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Abstract. A 2-copula A induces a transition probability function pA via

pA(x, S) =
d

dx

∫

S

∂

∂t
A(x, t) dt.

where S ∈ B, B denoting the Lebesgue measurable subsets of [0, 1]. We say that a set S is
invariant under A if pA(x, S) = χS(x) for almost all x ∈ [0, 1], χS being the characteristic
function of S. The sets S invariant under A form a sub-σ-algebra of the Lebesgue measurable
sets, which we denote BA. A set S ∈ BA is called an atom if it has positive measure and if for
any S′ ∈ BA, λ(S

′ ∩ S) is either λ(S) or 0.
A 2-copula F is idempotent if F ∗ F = F . Here ∗ denotes the product defined in [1].

Idempotent 2-copulas are classified and characterized as follows:

(i) An idempotent F is said to be nonatomic if BF contains no atoms. If F is a nonatomic
idempotent, then it is the product of a left invertible copula and its transpose. That is, there
exists a copula B such that

B ∗BT = F, and

BT ∗B =M,

where M(x, y) = min(x, y).

(ii) An idempotent F is said to be totally atomic if there exist essentially disjoint atoms
Sn ∈ BF with ∑

n

λ(Sn) = 1.

If F is a totally atomic idempotent, then it is conjugate to an ordinal sum of copies of the
product copula. That is, there exists a copula C satisfying C ∗ CT = CT ∗ C = M and a
partition P of [0, 1] such that

F = C ∗ (⊕PFk) ∗ C
T (1)

where each component Fk in the ordinal sum is the product copula P .

(iii) An idempotent F is said to be atomic (but not totally atomic) if BF contains atoms
but the sum of the measures of a maximal collection of essentially disjoint atoms is strictly
less than 1. In this mixed case, there exists a copula C invertible with respect to M and a
partition P of [0, 1] for which (1) holds, with F1 being a nonatomic idempotent copula and
with Fk = P for k > 1.

Some of the immediate consequences of this characterization are discussed.
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1 Introduction

We address here idempotent copulas, meaning 2-copulas A for which A ∗ A = A. The
motivation for studying idempotents is a hope of developing a roadmap to the large and
amorphous set of all 2-copulas. We present here what we believe to be a rather thorough
analysis of idempotents. Whether this can lead to a general roadmap remains to be seen.

The ∗ product of two 2-copulas is defined as follows:

A ∗B(x, y) =

∫ 1

0

A,2(x, t)B,1(t, y) dt.

Here, and in general throughout this paper, C,1 and C,2 denote the partial derivatives of a
2-copula C with respect to its first and second arguments, respectively. The ∗ product of two
copulas is always a copula. The ∗ product is an associative operation: A∗ (B ∗C) = (A∗B)∗C
for all copulas A, B and C. Furthermore, the ∗ product is continuous in each place with respect
to uniform convergence: if An → A uniformly, then An ∗ B → A ∗ B and B ∗ An → B ∗ A
uniformly. These and other properties of the ∗ product are proved in [1]. For convenience, we
will generally write AB for the ∗ product of A and B, omitting the ∗, except for emphasis or
where clarity may require it. Thus, also, we write A2 for A ∗A and the like.

The product copula P , given by P (x, y) = xy and the min copula M given by M(x, y) =
min(x, y) are idempotent. They are the most important idempotent copulas in an algebraic
sense, since P is the (unique) universal annihilator – PC = CP = P for all copulas C – and
since M is the (unique) universal unit – MC = CM = C for all copulas M .

What other copulas are idempotent? We know that there exist copulas which are invertible
on the left but not on the right, with respect to M . A copula A has a left inverse if and only
if for all y, A,1(x, y) is 1 or 0 for almost all x, and if this is the case, its left inverse is its
transpose AT , where AT is defined by AT (x, y) = A(y, x). [1], Theorem 7.1, discussed further
below. Similarly, a copula A possesses a right inverse if and only if for all x, A,2(x, y) is 1 or
0 for almost all y, and if this is the case, its right inverse is its transpose AT . An example of
a copula with a left inverse but no right inverse is the hat copula Λ given by

Λ(x, y) =






x, 0 ≤ x ≤ 1/2, 2x ≤ y ≤ 1
y
2
, 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 2x

y
2
, 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 2(1− x)

x+ y − 1, 1/2 ≤ x ≤ 1, 2(1− x) ≤ y ≤ 1.

We leave it to the reader to verify that Λ is a copula. Observe that since Λ,1 is 0 or 1 almost
everywhere, necessarily Λ possesses a left inverse which is equal to ΛT . On the other hand
Λ,2 is not 0 or 1 almost everywhere; it has the value 1/2 in the triangular region bounded
by y = 2x, y = 2(1 − x) and y = 0. According to the theorem, therefore Λ possesses no
right inverse. By direct calculation, one obtains ΛΛT = (M +W )/2, where W is the copula
given by W (x, y) = max(0, x + y − 1). One verifies readily that (M +W )/2 is idempotent.
Indeed, it is always true, whenever a copula A possesses a left but not a right inverse, that,
whereas ATA =M , AAT is an idempotent copula different from M . To see this, observe that
(AAT )2 = (AAT )(AAT ) = A(ATA)AT = AMAT = AAT , using the facts that the ∗ product
is associative, that ATA = M and that M is a universal unit. Hence, AAT is idempotent;
AAT 6=M , since by hypothesis A possesses no right inverse with respect toM . As will appear,
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it is easy to construct copulas with a left but not a right inverse, so this construction gives a
large class of idempotent copulas.

Does it give them all? The answer is no. We cannot, for example, find a left but not right
invertible copula A for which P = AAT . For if we could, then it would have to be true that
P = ATPA = AT (AAT )A = (ATA)(ATA) =M2 =M , contradiction, since P and M are not
equal.

What is so different about P and, for example, (M +W )/2, which allows the latter but
not the former to be decomposed in the form AAT for a left invertible copula A? We show here
that there is a significant difference in the invariant sets of the idempotents P and (M+W )/2.
We turn now to this issue.

For any copula A, we define a transition probability function pA via

pA(x, S) =
d

dx

∫

S

A,2(x, t) dt.

where S is a measurable set. This is called a transition probability since, if we imagine a process
with uniformly distributed random variables, for which A is the joint distribution of Xs and
Xt, say, with s < t, then pA(x, S) gives the conditional probability E(Xt ∈ S|Xs = x). We say
that a set S is invariant under A if the equation pA(x, S) = χS(x) is satisfied for almost all
x ∈ [0, 1]. If S is invariant under A, and the process is in S at time s (i.e. Xs ∈ S), then the
process will be in S at time t (i.e. Xt ∈ S), with probability 1.

The equation for the invariant sets of P is

χS(x) =
d

dx

∫

S

P,2(x, t) dt = λ(S),

for a.a. x, where λ(S) denotes the Lebesgue measure of S. This equation can be satisfied only
if λ(S) = 0 or 1, and it is trivally satisfied for all S whose measure is 0 or 1. We conclude that
the invariant sets of P are the measurable sets whose measure is 0 or 1.

