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Abstract 

Atrial fibrillation (AF) is regarded as a complex arrhythmia, with one or more co-existing mechanisms, 

resulting in an intricate structure of atrial activations. Fractionated atrial electrograms (AEGs) were 

thought to represent arrhythmogenic tissue, and hence have been suggested as targets for radiofrequency 

ablation. However, current methods for ablation target identification have resulted in suboptimal 

outcomes for persistent AF (persAF) treatment, possibly due to the complex spatiotemporal dynamics of 

these mechanisms. In the present work, we sought to characterize the dynamics of atrial tissue activations 

from AEGs collected during persAF using recurrence plots (RPs) and recurrence quantification analysis 

(RQA). 797 bipolar AEGs were collected from 18 persAF patients undergoing pulmonary vein isolation 

(PVI). Automated AEG classification (normal vs. fractionated) was performed using the CARTO criteria 

(Biosense Webster). For each AEG, RPs were evaluated in a phase space estimated following the Takens’ 

theorem. Seven RQA variables were obtained from the RPs: recurrence rate; determinism; average 

diagonal line length; Shannon entropy of diagonal length distribution; laminarity; trapping time; and 

Shannon entropy of vertical length distribution. The results show that the RQA variables were 

significantly affected by PVI, and that the variables were effective in discriminating normal vs. 

fractionated AEGs. Additionally, diagonal structures associated to deterministic behavior were still 

present in the RPs from fractionated AEGs, leading to a high residual determinism, which could be 

related to unstable periodic orbits and suggesting a possible chaotic behavior. Therefore, these results 

contribute for a nonlinear perspective of the spatiotemporal dynamics of persAF. 

Keywords: Persistent atrial fibrillation; fractionated electrograms; catheter ablation; electrophysiology 

mapping; recurrence plots, recurrence quantification analysis 
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Lead paragraph 

Biological markers that better explain atrial fibrillation (AF) behavior and provide a definitive 

answer for persistent atrial fibrillation (persAF) therapy are still in debate due to its complex 

underlying pathophysiology and spatiotemporal behavior. As such, the role of low dimensional 

structures for explaining AF has been the subject of many investigations, showing that recurrence 

quantification analysis (RQA) might be useful to explore the underlying AF dynamics. However, a 

consistent set of RQA variables taking into account the specificities of the signals and of the 

theoretical methodology are still needed. In the present work, we propose rigorous steps for a 

proper reconstruction of the recurrence plots (RPs) and for the estimation of RQA-based variables 

extracted from atrial electrograms (AEGs) collected from persAF patients undergoing a clinical 

procedure for AF therapy. We demonstrate that these RQA-based variables are sensitive to 

important electrophysiologic characteristics of the atrial tissue, and could be potentially used as 

biological markers to guide the clinical procedure. Additionally, a high residual determinism was 

found in the RPs from AEGs with seemingly turbulent characteristics, which implies that the 

spatiotemporal dynamics of persAF mechanisms is not necessarily associated to a random 

structure. 
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I. Introduction  

The dynamics of cardiac signals in the presence of arrhythmias have been extensively investigated in the 

context of recurrence analysis, especially when considering the main advantages of recurrence plots (RPs) 

and recurrence quantification analysis (RQA) for characterizing short time series, phase transitions, non-

stationarity and unveiling nonlinear underlying phenomena in general [1-7]. The possibility of 

quantifying i) signal regularity, laminarity and determinism; ii) nonlinear topological invariants – e.g., 

correlation dimension and Kolmogorov-Sinai entropy [8, 9] – iii) information-theoretic measures – e.g., 

generalized entropies [8] – and; iv) mutual information [3, 10, 11], outlines the RQA properties as a 

singular framework for cardiac analysis in wide sense over more traditional methods [2, 4, 7, 12, 13]. 

Investigations regarding the dynamical behavior of cardiac fibrillation have resulted in tantalizing 

discussions on whether sustained arrhythmias could be better explained by a deterministic model (i.e., 

free of probability density functions) or by a stochastic approach. While evidences suggesting possible 

chaotic dynamics – i.e., described by a set of nonlinear differential equations providing an aperiodic and 

phase space compact solution trajectory sensible to initial conditions – have established an important 

theoretical framework [14-16], studies concerning power spectrum [17] and correlation dimension 

estimation from fibrillation in dogs [18] have failed to detect such chaotic behavior and a low dimensional 

phase space explanation for the observations.  

