional consideration when implementing single-cell SNP sequencing to study X-

linked disorders is that some X-linked disease-causing genes escape X-chromosome 

inactivation (e.g. IQSEC2). In these cases, both the mutant and wild-type allele will be 

expressed in each cell. Therefore, it is important to assess the X-inactivation status of the 

gene under investigation to ensure it is not biallelically expressed in the cell types of interest. 

While there is a report that a small percentage of neuroprogenitor cells express Mecp2 
biallelically47, this event is exceedingly rare in post-natal mouse brain tissue and has not 

been observed in humans despite an in-depth genome-wide search for X-inactivation escape 

genes45.

After transcriptotypes are assigned, it should be noted that while the wild-type and mutant 

cells have the same genetic background, there are also allele-specific X-chromosome SNPs 

expressed in cis with the mutant or wild-type gene. Thus, it is important to have multiple 

donors with the same mutation to confirm the gene expression differences observed are not 

secondary to differences in X-chromosome SNPs between mutant and wild-type cells. In our 

data, these X-chromosome SNPs do not contribute substantially to the gene expression 

changes observed between mutant and wild-type cells because the three individuals have 

similar patterns of gene misregulation despite having unique sets of X-chromosome SNPs.

Single-cell SNP sequencing in mosaic female brain tissue

To transcriptotype cells from mosaic female Mecp2+/− mutant mice, we first identified SNPs 

that were consistently inherited with the mutant Mecp2 allele. Because this line has been 

inbred (backcrossed > 38 generations), sequencing offspring from previous litters was 

equivalent to sequencing the parents directly. For the same reason, however, we also 

expected that the only retained SNPs from the 129/OlaHsd strain in which the mutant 

Mecp2 allele was made would be closely linked to the Mecp2 locus itself. Indeed, variant 

calling (Freebayes using default settings, discussed further below) on single-cell RNA seq 

data from either Mecp2 WT or KO male hemizygous mice identified four SNPs within 2 

MB of the Mecp2 locus that were confirmed by manually browsing the RNA sequencing 

tracks (Integrative Genomics Viewer – Broad Institute, see Supplementary Fig 1). All male 

Mecp2 knockout mice across two separate generations (WT1–3 and WT4–6 were from 
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separate generations) contained the same SNPs, indicating that these SNPs can be used as a 

reliable marker of the mutant allele. Given the small number of SNPs that were identified, 

we attempted to maximize their detection by modifying the standard inDrops single-cell 

library preparation. Specifically, half of the amplified RNA was processed according to the 

published protocol using random hexamers and universal primers for PCR amplification, and 

the other half was reverse-transcribed and then PCR-amplified with gene-specific primers 

for each allele-specific SNP (see primer sequences below).

To identify the set of expressed SNPs that are unique to wild-type or mutant nuclei from 

post-mortem human Rett syndrome brain donor samples, we first separated wild-type and 

mutant cells by FACS (described above) and performed deep total RNA-seq on the separate 

populations. Unlike the highly backcrossed Mecp2-mutant mice, there was a wealth of 

genomic variability that could be used to transcriptotype cells once the variants were 

confirmed to be expressed in cis selectively with the mutant or wild-type MECP2 allele. 

After performing RNA-seq on sorted wild-type (MECP2high) and mutant (MECP2low) 

populations of cells, we performed X-chromosome variant calling on these datasets using 

Freebayes version 1.1.0–448 with default parameters. The genomic location of SNPs with a 

Freebayes score > 10 were used to extract reads (Samtools version 1.2) from the mapped 

RNA-seq data of wild-type and mutant Mecp2 populations. Based on the reference genome, 

each SNP sequence was assigned to be either the reference sequence, the alternate sequence 

or other. For both the sorted wild-type and mutant samples, the fraction of “reference”, 

“alternate”, or “other” reads that cover each SNP was calculated. If a gene were expressed 

from both alleles, approximately 50% of the reads sequenced would be expected to map to 

each allele. Because X-inactivation typically results in monoallelic expression, for a given 

cell, most of the sequencing reads (allowing for some sequencing error and/or sorting error) 

would be expected to map to a single allele. We thus considered the expression of a SNP to 

be allele-specific if ≥ 85% of wild-type (MECP2high) reads and < 85% of the mutant 

(MECP2low) reads encompassing this region contain the same sequence variant (e.g. 