On the other hand, the equation for the invariant sets of (M +W )/2 is

χS(x) =
d

dx

∫

S

(
1

2
χ[0,x](t) +

1

2
χ[1−x,1](t)) dt

=
1

2

d

dx

∫ x

0

χS(t) dt+
1

2

d

dx

∫ 1

1−x

χS(t) dt

=
1

2
χS(x) +

1

2
χS(1− x) for a.a. x.

We conclude that S is an invariant set of (M +W )/2 if and only if 1 − x ∈ S for a.a. x ∈ S.
These sets are just those which are essentially symmetric about the point x = 1/2. They
constitute a σ-algebra, since the symmetry about x = 1/2 is preserved by the complement
operation and by taking countable unions.

Note first that the invariant sets in both of these cases form a σ-algebra. This is true in
general, as we will show later on. The difference between the two families of invariant sets is
that BP , the collection of invariant sets of P , is an atomic σ-algebra, whereas B(M+W )/2, the
collection of invariant sets of (M +W )/2, is a nonatomic σ-algebra. This difference turns out
to be crucial for our analysis.

Terminology: Let S be a sub-σ-algebra of the Lebesgue measurable subsets of [0, 1]. S ∈ S
is an atom if it has positive measure and if for all S′ ∈ S either λ(S∩S′) = λ(S) or λ(S∩S′) = 0.
An atom is accordingly a set of positive measure, no non-trivial subset of which is a member of
S, sets which differ from from S or the empty set φ by a null set being considered trivial for this
purpose. In the case of P , the invariant sets consist essentially of a single atom, the interval [0, 1]
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itself, and the empty set φ. On the other hand, in the case of (M +W )/2, there are no atoms
among the invariant sets. To see this, suppose S is a set of positive measure which is invariant
under (M +W )/2. Then by the symmetry condition on S, λ(S ∩ [1/2, 1]) = λ(S ∩ [0, 1/2]) so
that both S ∩ [1/2, 1] and S ∩ [0, 1/2] must have positive measure. Define

f(x) = λ([0, x] ∩ S) =

∫ x

0

χS(t) dt.

Then f is continuous and non-decreasing and maps [0, 1/2] onto [0, λ(S)/2]. Whenever 0 <
a < λ(S)/2 there is a number x0 ∈ (0, 1/2) for which f(x0) = a, by the intermediate value
theorem. Set Q = ([0, x0] ∪ [1 − x0, 1]) ∩ S. Then Q satisfies the symmetry condition for an
invariant set of (M +W )/2, hence is in B(M+W )/2, Q = Q ∩ S, and Q has measure 2a > 0.
Since 2a < λ(S), by construction, S is not an atom. Since S was an arbitrary invariant set of
positive measure, we conclude that B(M+W )/2 contains no atoms.

We will say that a copula C is atomic, if there are atoms among its invariant sets. We will
say that C is nonatomic, if there are no atoms among its invariant sets. We will say that C is
totally atomic, if among its invariant sets there is a collection of pairwise essentially disjoint
atoms, the sum of whose measures is 1, so that the invariant sets consist essentially of atoms,
their unions and the empty set. Using this terminology, P is totally atomic, since among
its invariant sets BP there is an atom whose measure is 1, namely [0, 1], and (M +W )/2 is
nonatomic, since among its invariant sets B(M+W )/2 there are no atoms. We will see later that,
in general, when an idempotent E has the form AAT for some copula possessing a left inverse,
it is a nonatomic idempotent. We will show that, conversely, if E is a nonatomic idempotent,
it must have the form AAT for some left invertible copula A.

Are there other atomic idempotents besides P? The answer is yes. Let P : {(ak, bk)} be
any partition of [0, 1] (a partition is a collection of disjoint open intervals the sum of whose
lengths is 1). Assign to each interval (ak, bk) a copula Ak. Define A via

A(x, y) =

{
ak + (bk − ak)Ak(

x−ak

bk−ak
, y−ak

bk−ak
), ak ≤ x, y ≤ bk

M(x, y), otherwise.

Then A is called an ordinal sum on the partition P with components Ak; it is a copula, [5, 7].
We will use the notation A = ⊕PAk for an ordinal sum. If A = ⊕PAk and B = ⊕PBk are
ordinal sums on the same partition P, then A = B if and only if Ak = Bk for all k, as is
obvious, AT = ⊕PA

T
k , as is also obvious, and A∗B = ⊕PAk ∗Bk, as is not so obvious, maybe,

but follows from an elementary calculation. From these facts, it follows that an ordinal sum
A is idempotent if and only if Ak is idempotent for all k. If A = ⊕PAk is an ordinal sum, the
intervals (ak, bk) in the partition are invariant sets of A, and the only other invariant sets S
are sets whose intersection with (ak, bk), appropriately scaled and translated, is an invariant
set of Ak for all k. This is proved later on. From this, it follows that if A = ⊕PAk and each
Ak is the product copula P , then A is idempotent, and the invariant sets of A are null sets,
and sets which differ from the intervals (ak, bk), or unions of them, by null sets. Since the sum
of the measures of the intervals (ak, bk) in P is 1, such an idempotent is totally atomic. This
still does not exhaust the totally atomic copulas. But we will show that if a copula E is totally
atomic, then it is conjugate to an ordinal sum of copies of the product copula P . That is, there
exists a partition P and a copula C with a two-sided inverse with respect to M such that

E = CT (⊕PFk)C,

where each component Fk is the product copula.
In the mixed case, where E is idempotent and atomic, but not totally atomic, we will show

that E is conjugate to an ordinal sum ⊕PFk where one of the components Fk is a nonatomic
idempotent and each of the other components Fk is the product copula P .
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The plan of this paper is to develop the tools needed for the analysis in Section 2, then
to address nonatomic, totally atomic, and atomic but not totally atomic copulas separately in
Sections 3, 4 and 5. In Section 6, we will set forth some of the consequences of the characteri-
zation of idempotent copulas presented in the earlier sections.

2 Tools

There are several results which we will make use of in more than one subsequent section
of this paper. They are collected here.

Left invertible and right invertible copulas. Many of our results depend ultimately on
the characterization of copulas which possess a left or right inverse with respect to M . We
state the relevant theorem here for reference throughout the paper.

Theorem 2.1. A 2-copula A has a left inverse with respect to M if and only if for each
y ∈ [0, 1], A,1(x, y) = 0 or 1 for a.a. x ∈ [0, 1], and in that case AT is the unique left inverse
of A. A 2-copula A has a right inverse with respect to M if and only if for each x ∈ [0, 1],
A,2(x, y) = 0 or 1 for a.a. y ∈ [0, 1], and in that case AT is the unique right inverse of A.

Proof. Omitted. The theorem stated here combines Theorems 7.1 and 7.3 of [1]. QED

Representation of copulas using pairs of measure preserving functions. Many of the
results herein exploit the association of a copula A with a pair of measure preserving Borel
functions. Let F denote the set of all Borel measure preserving transformations of the interval
[0, 1]. That is, f ∈ F if and only if it is a Borel function whose range is contained in [0, 1] and
it has the property that for all Borel sets B,

λ(f−1B) = λ(B).