It is important to emphasize, however, that the experimental detection of chaotic phenomena usually 

exhibits drawbacks as a consequence of additive (measurement) noise, unstable experimental conditions 

and the requirements for a large amount of data for suitable statistical characterization as occurs, for 

instance, in the classical Grassberger & Proccacia (GP) algorithm for correlation dimension estimation 

[19]. These drawbacks motivate the employment of different strategies for characterizing the fibrillation 

behavior and its possible nonlinear nature and justify the use of RQA due to its intrinsic features 

previously mentioned.   
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Studies on atrial fibrillation (AF) are of particular interest. AF is the most common sustained arrhythmia 

in clinical practice, and is a leading cause of hospitalization and cardiovascular complications, 

particularly stroke [20]. It is defined as a supraventricular tachyarrhythmia characterized by 

uncoordinated atrial activation with consequent deterioration of atrial mechanical function [20]. 

Radiofrequency catheter ablation is considered the cornerstone for AF percutaneous therapy. Success 

rates as high as 90% have been reported after pulmonary vein (PV) isolation (PVI) through ablation in 

patients with paroxysmal AF [20, 21]. For the treatment of persistent AF (persAF), however, PVI has 

been shown insufficient due to, among others, extensive atrial remodeling induced by sustained AF that, 

in turn, also participate directly in the perpetuation of the arrhythmia [22].  

Different mechanisms are likely to participate in persAF perpetuation linked to remodeled substrate, such 

as the rapidly discharging automatic foci [21]; the multiple wavelets hypothesis [23]; the single reentrant 

circuit with fibrillatory conduction [24]; the conduction dissociation between epicardial and endocardial 

layers [25]; and functional reentry resulting from rotors [26]. Biological markers have been introduced in 

attempts to characterize the atrial substrate and guide persAF ablation, with promising initial results [26-

28]. Subsequent investigations, however, could not reproduce such outcomes, and the search for markers 

that better explain AF behavior to guide persAF ablation are still one of the most debated topics in AF 

studies [29-36]. Fractionation in AEGs collected during persAF are of particular interest [27]. During 

persAF, fractionated activity has been linked to: i) random activations from meandering wavelets that 

propagate through the atria; ii) underlying anisotropic conduction in the atrial remodeled tissue and iii) 

the occurrence of wave breaks or wave collisions in the atrial tissue [37]. Commercial systems are still 

broadly used for automated AEG classification – normal vs. fractionated – for target identification during 

persAF ablation (Figure 1), also with inconsistent outcomes [37].  

Current markers for ablation might have failed to provide a definitive solution for persAF therapy 

possibly because they have been insufficient to fully describe the complex AF dynamics. Recent works 

have highlighted the unstable spatiotemporal behavior of underlying atrial activations during persAF, 



6 
 

with AF drivers that drift over the left atrium (LA) [38-41]. The same works, however, have shown that 

these drivers have preferential sites for recurrence. More recently, the nature of AF has been described as 

a spatiotemporally chaotic state linked to the alternans instability that leads to conduction block and wave 

breakup, which supports recent findings regarding drivers recurrence in preferential atrial regions [42].  

The role of low dimensional structures for explaining AF has also been the subject of many 

investigations. In a seminal work, Hoekstra and colleagues have detected convergent low dimension 

trajectories for AF type I – as defined by Wells et al. [43] – using correlation dimension estimation by 

means of GP algorithm, while failing to find such finite scaling structure for types II and III, which may 

also be associated to the GP algorithm limitations [19]. In the context of RP and RQA, Censi and 

colleagues have analyzed recurrent patterns on atrial activations in different atrial regions from paired sets 

of AEGs collected simultaneously, suggesting a theoretical paradigm for atrial functional coupling [44]. 

More recently, Navoret and colleagues have used RQA-based variables in the classification of AEGs and 

investigated the temporal dynamics of AEGs during AF, without, however, describing deterministic 

structures from the AEGs [45]. Ng et al. have used a modified concept of RPs to investigate the regularity 

of segmented activations in the AEGs, which stablished an interesting recurrence-based activation map 

associated to the study of specific waveforms propagation [46, 47]. Zeemering and colleagues have used 

RQA to investigate the spatiotemporal pattern of AEGs using high-density mapping [48]. In the latter, 

RQA-based variables and principal component analysis were used, among others, to correlate RQA’s 

determinism and the number of waves per AF cycle, providing an alternative measure associated to the 

complexity of the arrhythmia. Finally, Hummel et al. have introduced a method for quantifying recurrent 

patterns of local wavefront direction using RQA and the conformation of AEGs during AF [49]. The 

authors have shown that the RPs from areas of stable spiral wave reentry exhibited stable, periodic 

dynamics, while regions of wavelet breakup have shown a chaotic behavior largely devoid of repetitive 

activation patterns. 
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The nature of this problem, therefore, suggests that recurrence analysis might be useful to explore the 

underlying AF dynamics, and may provide additional information about the underlying atrial substrate, 

potentially helping in the identification of targets for persAF ablation. These require the definition of a 

consistent set of RQA variables taking into account the specificities of the signals and of the theoretical 

methodology. In the present work, we sought to quantify the changes in AF dynamics induced by PVI as 

measured by RQA variables in patients with persAF. A comparison between normal and fractioned AEGs 

was then performed in the RQA-variables domain considering the clinical condition (label) defined by the 