“reference” or “alternate”). We used the MECP2high population as the primary filter for 

monoallelic SNP expression because the MECP2low population, while mainly defined by the 

low background immunofluorescence signal from MECP2-mutant cells (Sanger sequencing 

confirmed the cell population expresses the mutant allele), could also contain small numbers 

of wild-type cells that have background levels of fluorescence because they express low 

levels of MECP2 (e.g. non-neuronal cells). The identification of allele-specific SNPs with 

these parameters is supported by the observation that for a given SNP, an average of 98% of 

the reads from wild-type cells (MECP2high) map to the same SNP (e.g. “reference”) and an 

average of 76% of the reads from the mutant (MECP2low) cells map to the alternative SNP 

(e.g. “alternate”). The allele-specific SNPs identified from each donor sample (Donor 1 = 69 

SNPs, Donor 2 = 69 SNPs, Donor 3 = 75 SNPs) were then used to mark the X chromosome 

alleles that are expressed in cis with either the wild-type or mutant allele of MECP2. Custom 

R-scripts were written to process BAM output files from the inDrops mapping pipeline or 

total RNAseq mapping pipeline for the identification of allele-specific SNPs.

Assignment of transcriptotype to individual cells—After the identification of the 

allele-specific SNPs that are expressed in cis with either the wild-type or mutant allele, we 
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next used this information to assign transcriptotypes to the individually sequenced cells. To 

do this, we used Samtools to identify the sequencing reads within the single-cell or single-

nucleus RNA sequencing datasets that contained both the allele-specific SNPs identified 

above and a unique cell barcode. We then grouped the reads from each cell or nucleus and 

assigned the MECP2 transcriptotype corresponding to the profile of allele-specific SNPs 

expressed. Specifically, a transcriptotype was assigned if ≥ 85% of the reads covering an 

individual allele-specific SNP mapped to the same allele (e.g. ≥ 85% of the reads were 

“reference”) and ≥ 80% of the total SNPs covered in each cell were concordant with the 

same transcriptotype (e.g. ≥ 80% of the SNPs covered in a cell were expressed in cis with 

the R255X allele of MECP2). Some cells or nuclei only had one or two reads mapping to an 

allele-specific SNP, which increases the chance of an incorrect transcriptotype call. After 

estimating the mean error rate for transcriptotype assignments was only 0.5% in female 

Mecp2+/− mice and 4.6% in human Rett donors, we chose to include these cells in the 

differential gene expression analysis to maximize the number of cells and resulting statistical 

power. The estimated transcriptotype error rate for a given cell with only one or two reads 

encompassing allele-specific SNPs was determined as the percent of genotype discordant 

reads in cells with at least three reads (defined as cells with confident transcriptotypes). The 

mean estimated transcriptotype error was then calculated by averaging the error rates for 

each cell in the dataset. The lower estimated error rate in mouse was accomplished by 

deeper sequencing of the allele-specific SNPs using gene-specific library preparations, an 

approach that can be used to further improve the confidence of transcriptotype calls in any 

dataset. Custom R-scripts were written to process BAM output files from the inDrops 

mapping pipeline for the assignment of transcriptotypes to specific cells based on allele-

specific SNPs.

Gene-specific primers for enriching SNP coverage in Mecp2+/− mouse single-
cell libraries—Reverse transcription:

rs13468851: TGTATGTCGGACTTGATGTACT

rs13468852: TTTACAGTATTCTTTCTACATGGA

rs31144974: GATTAACTGTAACAACGATCACAAC

rs29035084: GGTTTCAAAGTACCCAGCATAAAT

PCR:

rs13468851: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNCTTGCTCTGTCAAGCTCTTTGC

rs13468852: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNGATTACATCCGACACGTCTGC

rs31144974: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNGCATGTTGGATTAGATTGTC

rs29035084: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNCAGCAGAGGTGGCTGAACTT
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Differential gene expression analysis

We used Monocle 2 to identify differentially expressed genes between wild-type and mutant 

cells49. The single-cell and single-nucleus RNA-seq data was modeled by a negative 

binomial distribution, consistent with the expression profiles of our data. Differential 

expression analysis was conducted independently for each cell type by aggregating the gene 

counts from the population of cells or nuclei within a given cell type (median counts per 

gene in human excitatory neuron cluster = 2,029), which provided sufficient coverage of 

expressed genes for differential expression analysis between mutant and wild-type cells. 

Certain analyses, where described, required combining cells or nuclei of the same cell-type 

from multiple mice or human donor samples (e.g. Fig. 3 because of limited inhibitory 

neuron populations). Otherwise, differential expression was performed between mutant and 

wild-type cells from each human donor sample individually (e.g. Fig. 4 excitatory neurons). 