Theorem 2.2. For f, g ∈ F , define a function Cf,g via

Cf,g(x, y) = λ(f−1[0, x] ∩ g−1[0, y]).

Then Cf,g is a 2-copula. Furthermore, for every 2-copula C there exist f, g ∈ F such that
C = Cf,g.

Proof. Omitted. See, e.g. [4, 9]. We presented a constructive proof in [2]. QED

For convenience, we will normally write Cfg for Cf,g, omitting the comma, unless it is
necessary for clarity. The following theorem gives some useful properties of Cfg.

Theorem 2.3. Let f, g and h denote elements of F . Let e denote the identity function
e(x) = x for all x ∈ [0, 1]. Let Cfg denote the 2-copula determined by f, g, as in Theorem 2.2
above. Let M denote the min copula: M(x, y) = min{x, y}. Then for all f ∈ F , f, g ∈ F or,
f, g, h ∈ F , as the case may be,

(1) For all x ∈ [0, 1],

Cfe,2(x, y) =
∂

∂y
Cfe(x, y) = χf−1[0,x](y) = χ[0,x](f(y)) = χ[f(y),1](x)

for a.a. y ∈ [0, 1]. For all y ∈ [0, 1],

Cef,1(x, y) =
∂

∂x
Cef (x, y) = χf−1[0,y](x) = χ[0,y](f(x)) = χ[f(x),1](y),
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for a.a x ∈ [0, 1].

(2) Cfe possesses a right inverse, and Cef , a left inverse, with respect to M .

(3) Cfg = Cfe ∗ Ceg.

(4) Cff =M .

(5) Cfg =M if and only if f = g a.s.

(6) CT
fg = Cgf .

(7) Cancellation law: Cf◦h,g◦h = Cfg.

(8) Cfe = Cge if and only if f = g a.s.

(9) Cfe ∗ Cge = Cf◦g,e, and Ceg ∗ Cef = Ce,f◦g.

Proof. (1) We can write

Cfe(x, y) = λ(f−1[0, x] ∩ [0, y]) =

∫ y

0

χf−1[0,x](t) dt,

from which the existence a.e. of the partial derivative with respect to y follows. Observe
that y ∈ f−1[0, x] iff f(y) ∈ [0, x] iff x ∈ [f(y), 1]. It follows that χf−1[0,x] = χ[0,x] ◦ f and
χ[0,x](f(y)) = χ[f(y),1](x). The conclusions regarding Cef are proved similarly.

(2) It follows from (1) that for all x, Cfe,2(x, y) = 0 or 1 for a.a. y. Thus, by Theorem 2.1
above, Cfe possesses a right inverse with respect to M . The conclusion that Cef possesses a
left inverse is proved similarly.

(3) By (1),

Cfe ∗ Ceg(x, y) =

∫ 1

0

χf−1[0,x](t)χg−1[0,y](t) dt = Cfg(x, y).

(4) Cff (x, y) = λ(f−1[0, x]∩ f−1[0, y]) = λ(f−1{[0, x]∩ [0, y]}). Since f is measure preserving,
it follows that Cff (x, y) = λ([0, x] ∩ [0, y]) = min(x, y).

(5) If f = g a.s., then f−1[0, y] and g−1[0, y] differ by a null set for all y, whence

Cfg(x, y) = λ(f−1[0, x] ∩ g−1[0, y]) = λ(f−1[0, x] ∩ f−1[0, y]) =M(x, y),

using (4). On the other hand, if Cfg =M , then, since Cfg(x, x) = x and Cfg(x, 1) = x for all
x, we must have

λ(f−1[0, x) ∩ g−1(x, 1]) = λ{f < x < g} = 0

for all x. Let rn be an enumeration of the rational numbers in [0, 1]. Here and elsewhere, we
use the terminology {f < x} to denote the set {t | f(t) < x}, and similarly for other relations,
so {f < x < g} = {t | f(t) < x < g(t)}. Since f(t) < g(t) iff there is a rational number rk such
that f(t) < rk < g(t), we can write

{f < g} = ∪∞
k=1{f < rk < g},

whence {f < g}, being the union of a countable collection of null sets, is itself a null set.
Similarly, {g < f} is a null set. Therefore, {f 6= g} = {f < g} ∪ {g < f} is a null set.

(6) CT
fg(x, y) = Cfg(y, x) = λ(f−1[0, y] ∩ g−1[0, x]) = Cgf (x, y).
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(7) We have

Cf◦h,g◦h(x, y) = λ(h−1f−1[0, x] ∩ h−1g−1[0, y])

= λ(h−1{f−1[0, x] ∩ g−1[0, y]})

= λ(f−1[0, x] ∩ g−1[0, y])

= Cfg(x, y),

using the fact that h is measure preserving.

(8) If Cfe = Cge then also CT
fe = CT

ge, so by (6) Cef = Ceg. Then

M = Cff = CfeCef = CfeCeg = Cfg,

using (3) and (4). Thus, by (5), f = g a.s. On the other hand, if f = g a.s., then

M = Cfg = CfeCeg,

by (3) and (5). Since the left inverse of a copula, when it exists, is the transpose of the copula,
Cfe = CT

eg = Cge, by (6).

(9) We have

Cge ∗ Ce,f◦g = Cg,f◦g by (3)

= Ce◦g,f◦g using e ◦ g = g

= Cef by (7).

It follows that Cfe ∗Cge ∗Ce,f◦g = Cfe ∗Cef = Cff =M , by (3) and (4). Thus, CfeCge is the
left inverse of Ce,f◦g with respect to M . Since the left inverse of Ce,f◦g is CT

e,f◦g = Cf◦g,e, by
(3) and (4), and since left inverses, when they exist, are unique, Theorem 2.1 above, we must
have Cf◦g,e = CfeCge. Taking transposes, it follows also that CegCef = Ce,f◦g. QED

Some of the properties set forth in Theorem 2.3 have been established by others, e.g. [4];
we include them here for completeness and easy reference.

The following theorem is interesting in itself, and it leads to some useful results, which are
stated as corollaries to the theorem.

Theorem 2.4. Same terminology as in Theorem 2.3. If C is a copula which possesses a
left inverse with respect to M , then the function f defined by

f(x) = inf{y |C,1(x, y) = 1}

is a measure preserving Borel function, and C = Cef .

Proof. Since by hypothesis C possesses a left inverse, necessarily for all y, C,1(x, y) is 0 or 1
for a.a. x, by Theorem 2.1. We claim first that if C,1(x, y0) = 1 and y > y0, then necessarily
C,1(x, y) exists and equals 1. To see this, observe that for h > 0 and y0 < y we must have

0 ≤
C(x+ h, y0)− C(x, y0)

h
≤
C(x+ h, y)− C(x, y)

h

≤
C(x+ h, 1)− C(x, 1)

h
= 1,

since the mass assigned by C to the rectangle [x, x + h] × [0, y0] is bounded above by the
mass assigned to the rectangle [x, x+ h]× [0, y], which in turn is bounded above by the mass
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assigned to the entire verticle strip [x, x + h] × [0, 1]. Since this is true for all h > 0, and by
hypothesis the limit as h ↓ 0 of the term on the left exists and equals 1, the term in the middle
is constrained to have the limit 1 as h ↓ 0. Hence, C has a right first partial derivative equal to
1 at (x, y). By a similar argument on the adjoining vertical strip [x−h, x]× [0, 1], we conclude
that C also has a left first partial derivative equal to 1 at (x, y). Hence C,1(x, y) exists and
equals 1, as claimed.