CARTO criteria (Biosense Webster, Diamond Bar, California) – a commercial system broadly used for 

automated AEG classification and ablation target identification. To accomplish such RQA 

characterization of AF, we proposed an adaptive threshold distance ε for recurrence definition considering 

different criteria in the literature, as also the typical high laminarity observed in normal AEGs, and the 

AEG discrimination based on CARTO criteria. 

II. Methods 

a. Study population and electrophysiological Study 

The population consisted of 18 patients (16 male; mean age 56.1 ± 9.3 years; history of AF 67.2 ± 45.6 

months) referred to our institution for first time catheter ablation of persAF [50]. Details of the clinical 

characteristics of the study subjects are provided in the Supplementary Material. All patients were in AF 

at the start of the procedure. Study approval was obtained from the local ethics committee and all 

procedures were performed with full informed consent. 

All antiarrhythmic drugs, except amiodarone, were discontinued for at least 5 half-lives before the start of 

the procedure. Details of the mapping procedure have been described previously [50]. Briefly, 3D LA 

geometry was created within NavXTM (St. Jude Medical, St. Paul, Minnesota) using a deflectable, variable 

loop circular PV mapping catheter (Inquiry Optima, St. Jude Medical) (Figure 2A). PVI was performed 

with a point-by-point wide area circumferential ablation approach (Cool Path Duo irrigated RF catheter, 
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St. Jude Medical), followed by the creation of a single roof line (RL). PVI was defined as the abolition of 

electrical signals on the circular mapping catheter when positioned within each PV.  

No additional ablation targeting fractionated AEGs was performed in this study. AEG collection was 

performed for further offline analyses. Sequential point-by-point bipolar AEGs were collected also using 

the Inquiry Optima from 15 pre-determined atrial regions before and after PVI and RL creation (PVI+RL) 

[50]. All patients were in AF before and after PVI+RL during signal collection.  

b. Signal analysis 

A total of 797 AEGs were recorded from the LA, 455 before and 342 after PV+RL (1200 Hz sampling 

frequency; 30–300 Hz band-pass filter built in the NavX system [37]; 50 Hz Notch filter) (Figure 2B). A 

stationary wavelet transform (SWT) filter was implemented based on a previously described method to 

further reduce both baseline oscillations and high frequency noise [51]. For baseline oscillations, the 

AEGs were decomposed with Daubechies D11 wavelet into details 8, corresponding to the frequency 

band between 0 – 2.34 Hz, which was set to zero. For the high frequency noise, the AEGs were 

decomposed with Haar wavelet into details 7. Level 1 corresponds to frequency band between 300 – 600 

Hz, which has no electrophysiologic relevance. Hence, it was assumed that the presence of a white noise 

– that affects the frequency spectrum homogeneously – would be more evident in this frequency band 

with variance . An adaptive threshold was calculated for each AEG, accordingly: 

 

(1)

where N is the length of the AEG. The threshold Tr represents the amplitude level of the white noise 

distributed in the AEG. This threshold was then applied in all the levels of the filter bank. At each level, 

amplitudes higher than the threshold were conserved, while amplitudes below the threshold were 

suppressed. The resulting filtered AEGs were computed with the levels after thresholding with the inverse 

wavelet transform.  
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c. The CARTO algorithm (CARTO 3 System, 2008-2014, Version 4.3)  

AEG classification (normal vs. fractionated) was performed following the CARTO criteria. A detailed 

description of the CARTO system is provided elsewhere [37]. Briefly, CARTO provides a 3D 

representation of the LA and online automated AEG classification based on complex intervals between 

successive peaks and troughs occurring inside a 2.5 seconds window of sequentially recorded bipolar 

AEGs (Figure 1). The number of identified complex intervals is referred to as the interval confidence 

level (ICL), and characterizes the repetitiveness of the fractionated complexes, which is then converted to 

a color-coded map that guides ablation. CARTO software also finds, as complementary attributes, the 

average of the identified interval, referred to as the average complex interval (ACI), and the shortest 

identified interval, referred to as the shortest complex interval (SCI). AEGs were considered fractionated 

for ICL ≥ 4, ACI ≤ 82 ms and SCI ≤ 58 ms [37]. 