A gene was included for differential expression analysis if its minimum expression was ≥ 

0.1 and it was detected in at least 100 cells or nuclei. Significantly misregulated genes were 

identified by the FDR cutoff described for the specific analysis and number of cells studied. 

Differential expression analysis of randomly transcriptotyped cell populations resulted in 

few, if any, significantly misregulated genes. Thus, the uncorrected p-values were ranked 

from smallest to largest and the number of genes selected for analysis was determined by the 

corresponding number of significantly misregulated genes identified in the respective mutant 

to wild-type comparison. To generate randomly transcriptotyped groups of cells, the sample 

function in R was used to randomly select the same number of cells from each individual 

(without respect to transcriptotype) as was used for the SNP-seq-based transcriptotype 

analyses. Differential expression analysis was performed on two groups of randomly 

transcriptotyped cells (the same cell could not exist in both randomly generated lists). If 

analyses combined cells that were transcriptotypted from multiple individual donor samples 

(e.g. Figs. 2–3), the corresponding number of cells was first randomly sampled on a per-

individual basis and then combined to form the control group. To ensure the randomly 

sampled groups in each figure were representative of the entire dataset, differential 

expression was performed on 3 independent pairs of randomly sampled cells.

Correlations of MeCP2-dependent gene expression with DNA methylation, MeCP2 ChIP, 
and gene length

To generate the smooth-line correlation plots, genes were sorted by their gene length, DNA 

methylation, or MeCP2 ChIP signal, and a sliding window was defined by the indicated bin 

and step sizes for each analysis. The bin and step sizes were adjusted to the size of the gene 

list. The log2 fold-change for each bin was averaged and plotted with the standard error for 

each bin. The gene length for a gene was obtained from RefSeq annotation (gene end – gene 

start). Cell-type-specific mouse DNA methylation data were obtained from26. Gene body 

level cell-type-specific human DNA methylation data were obtained from32 and averaged 

across all cells within the indicated cell type. Excitatory neuron-specific MeCP2-ChIP-seq 

data was generated as described below.
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Gene ontology analysis and cell-type-specific enrichment analysis

Gene ontology analysis was performed at geneontology.org using the PANTHER 

overrepresentation test (Fisher’s Exact with FDR). All expressed genes (normalized 

expression > 0.1 in both mutant and wild-type cells of the corresponding cell type) for the 

respective comparison were used as the background lists. Gene ontology biological 

processes were reported with redundant/overlapping pathways only displayed once. Single-

cell mRNA sequencing data from >160,000 cells and 39 distinct cell types were obtained 

from www.mousebrain.org50. For each gene, the normalized gene expression counts were 

averaged across all cells of the same cell type. The mean gene expression level within each 

cell type was then row-normalized using the Morpheus heatmap tool (https://

software.broadinstitute.org/morpheus). Enrichment statistics were calculated by the 

following formula: the number of times out of 1000 iterations the mean expression of 

randomly sampled cells was greater than or equal to the cell type of interest / 1000 

iterations.

INTACT nuclei isolation and MeCP2 chromatin immunoprecipitation sequencing (ChIP-
seq):

CamkIIa-cre mice were crossed with mice that express the SUN1-sfGFP-MYC protein in the 

nuclear membrane in a CRE-dependent manner, and SUN1-GFP-expressing nuclei were 

isolated from the forebrain of 8-week-old male Sun1-GFP; CamkIIa-cre mice as previously 

described 26. Nuclei were immunoprecipitated with a GFP antibody (Fisher G10362) and 

Protein G Dynabeads (Invitrogen). Nuclei were cross-linked in 1% formaldehyde in PBS for 

10 min at room temperature, quenched with 125 mM glycine for 5 min, and washed twice 

with PBS. Nuclei were then resuspended in LB3 buffer (10 mM Tris pH 8, 100 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 0.5% N-Lauroylsarcosine, protease 

inhibitors), and sonicated in a Diagenode Bioruptor. Insoluble material and beads were 

removed by spinning at 16,000 g for 10 min at 4°C, and Triton X-100 was added to soluble 

chromatin at a final concentration of 1%. Chromatin was pre-cleared for two hours with 

Protein A Dynabeads, then incubated with Protein A Dynabeads conjugated to an MeCP2 

antibody 46 overnight at 4°C. Beads were washed twice with Low Salt Buffer (20 mM Tris 

pH 8, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), twice with High Salt 

Buffer (20 mM Tris pH 8, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), twice 

with LiCl Wash Buffer (10 mM Tris pH 8, 1 mM EDTA, 1% NP-40, 250 mM LiCl, 1% 

sodium deoxycholate) and once with TE Buffer (50 mM Tris pH 8, 10 mM EDTA) at 4°C. 