Next, set Sa = {x|C,1(x, a) = 1}. We claim that Sa is a Borel set for all a. To see this, let
hn ↓ 0, and observe that the function x → C,1(x, a) is the pointwise limit of the continuous
(hence Borel) functions

x→
C(x+ hn, a)− C(x, a)

hn
,

where it exists. Furthermore, the set of points where the limit fails to exist is the set of points
where the lim inf and lim sup of this collection, both Borel functions, and the lim inf and lim
sup of the analogous collection

x→
C(x, a)− C(x− hn, a)

hn
,

also Borel functions, are not all the same, hence is also a Borel set. In fact, the points where
the derivative fails to exist necessarily constitute a Borel null set, since C is a copula whose
first partial derivative C,1(x, a) exists for almost all x. For definiteness, redefine C,1(x, a) to be
zero where the derivative does not exist, in order to obtain a Borel function defined for all x.
The sets Sa are level sets of these Borel functions, hence Borel sets. These sets are also nested:
for a < b, Sa ⊂ Sb by the claim proved above.

We are now in a position to use the classical method of constructing a measurable function
from suitable level sets. Let rn be an enumeration of the rational numbers in [0, 1] and define
a function f on [0, 1] via

f(x) = inf{rn|x ∈ Srn}.

Then f is a Borel function, by the classical argument. E.g. [6], Chapter 11, Lemma 9.
To complete the proof, we show that f is measure preserving and that C = Cef . Since

f(x) < a implies that there is a rational number rn between f(x) and a such that C,1(x, rn) =
1, necessarily C,1(x, a) = 1, by the claim proved above. On the other hand, if C,1(x, a) = 1,
then by the claim proved above, C,1(x, rn) = 1 for all rational numbers rn > a, whence
f(x) ≤ a. Thus, for all a, {f < a} ⊂ {x|C,1(x, a) = 1} ⊂ {f ≤ a}. Let ǫ > 0. Then

{x|C,1(x, a) = 1} ⊂ {f ≤ a} ⊂ {f < a+ ǫ} ⊂ {x|C,1(x, a+ ǫ) = 1}.

It follows that

λ({x|C,1(x, a) = 1}) ≤ λ({f ≤ a}) ≤ λ({x|C,1(x, a+ ǫ) = 1}).

Since C,1(x, a) is 0 where it is not 1, we have

λ({x|C,1(x, a) = 1}) =

∫ 1

0

C,1(x, a) dx = C(1, a)− C(0, a) = a.

Similarly, λ({x|C,1(x, a+ ǫ) = 1}) = a+ ǫ. Thus, a ≤ λ({f ≤ a}) ≤ a+ ǫ holds for all ǫ > 0. It
follows that λ({f ≤ a}) = a, that is, f is measure preserving. Then also λ({f < a}) = a and
λ({f = a}) = 0. It follows that for each a, χf−1[0,a](t) = C,1(t, a), for a.a. t. Integrate from 0
to x to obtain Cef = C. QED

By Theorem 2.3, Cef is left invertible for all f ∈ F and by Theorem 2.4, a left invertible
copula A can always be written in the form Cef . Observe that if a function A is known to
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be a copula, we can test A to determine whether it possesses a left inverse by taking its first
partial derivative. If that derivative is 0 or 1 a.e., A possesses a left inverse, if not, it does not,
by Theorem 2.1. In addition, if the derivative is 0 or 1 almost everywhere, and we want to
write A in the form Cef , Theorem 2.4 says that we can read off from the derivative what the
function f must be. For example, the hat copula Λ discussed in Section 1 has a first partial
derivative which is 0 on the triangular region bounded by the lines y = 2x, y = 2(1 − x) and
y = 0 and is 1 elsewhere. By Theorem 2.3, therefore, the hat function f defined by

f(x) =

{
2x, 0 ≤ x ≤ 1/2

2(1− x) 1/2 ≤ x ≤ 1

is a measure preserving Borel function and Λ = Cef .
A function f ∈ F is said to possess an essential inverse g if g ∈ F and g ◦ f = e a.s. and

f ◦ g = e a.s.

Corollary 2.4.1. Same terminology as in Theorem 2.3. A copula C possesses a two-sided
inverse with respect to M if and only if C = Cfe for some measure preserving Borel function
f ∈ F which possesses an essential inverse g ∈ F .

Proof. If C = Cfe and g is an essential inverse of f , then CgeCfe = Cg◦f,e =M, by parts (5)
and (9) of Theorem 2.3, and similarly CfeCge = Cf◦g,e =M . Thus, Cfe possesses a two-sided
inverse with respect toM . On the other hand, if CCT = CTC =M then CT has a left inverse,
so by Theorem 2.4 there exists f ∈ F such that CT = Cef . Then C = Cfe. Since also C has a
left inverse, Theorem 2.4 says that there exists g ∈ F such that Cfe = Ceg. Using properties
from Theorem 2.3, we obtain

M = Cgg = CgeCeg = CgeCfe = Cg◦f,e.

It then follows from Theorem 2.3, part (5), that g ◦ f = e a.s. Similarly,

M = Cff = CfeCef = CfeC
T
eg = CfeCge = Cf◦g,e,

whence f ◦ g = e a.s. QED

Remark: Let G be the set of f ∈ F possessing an essential inverse with respect to e, and
let Ĝ be the set of equivalence classes in G under the relation f ∼ g if λ({f 6= g}) = 0. Then
Ĝ is a group under the binary operation on equivalence classes inherited from composition of
functions, and it is in one-to-one correspondence with GM , the group of 2-copulas invertible
with respect to M , via the map E(g) → Cge, where E(g) ∈ Ĝ is the equivalence class of g ∈ G.
The proof is based on the foregoing result and part (8) of Theorem 2.3. Details are left to the
reader. In addition, this map is a group homomorphism; this follows from part (9) of Theorem
2.3.

Corollary 2.4.2. Same terminology as in the statement of Theorem 2.3. Idempotent cop-
ulas CefCfe and CehChe are equal if and only if there is a Borel function g ∈ F possessing an
essential inverse, for which g ◦ h = f a.s.

Proof. Suppose f = g ◦ h a.s. and g possesses an essential inverse. Then

CefCfe = Ce,g◦hCg◦h,e = CehCegCgeChe,

using part (9) of Theorem 2.3. Since g possesses an essential inverse, Cge possesses a two-sided
inverse with respect toM , by Corollary 2.4.1 above, and since that inverse must be CT

ge = Ceg,
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we have CegCge = M . Insert this in the expression above to obtain CefCfe = CehMChe =
CehChe.