Therefore, AEGs with high amplitude, discrete activations distanced by electrical silence (such as AEG 1 

in Figure 1) are considered normal AEGs, and are believed to represent healthy atrial tissue. AEGs with 

low amplitude, multiple deflections activations (such as AEG 2 in Figure 1) are considered fractionated 

AEGs, and are believed to represent atrial substrate. 

d. Recurrence quantification analysis 

A RP consists of a two-dimensional graphical technique used for the study of the topological structure of 

multidimensional dynamic systems [3]. It aims to evaluate the reappearance of states in a 

multidimensional vector based on the construction of a binary distance matrix, associating the value “1” 

whenever one point in the multidimensional vector is close to another sample by a distance less than ε, 

and “0”, otherwise. This recurrence matrix can be represented graphically by associating a black pixel to 

the value “1”. This binary signal “fingerprint” exhibited in the RP is related to its dynamics allowing 

access to stationarity, regularity and predictability, being useful to characterize phase transitions and the 

temporal evolution in general, even considering a small amount of data samples, since information 
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concerning the distance organization between all pair of points is taken into account in time and phase 

space.  

Complex patterns in RPs can be reduced to primary diagonal, vertical and horizontal dot patterns aligned 

on a grid [52]. It is the mixing and matching of these primary structures that gives rise to all derivative 

graphical complexities and allows for the quantification of the recurrence organization. Therefore, RQA 

was established by introducing statistical variables considering the distribution of diagonal and vertical 

lines of different sizes in the RP [53]. Since usually just a single observation (the AEG) is available for a 

time window, the phase space can be reconstructed using the Takens’ theorem [3], aiming to reveal a 

possibly hidden low dimensional geometric trajectory underlying the observation, as shown in Figure 2C. 

In this case, the auxiliary axes are estimated considering delayed samples of the unidimensional 

observation x(k), such as: 

2
in which de is the embedding dimension – number of coordinates used for the x(k) representation – and τ 

represents the time-delay embedding among samples. These parameters were estimated through the false 

nearest neighbor test and the first local minimum of the self-mutual information, respectively, as 

classically performed in nonlinear analysis devoted to RP and RQA [3, 54]. 

The recurrence matrix (Ri,j) was defined based on the distance between the respective reconstructed states 

xi and xj and an arbitrary threshold ε for defining a binary proximity relation, which can be expressed as: 

 

(3)

being  θ{·} the Heaviside function (Figure 2D). 

The binary pattern observed in a RP is intrinsically related to the generative dynamics of the observation: 

the horizontal structures are associated with the laminarity (or turbulence) of the signal; the diagonal 
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structures reflect the co-evolution of states, and indicate possible deterministic dynamics. For a RP 

obtained from a time series of N samples, with frequency distribution P(l) of diagonals line length, 

frequency distribution P(v) of vertical line length, probability p(l) of finding a diagonal of length l, 

probability p(v) of finding a vertical line of length v, the RQA is associated with representative statistical 

measures of the matrix Ri,j [3], being used here:  

 The recurrence rate (RR), which represents the density of points in a RP: 

 

(4)

 The ratio between recurrence points that form diagonal structures (with length l ≥ lmin), referred to 

as determinism (DET): 

 

(5)

 The average length of the diagonal lines (L): 

 

(6)

 The Shannon entropy of diagonal lines in a RP (ENTR), which reflects the RP’s complexity 

regarding the diagonal lines: 

 

(7)

 The ratio between recurrence points that form vertical structures (with length v ≥ vmin), referred to 

as laminarity (LAM): 
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(8)

 The trapping time (TT), which represents the average length of the vertical lines: 

 

(9)

 The Shannon entropy of vertical lines in a RP (ENTR_vert), which reflects the RP’s complexity 

regarding the vertical lines: 

 

(10)

These RQA-based variables were investigated for AEGs collected before and after PVI+RL. Comparisons 

were also conducted on these RQA-based values calculated from normal vs. fractionated AEGs. 

e. Defining ε-parameters for RQA 

After embedding dimension definition by nearest neighbors’ algorithm and setting τ based on minimal 

mutual information, ε was determined. Previous work has suggested that ε should be chosen such that the 

resulting RR is approximately 1%, or ε should not exceed 10% of the maximum phase space diameter [3]. 

Therefore, eleven different values for ε were tested, varying from 0.5% to 10% of the maximum phase 

space diameter. For each ε, the RR was calculated, and the discrimination between normal vs. fractionated 

AEGs was tested using the MATLAB® embedded function rankfeatures (‘CriterionValue’ set at ‘roc’). 