Chromatin was eluted off the beads by incubating in TE Buffer with 1% SDS at 65°C for 

one hour, and crosslinks were reversed by incubating overnight at 65°C. Chromatin was 

treated with RNase A for 30 min at 37°C and Proteinase K for 2 hours at 55°C. DNA was 

phenol-chloroform extracted and purified with the Qiagen PCR purification kit. Libraries 

were generated using the NuGEN Ovation Ultralow System V2 following manufacturer 

instructions. Libraries were sequenced on an Illumina Nextseq 500 with 85 bp single-end 

reads. Reads were mapped to the mm10 genome with Bowtie2, and PCR duplicates were 

removed using SAMtools rmdup. Mapped reads from MeCP2 ChIP and input were 

randomly down-sampled to the same number of reads. Bedtools map was used to count 

ChIP and input reads mapped to gene bodies for comparison to gene expression.
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Re-analysis of published RNA sequencing data:

Gene read counts tables for male 6-week-old WT and R106W excitatory neuron nuclear 

RNA-seq and female 18-week-old R106WWT and R106WMUT excitatory neuron nuclear 

RNA-seq were downloaded from GEO (GSE83474). Differential expression analysis was 

performed with the R package edgeR. A FDR < 0.1 was used to identify differentially 

expressed genes. For comparison to DNA methylation, excitatory neuron mCA26 was 

mapped to the gene body locations in the Johnson et al. counts tables using bedtools map.

Overlap with autism and intellectual disability genes

Rett syndrome gene lists were compared to the autism genes list at SFARI (gene.sfari.org) 

and to the intellectual disability gene lists at the University of Colorado: 

(gfuncpathdb.ucdenver.edu/iddrc/iddrc/home.php). Enrichment statistics were calculated 

using the hypergeometric test in R 3.3.2.

Statistical analysis

Enrichment statistics of pairwise comparisons between two gene lists was calculated using 

the hypergeometric test as calculated in R 3.3.2. Pearson correlations between gene 

expression and DNA methylation, gene length, or MeCP2 ChIP were compared by 

permutation. P-values for these comparisons were estimated by calculating: (# of events 

where | corr1permutation – corr2permutation | > | corr1observed – corr2observed |) / 1000 

permutations. Kruskal-Wallis tests and Mann-Whitney tests were performed using Prism v7. 

No statistical methods were used to pre-determine sample size but our samples sizes are 

similar or larger to those reported in previous publications19,28.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Single-cell SNP sequencing in a female mouse model of Rett syndrome. A) Flow chart of 

single-cell SNP sequencing pipeline. Single-cell RNA sequencing was performed on visual 

cortex from five female Mecp2+/− mice followed by graph clustering to identify the group of 

excitatory neurons (Slc17a7 +). Allele-specific SNPs in genes expressed in cis with the 

Mecp2 mutation were identified by variant calling and then used to assign the corresponding 

transcriptotype to the individually sequenced cells. B) Heatmap of reads per analyzed cell 

(rows of the heatmap) that map to wild-type (WT)- or knockout (KO)-specific SNPs 
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(columns of the heatmap). C) Violin plots of Mecp2 mRNA counts in cells that were 

grouped based on their SNP-identified transcriptotype (WT, Mecp2+/− wild-type excitatory 

neurons, KO, Mecp2+/− mutant excitatory neuron, tails represent min and max of data) or by 

randomly assigned transcriptotypes (Random 1, Random 2). Mecp2 expression was 

significantly higher in the WT cells (sampled n = 593) compared to KO cells (n = 593) 

(Kruskal-Wallis test, H = 210, ****P < 0.0001, + indicates mean) and the populations with 

randomly assigned transcriptotypes (Random 1, n = 593, Random 2, n = 593; ****P < 