If, on the other hand, CefCfe = CehChe, pre- and post-multiply by Cfe and Cef to obtain
M = CfhChf . If we pre- and post-multiply the original expression instead by Che and Ceh, we
obtain ChfCfh =M . We conclude that Cfh has a two-sided inverse with respect to M . Thus,
by Corollary 2.4.1 above, there exists an essentially invertible Borel function g ∈ F for which
Cfh = Cge. Then

M = CgeChf = CgeCheCef = Cg◦h,f .

It follows from part (5) of Theorem 2.3 that g ◦ h = f a.s. QED

Essential equivalence of sub-σ-algebras of measurable sets. We say that two sub-σ-
algebras S and T of the measurable subsets of [0, 1] (meaning the Lebesgue measurable subsets
of [0, 1]) are essentially equivalent if for all S ∈ S there is a set T ∈ T such that λ(S∆T ) = 0
and for all T ∈ T there is an S ∈ S such that λ(S∆T ) = 0. The symbol ∆ denotes the
symmetric difference operator. In general, the sets S∆T are not members of either S or
T ; the relationship accordingly demands some overarching family of subsets which includes
both S and T . This overarching family is the Lebesgue measurable subsets of [0, 1], denoted
here BL (and elsewhere just B, since, for most purposes, we make no distinction between
Lebesgue measurable and Borel measurable sets). The essential equivalence relation is in fact
an equivalence relation among sub-σ-algebras of BL; we leave it to the reader to verify this.

We present here some minor theorems, whose intent is to show that, for our purposes, the
essential equivalence relation among sub-σ-algebras is such a close relationship, that we can
treat essentially equivalent sub-σ-algebras as equal (which is what we will do, in the remainder
of this paper).

Theorem 2.5. If ψ and θ are measurable functions, and λ({ψ 6= θ}) = 0, then ψ−1(B)
is essentially equivalent to θ−1(B). Conversely, if ψ is measurable with respect to S and T
is essentially equivalent to S, there is a function θ measurable with respect to T such that
λ({ψ 6= θ}) = 0.

Proof. If S ∈ ψ−1(B) there is a Borel set B such that S = ψ−1(B). Set T = θ−1(B) and
observe that S∆T ⊂ {ψ 6= θ}, whence S∆T is a null set. The argument in the other direction,
starting with T ∈ θ−1(B) is identical.

As for the converse, ψ is measurable with respect to S if ψ−1(B) ∈ S for every Borel
set B, or ψ−1(B) ⊂ S. It is not necessarily the case that ψ−1(B) = S. We outline the proof
when ψ is a bounded function. The proof can be extended to unbounded functions by taking
limits of bounded functions. Suppose ψ is such that ψ−1(B) ∈ S for all Borel sets B and ψ is
bounded, that is, there is a number M such that |ψ(x)| < M for all x. Let

ψn =

m(n)∑

k=1

ankχSnk

be a sequence of S-simple functions converging pointwise almost everywhere to ψ. Arrange it
so that for all n Snk ∩ Snℓ = φ when k 6= ℓ, and arrange it so that |ank| < M for all n, k. The
set N0 where the sequence ψn fails to converge is the set where lim inf ψn 6= lim supψn, which
is in S, since the lim inf and lim sup are S-measurable functions. For each Snk let Tnk ∈ T be
such that λ(Snk∆Tnk) = 0, set

Nn = ∪m(n)−1
k=1 ∪m(n)

ℓ=k+1 (Tnk ∩ Tnℓ)



Idempotent copulas 157

and observe that Nn is a null set in T and that the sets Tnk \Nn, k = 1, . . . ,m(n) are pairwise

disjoint. Define θn =
∑m(n)

k=1 ankχTnk\Nn
. Then by construction the functions θn are uniformly

bounded by M and, since θn = ψn a.e., they converge pointwise almost everywhere. The set
N where they fail to converge is in T , by an argument parallel to that used above. Define

θ(x) =

{
limn θn(x), where the limit exists

0, where the limit does not exist.

Then θ is a T -measurable function, and

{ψ 6= θ} ⊂ N0 ∪N ∪ (∪n{ψn 6= θn}).

Since all of the sets on the right are null sets, {ψ 6= θ} is a null set. QED

Note that Theorem 2.5 implies that if f and h are equivalent measure preserving Borel
functions, then f−1(B) and h−1(B) are essentially equivalent.

The essential equivalence relation among sub-σ-algebras preserves the properties of fore-
most interest here:

Theorem 2.6. Suppose S and T are essentially equivalent sub-σ-algebras of BL. If S ∈ S
and T ∈ T satisfy λ(S∆T ) = 0, then S is an atom if and only if T is an atom. S is nonatomic
if and only if T is nonatomic. If Sk ∈ S and Tk ∈ T and λ(Sk∆Tk) = 0 for all k, then {Sk}
is a maximal collection of essentially disjoint atoms in S if and only if {Tk} is a maximal
collection of essentially disjoint atoms in T .

Proof. Suppose S ∈ S and T ∈ T satisfy λ(S∆T ) = 0, and suppose A ∈ S and A ⊂ S. By
essential equivalence of S and T , there exists B ∈ T such that λ(A∆B) = 0. Write N1 = S∆T ,
N2 = A∆B and N = N1 ∪N2. All of these sets are Lebesgue null sets. Then

B = A∆N2 ⊂ A ∪N2

A = B∆N2 ⊂ B ∪N2

S = T∆N1 ⊂ T ∪N1 and

T = S∆N1 ⊂ S ∪N1,

as is readily verified. It follows that

A = A ∩ S ⊂ (B ∩ T ) ∪N

and that

B ∩ T ⊂ (A ∩ S) ∪N = A ∪N.

We have exhibited a subset B∩T ⊂ T which differs from A by a null set and which accordingly
satisfies λ(B ∩ T ) = λ(A). It follows that if S is not an atom, T cannot be an atom (take A
such that 0 < λ(A) < λ(S)) and accordingly that if T is an atom, S must be an atom. By
parallel argument, starting with a set B ∈ T which is a subset of T , we conclude that if T is
not an atom, S cannot be an atom, and accordingly that if S is an atom, T must likewise be an
atom. This completes the proof of the first assertion of the theorem. The remaining assertions
follow from the first by standard arguments and are left to the reader. QED

Denote the Borel sets of measure 0 by NB , and define

NL = {N | there exists S ∈ NB such that N ⊂ S.}
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For any sub-σ-algebra S of the Lebesgue measurable sets, we define the completion of S,
denoted Smax here, to be the collection

Smax = {S∆N |S ∈ S, N ∈ NL}.

It is easy to show that Smax is a σ-algebra; we leave this to the reader.

Theorem 2.7. Let S be a sub-σ-algebra of BL and let Smax be its completion. Then
any sub-σ-algebra T which is essentially equivalent to S is essentially equivalent to Smax.
Furthermore, T ⊂ Smax. Smax is accordingly the largest sub-σ-algebra in the equivalence class
of S under the essential equivalence relation.