Similarly, the minimum line lengths for the calculation of DET and LAM were defined considering the 

discrimination between normal vs. fractionated AEGs using the MATLAB® embedded function 

rankfeatures (‘CriterionValue’ set at ‘roc’). Using the ε defined above, both DET and LAM were 

calculated for nineteen values of minimum line length, varying from 2 to 20. The minimum line lengths 
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were also defined as a compromise between the resulting values for DET and LAM, and AEG 

discrimination. The determination of ε has also taken into account the fact that normal AEGs are usually 

quite regular (as shown in Figure 1) and exhibit high laminarity as an intrinsic behavior, which would to 

contribute for a high RR and far from the suggested 1% rule. The proposed approach aimed to choose an 

adaptive ε as a percentage of maximal phase space difference, leading to a relatively low RR and 

distinguishable between normal and fractionated AEGs pointed by CARTO criteria in the DET and LAM 

variables. 

f. Statistical Analysis 

All continuous non-normally distributed variables are expressed as median ± interquartile interval. Non-

parametric unpaired data were analyzed using the Mann–Whitney test. The comparison between two 

probability distributions was carried with the Kullback-Leibler (KL) divergence. Receiver operating 

characteristic (ROC) curves were created using the CARTO criteria as the reference for AEG 

classification and the RQA variables as discriminators. The optimum sensitivity and specificity on the 

ROC curve was defined as the point on the curve with the shortest distance to the top left corner of the 

graph. Validation of the optimum point of operation for AEG classification was performed with leave-

one-out cross-validation (LOOCV). P-values of less than 0.05 were considered statistically significant.  

III. Results 

a. Variables for RQA 

For the calculation of ε, the area under the ROC (AUROC) curves – shown in Table 1 – suggest that 2% 

of the maximum phase space diameter represents a good compromise among the resulting RR, the 

discrimination between normal and fractionated AEGs (Figure 3A), and the portion of the maximum 

phase space diameter. Similarly, the AUROC curves shown in Table 2 suggest that a minimal line length 

of 6 should be considered for the calculation of DET (Figure 3B), while a minimal line length of 7 should 

be considered for the calculation of LAM (Figure 3C) for a high class discrimination and also minimal 
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and maximal bounds to the attributed estimates. Note that minimal vertical or diagonal lengths of 2 or 3 

can lead to maximal DET or LAM, which may be associated to an undesirable saturation behavior. 

Additionally, Figures 3B and 3C also show that the percentage of vertical and diagonal lines in longer 

lengths are non-negligible even for fractionated AEGs, illustrating the changes in both DET and LAM 

induced by the minimal line length parameter expressed in Eqs. (5) and (8).  

These values were used for the construction of the RPs, and the calculation of DET and LAM for each 

AEG in the subsequent parts of this work. 

b. Filtering effect on RQA 

The effect of the SWT filter has been investigated (Figure 4). The SWT filter helped to remove unwanted 

low amplitude, high frequency components. Consequently, the RP created from filtered AEG was 

represented by blocks of recurrence due to the laminar nature of the signal, while the unfiltered AEGs 

represented a blurred version of such RP (Figure 4A). This was supported by the evident effect on the 

histogram of the diagonal line lengths illustrated in Figure 4B, showing that lines of length 1 (related to 

noise) were drastically reduced, while the lines with longer lengths remained mostly unaffected. Despite 

this impact, the KL divergence suggested a small difference between the two distributions (unfiltered vs. 

filtered AEGs). 

c. Atrial substrate characterization using RQA-based variables 

Two typical AEGs – one normal and one fractionated – found in the present cohort and their respective 

RPs are illustrated in Figure 5. While normal AEGs were characterized by evident blocks of recurrence 

and longer diagonal lines, reflecting the laminar and deterministic behavior of the system, fractionated 

AEGs have presented low RR, but with residual diagonal lines. 

The comparison of RQA-based variables between normal and fractionated AEGs is shown in Figure 6. 

All variables were significantly affected by the presence of fractionated activity (P<0.0001 for all cases). 
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As expected, RR was lower for fractionated AEGs (Figure 6A). However, the variables related to the 

diagonal lines in the RPs (DET, L and ENTR) suggest the presence of structures that are associated to 

deterministic behavior in fractionated AEGs, leading to a high residual determinism (Figure 6B). 

Similarly, the variables related to the vertical lines (LAM, TT and ENTR_vert) also suggest the presence 

of vertical structures associated to laminar behavior in the fractionated AEGs, leading to a residual 

laminarity (Figure 6C). Additionally, the variables were able to discriminate normal AEGs from 

fractionated ones, as illustrated by the ROC curves (supplementary materials), with a hit rate from the 

LOOCV as high as 69% (Table 3).  

d. Effect of PVI+RL on the RQA-based variables 

The effect of PVI+RL on the RQA-based variables is shown in Figure 7. All features were significantly 

affected by the procedure (P<0.0001 for all cases), suggesting that they are sensitive to important 

electrophysiologic characteristics of the atrial tissue. PVI+RL increased the RR, suggesting that the 

ablation evidenced periodic orbits in the LA (Figure 7A).  