0.0001). The groups with randomly assigned transcriptotypes had similar levels of Mecp2 
expression (P > 0.9999). For the transcriptotyped excitatory neurons, we obtained an average 

of 7,634 transcripts per cell representing 3,879 distinct genes. D) The number of 

significantly misregulated genes (FDR < 0.1, monocle2) when comparing gene expression 

differences between groups of mutant and wild-type excitatory neurons (KO v WT, 734 

genes) or two groups of randomly assigned transcriptotypes (Random, 4 genes). E) The 

mean fold-changes of the misregulated genes described in D (KO v WT, Random) are 

displayed as a function of excitatory neuron gene body DNA methylation (mCA/CA) (KO v 

WT, Pearson’s r = 0.38, Random, Pearson’s r = 0.04). The correlation between MeCP2-

dependent gene expression and mCA/CA was significantly greater in KO v WT than 

Random (permutation test, P < 0.001). F) The fold-change of genes in D (KO v WT, 

Random) binned by gene body MeCP2 ChIP enrichment over input. The correlations 

between MeCP2-dependent gene expression and two MeCP2 ChIP replicates from purified 

cortical excitatory neurons (ChIP1, Pearson’s r = 0.41, ChIP2, Pearson’s r = 0.31) are 

significantly greater than the correlations observed in the Random controls (Random ChIP 1, 

Pearson’s r = 0.06, Random ChIP 2, Pearson’s r = 0.04) (permutation test, P < 0.001). G) 

Mean fold-change in gene expression of mutant excitatory neurons (KO) compared to wild-

type excitatory neurons (WT) from Mecp2+/− mice, with genes separated into groups of 

highly methylated genes (normalized expression > 0.1, high mCA, top 25%) or lowly 

methylated genes (normalized expression > 0.1, low mCA, bottom 66%) and binned by their 

gene length. MeCP2-dependent gene expression and gene length were significantly more 

correlated in KO v WT than Random for high mCA genes (KO v WT, Pearson’s r = 0.10, 

Random, Pearson’s r =0.00, permutation test P < 0.001). The correlations between MeCP2-

dependent gene expression and gene length were not statistically different between KO v 

WT and Random for low mCA genes (KO v WT, Pearson’s r = 0.04, Random, Pearson’s r = 

0.02, permutation test P = 0.23). In E-G, the lines represent mean fold-change in expression 

for genes binned according to gene length (250 gene bins, 25 gene step), methylation (100 

gene bins, 10 gene step), or MeCP2 enrichment (100 gene bins, 10 gene step); the ribbon 

displays s.e.m. of each bin.
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Figure 2. 
Single-nucleus SNP sequencing of human Rett brain tissue. A) Single-nucleus RNA 

sequencing of occipital cortex from three females with Rett syndrome. Graph clustering 

nuclei from the three individuals together according to their respective brain cell types. B) 

Flowchart for the identification and assignment of allele-specific SNPs for each Rett donor. 

Single nuclei suspensions from each Rett donor were sorted based on their level of 

immunoreactivity to a C-terminal MeCP2 antibody (MECP2high and MECP2low). The weak 

staining observed in MECP2low nuclei represents background immunofluorescence. cDNA 

from the MECP2high and MECP2low nuclei was Sanger sequenced to confirm that the 

sorted populations expressed the expected MECP2 allele. Deep high-throughput RNA 

sequencing of these populations followed by variant calling identified the allele-specific 
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SNPs that were used to assign transcriptotypes to each nucleus from the single-nucleus RNA 

sequencing dataset shown in A. C) Heatmap of reads per cell (rows of the heatmap) that map 

to WT- or MECP2 mutant (MT)-specific SNPs (columns of the heatmap) for each of the 

three donors. D) The number of total nuclei, excitatory neuronal nuclei, and VIP 

interneuronal nuclei that could be transcriptotyped from the single-nucleus RNA sequencing 

dataset of Rett donors. E) The number of significantly misregulated genes (FDR < 0.01, 

monocle2, R255X v WT, 3158 genes in excitatory neurons, 237 genes in VIP interneurons) 

identified when comparing gene expression differences between groups of mutant and wild-

type neurons, or two groups of neurons with randomly assigned transcriptotypes (Random, 2 

genes in excitatory neurons, 10 genes in VIP interneurons). The difference in number of 

misregulated genes between excitatory and inhibitory neurons is largely explained by the 

number of cells analyzed (Supplementary Fig. 8B). The number of excitatory neuronal 

nuclei and VIP interneuronal nuclei used for differential expression analysis is shown in D.
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Figure 3. 
Cell-type-specific DNA methylation patterns predict gene misregulation in Rett syndrome. 