Proof. Assume T ∈ T and T essentially equivalent to S. We want to show that T ∈ Smax, the
completion of S. There is a set S in S such that λ(T∆S) = 0. Set N = T∆S. Then

N∆S = T∆S∆S = T,

so T ∈ Smax. In addition, if S ∈ Smax, we want to show there is a set T ∈ T such that
λ(S∆T ) = 0. Since S ∈ Smax and Smax is the completion of S, there is a set S̃ ∈ S such
that S∆S̃ ∈ NL, and since T is essentially equivalent to S, there is a set T ∈ T such that
λ(S̃∆T ) = 0. Set N = S̃∆T . Then N is a null set and T∆N = T∆S̃∆T = S̃, whence
S∆S̃ = S∆T∆N and S∆S̃∆N = S∆T∆N∆N = S∆T , using properties of the symmetric
difference. It follows that S∆T ⊂ (S∆S̃) ∪N , whence

λ(S∆T ) ≤ λ(S∆S̃) + λ(N) = 0.

We conclude that for every S ∈ Smax there exists a T ∈ T such that λ(S∆T ) = 0. Since also
T ⊂ Smax, it follows that T is essentially equivalent to Smax. QED

The foregoing theorem justifies the use of the term Smax for the completion of S: Smax is
the maximal element in the equivalence class of S; all other sub-σ-algebras in the equivalence
class are subsets of Smax.

Corollary 2.7.1. Let S be a sub-σ-algebra of BL. There exists a sub-σ-algebra T consist-
ing solely of Borel sets which is essentially equivalent to S.

Proof. Given S, form Smax, the completion of S. By Theorem 2.7, Smax is essentially equivalent
to S. Then set T = Smax ∩ B, where B denotes the Borel sets. Since the intersection of σ-
algebras of subsets of [0, 1] is necessarily a σ-algebra, T is a σ-algebra, and it consists solely of
Borel sets. We will show that T is essentially equivalent to Smax, hence by Theorem 2.7 also
to S. To that end, consider S ∈ Smax. We want to show that there is a set T ∈ T such that
λ(S∆T ) = 0. If λ(S) = 0, take T = φ and observe that λ(S∆T ) = λ(S) = 0. If λ(S) > 0,
observe that since Lebesgue measure is a regular Borel measure, we can find a Borel set B
such that S ⊂ B and λ(B) = λ(S), so that N = B \ S is a Lebesgue null set. Since, by
construction, every Lebesgue null set is an element of Smax, and since Smax is closed under
unions, necessarily the set B = S∪N is in Smax, hence is in T , the intersection of B and Smax.
Hence, we may take T = B, and we have λ(S∆T ) = λ(N) = 0. QED

We propose not to address the issues addressed in Theorems 2.5, 2.6 and 2.7 at any later
point in this paper. We accordingly adopt two conventions. First, whenever we talk about a
sub-σ-algebra S or h−1(B), we really mean the equivalence class of all essentially equivalent
sub-σ-algebras. Second, when we say a function ψ is measurable with respect to a σ-algebra
S, we really mean either that ψ is measurable with respect to some σ-algebra essentially
equivalent to S, or, equivalently (in view of Theorem 2.5), that some function equal to ψ
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almost everywhere is measurable with respect to S. We will also when addressing the order
relations among equivalence classes, as in Theorems 6.3 and 6.4, and in particular in Corollary
6.4.2, take as the representative of an equivalence class the complete sub-σ-algebra in the class,
since the order relation among equivalence classes holds if and only if the subset relation holds
for complete sub-σ-algebras in the classes.

Invariant sets and fixed points of Markov operators. In Section 1, we defined invariant
sets of a copula A as the sets S for which pA(x, S) = χS(x) for a.a. x ∈ S, where

pA(x, S) =
d

dx

∫

S

A,2(x, t) dt

is the family of transition probabilities obtained from A. It will be convenient here to work
with invariant sets of Markov operators. A set S is an invariant set of a Markov operator T
on L1([0, 1]) if S is measurable and TχS = χS a.s., that is, if χS is a fixed point of T . We turn
to a discussion of fixed points and invariant sets of Markov operators.

A linear operator on L1 is called a Markov operator if

(1) for all ψ ≥ 0, Tψ ≥ 0,

(2) for all ψ,
∫ 1

0
Tψ dλ =

∫ 1

0
ψ dλ, and

(3) the constant function ψ = 1 is a fixed point of T : T1 = 1.

It follows from these conditions that a Markov operator T is necessarily a bounded linear
operator on L1([0, 1]). The proof is trivial and is omitted.

Given a copula A, we define an operator TA via

[TAψ](x) =
d

dx

∫ 1

0

A,2(x, t)ψ(t) dt.

TA is a Markov operator, [3]. Observe that, by inspection of the definitions of pA and TA,
a measurable set S satisfies the equation pA(x, S) = χS(x) a.s. if and only if it satisfies the
equation TAχS = χS a.s.

Theorem 2.8. Define a function Φ from the set of 2-copulas to the set of Markov opera-
tors on L1([0, 1]) via Φ(A) = TA, where TA is the Markov operator associated with A per the
definition above. Then Φ is a one-to-one and onto map. Furthermore,

(1)Φ(A ∗B) = Φ(A) ◦ Φ(B)

(2)Φ(aA+ (1− a)B) = aΦ(A) + (1− a)Φ(B) for all a ∈ (0, 1) and

(3)Φ(AT ) = Φ(A)†,

for all copulas A, B. Finally, if An is a sequence of copulas and Tn = Φ(An) is the correspond-
ing sequence of Markov operators, then An → A uniformly if and only if for all ψ ∈ L∞([0, 1])
and θ ∈ L1([0, 1]), ∫ 1

0

ψ(x)[Tnθ](x) dx→

∫ 1

0

ψ(x)[TAθ](x) dx,

where TA = Φ(A).

Proof. Omitted. This combines Theorems 2.1 and 3.1 of [3]. QED

Theorem 2.9. The invariant sets of a Markov operator T constitute a sub-σ-algebra of
the measurable subsets of [0, 1].
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Proof. Let S be invariant. Then Sc is invariant. To see this, observe that since the constant
function 1 is invariant, and χS + χSc = 1, χSc is the difference of fixed points, hence itself a
fixed point. Next, suppose S1 and S2 are invariant sets of T , and consider S = S1 ∩ S2. We
have χSk

− χS ≥ 0 for k = 1, 2, whence

0 ≤ T (χSk
− χS) = χSk

− TχS , k = 1, 2

using one of the properties of Markov operators and the fact that S1 and S2 are invariant sets.
It follows that for almost all x

[TχS ](x) ≤ min(χS1(x), χS2(x)) = χS(x),

whence χS − TχS ≥ 0 a.s. By another property of Markov operators,
∫ 1

0

(χS − TχS) dλ = 0.