The variables related to the diagonal lines indicate that PVI+RL increased the overall diagonal line 

lengths – related to deterministic structures (Figure 7B). Additionally, higher ENTR reflects the increase 

of the dispersion in the probability distribution of the diagonal line lengths induced by PVI+RL. 

Altogether, these results suggest that the RPs from the AEGs collected at baseline presented a high 

incidence of diagonal lines with short lengths, while the ablation increased both the lengths and the 

variance of the probability distribution of these diagonal lines.  

Similarly, the variables related to the vertical lines indicate that PVI+RL increased the overall vertical 

line lengths – related to the system’s laminarity (Figure 7C). Additionally, higher ENTR_vert reflects the 

increase of the dispersion in the probability distribution of the vertical line lengths induced by PVI+RL. 

These results also suggest that the RPs from the AEGs collected at baseline presented a high incidence of 



16 
 

vertical lines with short lengths, while the ablation increased both the length and the variance of the 

probability distribution of these vertical lines.  

Hence, PVI+RL had a profound effect in the dynamics of the underlying atrial tissue, and the AEGs 

collected after the ablation were more organized – and therefore less fractionated – than those collected at 

baseline. 

IV. Discussion 

In this work, we further investigated the dynamic structure of AEGs collected during persAF using RQA 

following the automated AEG classification performed by CARTO. The results show that residual 

diagonal structures associated to deterministic behavior were still present in the RPs from fractionated 

AEGs, leading to a high residual determinism, which could be related to unstable periodic orbits in a 

chaotic motion. This implies that the spatiotemporal dynamics of persAF mechanisms are not necessarily 

associated to a random structure [42, 55]. On the contrary, even the seemingly turbulent activations in 

fractionated AEGs are related to deterministic mechanisms of activation that could be a result of different 

AF drivers in the LA responsible for triggering and maintaining AF [39, 41, 56]. Therefore, RQA could 

be potentially used to better characterize the atrial substrate during persAF and identify targets for 

ablation.  

a. RQA-based variables from persAF AEGs 

In the present study, we propose rigorous steps for a proper reconstruction of the RPs and for the 

estimation of RQA-based variables extracted from persAF AEGs. First, the AEGs have been filtered 

using SWT filter banks. This represents an important step in the experimental characterization and 

identification of chaotic behavior. Proper AF characterization requires the removal of additive noise, and 

the SWT denoising has been shown effective to achieve that [57]. The additive components removed 

from AEGs were, in general, ten times smaller than the remaining signal, in amplitude. This resulted in 

the removal of mostly single isolated points in the RP – as shown in Figure 4 – and did not introduce 
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distortions on longer diagonals, as would be associated to an undesirable increase of determinism. 

Interestingly, classical low pass filtering has been shown to distort the deterministic dynamics [58], which 

seems to be avoided in the present work using SWT denoising strategy. 

Following the SWT filtering, the Takens’ theorem was applied for the estimation of the attractors for all 

AEGs, in which the false nearest neighbor test and the self-mutual information were used for the 

estimation of the embedding dimension and the time-delay embedding, respectively [3, 54].  

A thorough investigation was then conducted to better define ε for each AEG. Previous work has shown 

the importance of finding ε as such the resulting RR should converge to 1% [3], but the high laminar 

nature of the AEGs would limit this application. Therefore, an adaptive value for ε has been estimated in 

order to achieve a resulting RR as close to 1% as possible, but also with a good compromise between the 

AEG discrimination and the portion of the maximum phase space diameter.  

The minimum line length for the calculation of both DET and LAM has been also assessed. The results 

suggest that DET and LAM are preserved even for different minimum line lengths. In this work, DET and 

LAM were calculated considering minimum line lengths of 6 and 7, respectively, to avoid undesirable 

saturation behavior and for improved AEG discrimination. 

Finally, the AEGs have been filtered using an adaptive SWT filter in an attempt to minimize additive 

(measurement) noise. The filter succeeded in removing a significant portion of diagonal lines with length 

one, i.e., recurrent components very likely associated with stochastic phenomena.  

b. PersAF AEG characterization using RQA 

Previous works have considered RPs and RQA for the investigation of AF dynamics [44-49]. Our work 

represents a step further in the attempt to i) assess changes in RQA-based variables induced by PVI; ii) 

evaluate AEG classification using RQA-based variables considering a clinical label as reference and; iii) 
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unveil possible deterministic structures within the temporal series from single AEGs using the Takens’ 

theorem to estimate the underlying attractor. 