For each graph in A-B and D-E, mean fold-change in gene expression of R255X MECP2 

nuclei compared to WT nuclei (R255X v WT) or of two groups of the respective cell type 

that were randomly assigned transcriptotypes (Random) is binned according to the fraction 

of gene body DNA methylation (mCH/CH). Gene expression changes (FDR < 0.01, 

monocle2) from R255X v WT or Random excitatory neurons are compared to patterns of 

DNA methylation from (A) excitatory neurons (Pearson’s r = 0.22) or from (B) VIP 

interneurons (Pearson’s r = −0.01) (250 gene bins, 25 gene step). R255X v WT is 

significantly more correlated with excitatory neuron mCH/CH than Random (A) 

(permutation test, P < 0.001) and significantly more correlated with excitatory mCH/CH 
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patterns than mCH/CH patterns from VIP interneurons (B, R255X v WT (A) correlation 

compared to R255X v WT (B), permutation test, P < 0.001). Gene expression changes (FDR 

< 0.25) from R255X v WT or Random VIP interneurons are compared to DNA methylation 

patterns from (D) excitatory neurons (Pearson’s r = 0.05, R255X v WT; Pearson’s r = 0.03 

Random) or from (E) VIP interneurons (Pearson’s r = 0.18, R255X v WT; Pearson’s r = 

−0.05 Random) (50 gene bins, 5 gene step). R255X v WT is significantly more correlated 

with mCH/CH than Random in (E) (permutation test, P < 0.001) but not in (D) (permutation 

test, P = 0.71). In VIP interneurons, the correlation of R255X v WT with mCH/CH is 

significantly greater for mCH/CH patterns from VIP interneurons (E) than mCH/CH 

patterns from excitatory neurons (D) (permutation test, P = 0.008). C,F) Mean fold-change 

in gene expression of R255X v WT excitatory neuronal nuclei (C) or VIP interneuronal 

nuclei (F) for expressed genes (> 0.1 normalized counts) with high mCH (top 25% 

mCH/CH) or low mCH (bottom 66% mCH/CH) binned according to gene length (250 gene 

bins, 25 gene step). MECP2-dependent gene expression and gene length were significantly 

more correlated in R255X v WT than Random for high mCH/CH genes (R255X v WT: C, 

Pearson’s r = 0.07; F, Pearson’s r = 0.08; Random: C, Pearson’s r = 0.02; F, Pearson’s r = 

0.00, C, permutation test, P = 0.007, F, permutation test, P < 0.001) and significantly more 

anti-correlated for low mCH/CH genes (R255X v WT: C, Pearson’s r = −0.07; F, Pearson’s r 

= −0.09; Random: C, Pearson’s r = 0.00; F, Pearson’s r = 0.00, C, F, permutation test, P < 

0.001). The lines represent mean fold-change in expression for genes binned as described; 

the ribbon is s.e.m. of each bin.
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Figure 4. 
Characterization of MECP2-regulated genes in human and mouse A) Venn diagram of the 

number of overlapping significantly up-regulated (left) or down-regulated (right) genes 

(FDR < 50.1, monocle2) between R255X MECP2 mutant and wild-type nuclei in excitatory 

neurons of each donor. P-values describing the significance of overlap between pairs of up- 

or down-regulated gene lists were calculated by hypergeometric testing. B) Boxplot of the 

gene body DNA methylation level (mCH/CH) of the 537 overlapping up-regulated genes 

and 395 overlapping down-regulated genes in the 3 donors, as well as all other expressed 
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genes (****P < 0.0001 (Dunn’s), Kruskal-Wallis test H(2) = 146.6) C-D) Lists of the most 

highly significant gene ontology terms (Fisher’s Exact test with FDR) enriched in the 537 

overlapping genes that are up-regulated (C) or the 395 overlapping genes that are down-

regulated (D) between R255X MECP2 mutant and WT excitatory neurons. E) Venn diagram 

of the genes that are commonly up-regulated (top, P = 2.1 × 10−12, hypergeometric test) or 

down-regulated (bottom, P = 1.9 × 10−39, hypergeometric test) in mutant MECP2 compared 

to wild-type excitatory neurons in human and female heterozygous mice. F) Boxplot of the 

fraction of gene body DNA methylation (mCH/CH) of the 58 overlapping up-regulated 

genes and 84 overlapping down-regulated genes between human and mouse (****P < 

0.0001 (Dunn’s), Kruskal-Wallis test H(2) = 52.35). Boxplots show the median (line), 25th 

to 75th percentiles (box), and 1.5X the interquartile range (whiskers).
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