Since the integrand is nonnegative a.s., it must vanish a.s. Therefore TψS = ψS a.s., and S is
an invariant set. If S1 and S2 are invariant sets and S = S1∪S2, we can write S = S1∪(S2\S1).
Since this is a disjoint union, χS = χS1 + χS2\S1

. Thus, χS is a sum of fixed points, hence
a fixed point, using the fact that S2 \ S1 = S2 ∩ Sc

1 is an invariant set by the two foregoing
results. By induction, finite unions of invariant sets are invariant sets. That countable unions
of invariant sets are invariant follows from the fact that T is a bounded linear operator. We
omit the argument.

Since the invariant sets of T are closed under complementation, intersection and countable
unions, they constitute a σ algebra. QED

We will call the collection of invariant sets of a Markov operator T and a copula A BT

and BA, respectively.
The following theorem is the principal motivation for moving the discussion of invariant

sets to the Markov operator context.

Theorem 2.10. Let T be a Markov operator on L1[0, 1]. Let BT denote the invariant sets
of T . A function ψ in L1 is a fixed point of T if and only if ψ is BT -measurable, that is, if and
only if ψ−1(B) ∈ BT for all B ∈ B.

Proof. If ψ is BT measurable, we can find a sequence of BT simple functions converging to
ψ pointwise almost everywhere. Since each such simple function is a linear combination of
characteristic functions χS for S ∈ BT , and each such characteristic function is a fixed point of
T , it follows that each such simple function is a fixed point of T and hence that their pointwise
a.e. limit ψ is a fixed point.

Conversely, suppose ψ is a fixed point of T . We show first that if ψ is a fixed point, then
necessarily so also are ψ+ and ψ− given by

ψ+(x) = max {ψ(x), 0} and

ψ−(x) = max {−ψ(x), 0}.

To see this, observe that Tψ+ and Tψ− are both nonnegative, since Markov operators map
nonnegative functions into nonnegative functions, and that also Tψ+ −Tψ− = Tψ = ψ a.s. It
follows that for x for which ψ(x) ≥ 0 we have

[Tψ+](x) = ψ(x) + [Tψ−](x) ≥ ψ(x) = ψ+(x).

For x for which ψ(x) < 0,
[Tψ+](x) ≥ 0 = ψ+(x).
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For all x, therefore, [Tψ+](x) ≥ ψ+(x). Now

∫ 1

0

(Tψ+ − ψ+) dλ = 0,

and since the integrand is a.s. nonnegative, it must in fact vanish almost everywhere. Thus,
ψ+ is a fixed point. Then also ψ− = ψ+ −ψ is a fixed point, since linear combinations of fixed
points are fixed points.

Now consider the set S = {ψ > a}. The function θ = [ψ − a]+ is a fixed point of T , since
it is the positive part of the difference of two fixed points, ψ and the constant function a.
The function θ vanishes outside of S, and S = {θ > 0}. Define θn(x) = nθ(x)− [nθ − 1]+(x),
multiplying θ by a factor of n, then replacing values greater than 1 by 1. The function θn is
a fixed point of T , since nθ, nθ − 1 and, by the result above, [nθ − 1]+ are all fixed points.
Furthermore, θn vanishes outside S, because θ does, and θn(x) ↑ 1 for all x ∈ S. It follows via
the monotone convergence theorem that ‖χS − θn‖1 → 0. Since T is a bounded operator,

‖TχS − χS‖ ≤ ‖TχS − Tθn‖+ ‖θn − χS‖ ≤ (‖T‖+ 1)‖χS − θn‖ → 0.

Thus, TχS = χS a.s., and S ∈ BT . Since intervals of the form (a,∞) generate the Borel
subsets, ψ−1(B) ∈ BT for all B. Thus, ψ is BT measurable. QED

In the following theorem, and from time to time thereafter, we work with Markov oper-
ators derived from copulas of the form Cef and Cfe. The Markov operators associated with
such copulas will be written Tef and Tfe instead of TCef

and TCfe
, in order to avoid double

subscripting.

Theorem 2.11. Let f ∈ F be a measure preserving Borel function. For all Borel mea-
surable ψ ∈ L1([0, 1]),

[Tefψ](x) = ψ ◦ f(x),

for almost all x ∈ [0, 1]. In addition, if for ψ ∈ L1([0, 1]) there exists an integrable function θ
such that ψ = θ ◦ f a.s., then

[Tfeψ](x) = θ a.s.

Proof. If ψ ∈ C∞([0, 1]), then

[Tefψ](x) =
d

dx

∫ 1

0

Cef,2(x, t)ψ(t) dt

=
d

dx
(Cef (x, 1)ψ(1)−

∫ 1

0

Cef (x, t)ψ
′(t) dt)

= ψ(1)−

∫ 1

0

χ[f(x),1](t)ψ
′(t) dt

= ψ(1)− (ψ(1)− ψ(f(x)))

= ψ(f(x)).

This uses a characterization of Cef,1 from Theorem 2.3, part (1). Since C∞ is dense in L1

and f is measure preserving, we have the first result of the theorem. (The measure preserving
property is used here, since if ψ is integrable and ‖ψn−ψ‖1 → 0, then ‖ψn◦f−ψ◦f‖1 → 0, when
f is measure preserving but not necessarily otherwise.) For the second part of the theorem,
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observe that if ψ ∈ L1([0, 1]) has the form ψ = θ ◦ f for some integrable Borel function θ, then

[Tfeψ](x) =
d

dx

∫ 1

0

Cfe,2(x, t)ψ(t) dt

=
d

dx

∫ 1

0

χ[0,x](f(t))θ(f(t)) dt

=
d

dx

∫ 1

0

χ[0,x](s)θ(s) ds

= θ(x), for a.a. x.

This likewise uses a characterization of Cfe,2 from Theorem 2.3. It also uses fact that f is
measure preserving. QED

Corollary 2.11.1. If f ∈ F is a measure preserving Borel function, then every set S ∈
f−1(B) is an invariant set of CefCfe, and every function measurable with respect to f−1(B)
is a fixed point of TefTfe. In particular, if θ is any Borel function, ψ = θ ◦ f is a fixed point
of TefTfe.

Proof. If S ∈ f−1(B), let B ∈ B be such that S = f−1(B). Then observe that χS = χf−1(B) =
χB ◦ f , so that by Theorem 2.11,

TefTfeχS = TefTfeχB ◦ f = TefχB = χB ◦ f = χS a.s.

Since
TefTfe = TCefCfe

,

and since an invariant set of CefCfe is an invariant set of the corresponding Markov operator,
S is an invariant set of CefCfe. Furthermore, this argument shows that the σ algebra f−1(B)
is a sub-σ-algebra of BT , the invariant sets of T = TefTfe. Since By Theorem 2.9, an integrable
function ψ is a fixed point of T if and only if ψ−1(B) ∈ BT for every Borel set B, those functions
ψ measurable with respect to f−1(B), that is, those functions ψ for which ψ−1(B) ∈ f−1(B)
for every Borel set B, are among the fixed points of T . Finally, if ψ = θ ◦ f , then for any Borel
set B,

ψ−1(B) = f−1(θ−1(B)) ∈ f−1(B),

since θ−1(B) is a Borel set. It follows that ψ is a fixed point of T . QED

We remark that we do not know (yet) that BT = f−1(B) essentially, only that f−1(B) ⊂
BT .