Although Zeemering and colleagues have considered electrophysiologic criteria instead of the Takens’ 

theorem for the estimation of the attractors [48], the authors have provided great insight on the correlation 

between RQA-based variables and the AF electrophysiology – there represented by the existing number 

of wavelets during one activation episode. In the present work, the AF electrophysiology was assessed by 

RQA-based variables considering the PVI – the most accepted and broadly performed percutaneous 

therapy for AF treatment [21]. Statistically significant shifts in the RQA attributes were discovered after 

PVI (Figure 7), which indicates these attributes are related to important electrophysiological changes in 

the arrhythmia. While this does not provide any predictions as to where to ablate, we believe it is 

imperative to understand the changes (if any) in these variables after PVI prior to any further analysis 

considering that: i) this is as an exploratory step for persAF characterization using RQA-based variables 

and; ii) it is known that PVI induces changes in the atrial substrate, even in regions far from ablation 

lesions [29].  

Furthermore, statistically significant differences were discovered in the RQA variables when comparing 

normal AEGs vs. fractionated AEGs (Figure 6) – in line with previously published data [48]. The high 

residual determinism from these seemingly turbulent (or fractionated) activations could be related to 

unstable periodic orbits in a chaotic motion [42]. Therefore, the spatiotemporal dynamics of persAF 

mechanisms were not associated to a random structure. Accordingly, recent works have highlighted the 

unstable – yet recurrent – behavior of underlying atrial activations during persAF [38-41]. Rotors have 

been shown to be spatiotemporally unstable, appearing and disappearing in different atrial regions [39, 

40]. The same works, however, have shown that, although reentry circuits meander in the atria, they have 

preferential sites for recurrence. Additionally, a recent published work has shown a high correlation 

between the recurrence of reentry circuits and atrial regions with high fibrosis density [59]. Frontera and 

colleagues have recently reported fractionated activity from the pivot points of reentry circuits [60]. 
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Finally, Hummel et al. have shown that the RPs from areas of stable spiral wave reentry exhibited stable, 

periodic dynamics, while regions of wavelet breakup have shown a chaotic behavior largely devoid of 

repetitive activation patterns [49]. These results suggest that fractionated activity could be related to areas 

of high density of fibrosis that would induce the formation of reentry circuits, from which multiple 

wavelets might emanate and meander in the atrial tissue, with direct participation in the perpetuation of 

the arrhythmia.  

Although fractionation-guided ablation is one of the most controversial topics in patient-specific AF 

therapy [37], these findings motivate further investigation as to use RQA variables as biological markers 

that can potentially guide persAF ablation in the future. Hence, our results support that the RQA-based 

variables not only provide further insight on the underlying dynamics of the arrhythmia [49], but they 

might also be used as complementary biological markers in the characterization of atrial substrate to 

guide persAF ablation.  

c. Limitations 

The current study was limited to retrospective data. Further understanding of the underlying cardio-

electrophysiological mechanisms behind persAF would be helpful for the validation of the suggested 

method, such as in (i) computational intracardiac models that simulate both atrial electrical activity and 

ablation procedures during AF [61] and; (ii) prospective studies using the suggested method in the 

identification of ablation targets during substrate mapping. Additionally, we acknowledge that the 

simplistic and non-physiologic rationale behind the counting of the number of fractionated deflections as 

performed by the CARTO algorithm might also impose some limitations. This, however, deserves a 

dedicated investigation and is out of the scope of the present work. 

The non-stationarity of AEGs collected during persAF makes the idealization of RQA-parameter 

choosing impractical. We believe, however, that the investigation on the temporal behavior of AEGs 

requires a more dedicated analysis and is out of the scope of the present work. Additionally, considering 
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that most devices used to guide AF ablation still consider sequential point-by-point bipolar AEGs limited 

to 8 s duration, we believe that the results found in the present work are relevant and timely, as they can 

be applied with the currently available technology. 

V. Conclusions 

In the present work, we characterized the dynamics of atrial tissue activations from AEGs collected 

during persAF using RPs and RQA-based variables. We have shown that all features are sensitive to 

important electrophysiologic characteristics of the atrial tissue, and they were able to significantly 

discriminate normal AEGs from fractionated ones. Additionally, a high residual determinism was found 

in the RPs from fractionated AEGs, which could be related to unstable periodic orbits in a chaotic motion. 

This implies that the spatiotemporal dynamics of persAF mechanisms is not necessarily associated to a 

random structure. On the contrary, even the seemingly turbulent activations in fractionated AEGs are 

related to deterministic mechanisms of activation that could be a result of AF drivers that drift over the 

LA, with preferred locations. Therefore, RQA could be potentially used as biological markers to help with 

the characterization of the atrial substrate during the identification of targets for persAF ablation.  

Supplementary materials 

See supplementary material for the details of the clinical characteristics of the study subjects and for 

illustration of the ROC curves using the CARTO criteria as the reference for AEG classification and the 

RQA variables as discriminators. 
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Tables 

Table 1. The area under the ROC curves (AUROC) for the discrimination between normal vs. fractionated AEGs considering RR as the 

discriminator. RR was calculated for eleven different values of ε, varying from 0.5% to 10% of the maximum phase space distance. 

% of max phase space distance 0.5% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

AUROC 0.717 0.714 0.702 0.690 0.678 0.667 0.656 0.646 0.637 0.627 0.618

The highlighted value indicates the chosen threshold for ε used for the remaining parts of the work. 

 

Table 2. The AUROC for the discrimination between normal vs. fractionated AEGs considering DET and LAM as the discriminators, calculated 

with different minimum line lengths. 

Min line 

length 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

DET 0.713 0.709 0.708 0.709 0.709 0.705 0.701 0.697 0.695 0.693 0.692 0.692 0.693 0.694 0.696 0.697 0.699 0.701 0.703 

LAM 0.717 0.713 0.713 0.715 0.717 0.717 0.716 0.715 0.714 0.714 0.715 0.714 0.715 0.715 0.715 0.715 0.716 0.717 0.717 

The highlighted values indicate the values chosen for DET and LAM used for the remaining parts of the work. 
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Table 3. ROC curves for the AEG discrimination using the RQA-based features (mean ± SD). 

 RR DET L ENTR LAM TT ENTR_vert 

AUROC 0.697 ± 0.001 0.709 ± 0.001 0.729 ± 0.001 0.693 ± 0.001 0.724 ± 0.001 0.716 ± 0.001 0.689 ± 0.001 

Operating Point 0.076 ± 0.001 0.710 ± 0.0001 74.89 ± 0.003 2.85 ± 0.05 0.807 ± 0.006 11.02 ± 0.003 3.57 ± 0.004  

Sensitivity 0.684 ± 0.004 0.710 ± 0.001 0.713 ± 0.001 0.679 ± 0.027 0.716 ± 0.013 0.684 ± 0.001 0.697 ± 0.002 

Specificity 0.359 ± 0.004 0.369 ± 0.001 0.336 ± 0.001 0.361 ± 0.023 0.363 ± 0.013 0.336 ± 0.001 0.390 ± 0.002 

LOOCV hit rate 64% 66% 69% 62% 64% 67% 63% 
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Figure Titles and Captions: 

Figure 1. Illustration of automated AEG classification performed by algorithms embedded in commercial 

systems and types of AEGs. 3D atrial geometry representation for one patient, with the automated AEG 

classification algorithm performed by the CARTO (Biosense Webster, Diamond Bar, California) criteria. 

On the bottom part of the figure, the top trace refers to a segment of normal AEG (AEG 1), and the 

bottom trace refers to a fractionated AEG (AEG 2), both recorded from the LA endocardium. (Modified 

from [37]). LPV = left pulmonary veins; MV = mitral valve; RPV = right pulmonary veins. 

 

Figure 2. A. Catheter ablation of an AF patient. The various computer screens show the 3D 

representation of the LA and online automated AEG classification created by the CARTO system to help 

guide the ablation. B. A highlight of the 3D representation of the LA and the annotated AEG. C. AEG 

state space reconstruction following the Takens’ theorem, time-delay embedding (τ) and embedding 

dimension (d). D. Distance plot based on state space map, and the resulting RP after an adaptive threshold 

ε was applied on the distance plot. 

 

Figure 3. The definition of the parameters for recurrence analysis: ε (A), and the minimum line length for 

the calculation of DET (B) and LAM (C). 

 

Figure 4. The effect of SWT filter in the RQA. A. The RPs created for the same AEG, before (left) and 

after (right) the SWT filter. B. The probability distribution of diagonal lines for all AEGs, before (left) 

and after (right) the SWT filter. The KL divergence was calculated to compare the distributions. 

 

Figure 5. Illustration of typical AEGs found in the present cohort – normal (left-hand side) and 

fractionated (right-hand side) – and their respective RPs. 
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Figure 6. The RQA-based variables calculated from the AEGs classified as normal or fractionated by 

CARTO. A. The RR. B. Variables related to diagonal lines. C. Variables related to vertical lines. **** 

P<0.0001. 

 

Figure 7. The RQA-based variables calculated from the AEGs collected before and after PVI+RL. A. 

The RR. B. Variables related to diagonal lines. C. Variables related to vertical lines. **** P<0.0001. 

 

 

 



34 
 

 



35 
 

 



36 
 



37 
 

 



38 
 



39 
 



40 
 

 