3 Nonatomic idempotent copulas

If we are given a nonatomic idempotent, and we want to show that it can be written in the
form CefCfe, as we do want to do, we must somehow be able to obtain a measure preserving
function f for which this representation will hold. The problem is similar to that addressed in
Theorem 2.4, where, given a copula known to have a left inverse, we had to demonstrate how
to obtain a measure preserving function f for which the representation Cef would hold. In
this section, we first show that all sub-σ-algebras S obtained from measure preserving Borel
functions f via S = f−1(B) are nonatomic. Then we turn to the more difficult problem of
pulling an appropriate measure preserving Borel function out of the hat, when all we know is
that S is a nonatomic sub-σ-algebra.
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Theorem 3.1. If h ∈ F is a measure preserving Borel function, then h−1(B) is nonatomic.

Proof. Let S ∈ h−1(B) have positive measure. There is a Borel set B ∈ B such that S =
h−1(B), and since h is measure preserving, λ(S) = λ(B), hence B has positive measure. The
collection B of all Borel sets is known to be nonatomic. One can prove this by elementary
means, by considering, for any set B of positive Borel measure, the sets [0, x] ∩ B for all x
in [0, 1]. The sets are all Borel sets, and their measures vary continuously from 0 to λ(B) as
x varies from 0 to 1, by the basic properties of Lebesgue measure. Thus, there must exist a
Borel subset A ⊂ B satisfying 0 < λ(A) < λ(B). Then h−1(A) ⊂ S, and since h is measure
preserving, 0 < λ(h−1A) = λ(A) < λ(S), so S is not an atom. Since S was an arbitrary set of
positive measure, h−1(B) is nonatomic. QED

The following theorem is due to Carathéodory; the statement and proof of a slightly more
general result can be found in [5], Theorem 4, Chapter 15.

Theorem 3.2. Let S be a sub-σ-algebra of the Borel subsets B of [0, 1], with null sets
NS. If S is nonatomic, there exists a one-to-one and onto measure preserving set function
Φ : S/NS → B/NB which preserves order, complementation and the lattice operation on
equivalence classes corresponding to countable unions of monotonic sequences of sets.

Here, NS = {S ∈ S |λ(S) = 0} and NB = {S ∈ B |λ(S) = 0}. The quotient space S/NS is
the set of equivalence classes under the equivalence relation S1 ∼ S2 if λ(S1∆S2) = 0, that is,
if S1∆S2 ∈ NS . The order relation on equivalence classes is that inherited from set inclusion.
If E(Sk) denotes the equivalence class of Sk, then E(S1) ≤ E(S2) if λ(S1 \ S2) = 0, which is
true if and only if, modulo a null set, S1 ⊂ S2.

Theorem 3.3. Let S be a sub-σ-algebra of the Borel subsets B of [0, 1], with null sets
NS. If S is nonatomic, there exists a measure preserving Borel function h : [0, 1] → [0, 1]
such that h−1(B) ⊂ S. Furthermore, h has the property that for each S ∈ S there exists a set
S0 ∈ h−1(B) for which λ(S∆S0) = 0, so that S is essentially equivalent to h−1(B).

Proof. We give an outline of the proof. Let rn be an enumeration of the rational numbers in
[0, 1], set In = [0, rn], and write E(In) for the equivalence class of In. Let Φ : S/NS → B/NB be
a one-to-one and onto measure preserving set function which preserves order, complementation
and the lattice operation corresponding to countable unions of nested sets, per Theorem 3.2
above. For each n, choose Sn ∈ Φ−1(E(In)) (Φ

−1(E(In)) is an equivalence class), and arrange
it so that rk < rj implies Sk ⊂ Sj . This can be done, for example, by an inductive process in
which, if S1 through Sn−1 satisfy the inclusion condition, Sn is adjusted by adjoining to Sn

the sets Sk \Sn, necessarily Borel null sets, for rk < rn, and deleting from Sn the sets Sn \Sk,
for rk > rn. When rk = 1, arrange it so that Sk = [0, 1], so that every x is in some Sk. Define
h(x) = inf{rk|x ∈ Sk}. For all x ∈ Sk, h(x) ≤ rk, and for all x /∈ Sk, h(x) ≥ rk. It follows that
for any real a ∈ [0, 1], {h < a} = ∪rk<aSk, hence that h is a Borel function. It also follows
that Sℓ ⊂ {h < rk} ⊂ Sk whenever rℓ < rk, hence, by an argument similar to one used in the
proof of Theorem 2.4, that λ({h < rk}) = λ(Sk). The function h thus inherits the measure
preserving property from Φ: since Sk ∈ Φ−1(E(Ik)), λ(Sk) = λ([0, rk]) = rk for all k, and so
λ({h < rk}) = rk. It remains to show that for any S ∈ S we can find an S0 ∈ h−1(B) such that
λ(S∆S0) = 0, that is, for which S0 ∈ E(S), where E(S) denotes the equivalence class of S.
For S ∈ S, choose B ∈ Φ(E(S)) and set S0 = h−1(B). Observe that since Φ is one-to-one, we
can write E(S) = Φ−1(E(B)), and what we want to establish is that h−1(B) ∈ Φ−1(E(B)).
Consider the class M of all Borel sets C for which h−1(C) ∈ Φ−1(E(C)). If C ∈ M, then
we claim that its complement Cc is in M. This follows from the fact that E(Cc) = E(C)c,
which says that two sets are equivalent if and only if their complements are equivalent, which



164 Darsow, Olsen

is trivial to verify, and the fact that Φ preserves complementation (or rather the analog of
complementation on equivalence classes, which we are also denoting by superscript c). The
formal argument is

E(h−1(Cc)) = E((h−1C)c) = E(h−1C)c

= Φ−1(E(C))c = Φ−1(E(C)c) = Φ−1(E(Cc)),

which proves the claim. Similarly, if Cn in M, Cn ⊂ Cn+1 and ∪nCn = C, then we claim
C ∈ M. In this case, since the lattice operations on sets of equivalence classes are preserved
for countable unions of sets of nested sets, we have

sup
n

(E(Cn)) = E(∪nCn)

which says that if Cn and C̃n are equivalent for all n, then ∪nCn is equivalent to ∪nC̃n. This
again is trivial to verify. It follows that

E(h−1C) = E(h−1(∪nCn)) = E(∪n(h
−1Cn)) = sup

n
E(h−1Cn)

= sup
n

Φ−1(E(Cn)) = Φ−1(sup
n
E(Cn)) = Φ−1(E(∪nCn)) = Φ−1(E(C)).

Thus, C ∈ M, as claimed. Because of these facts, M is a monotone class, and since it contains
[0, rk] for all k, it contains all Borel sets, by a standard argument. Thus, h−1(B) ∈ Φ−1(E(B)).
This says that S0 ∈ E(S), which was to be proved. QED

Theorem 3.4. If F is a nonatomic idempotent copula with invariant sets BF , and f is
a measure preserving Borel function for which BF = f−1(B) essentially, then F = CefCfe.

Proof. By Theorem 2.10, the fixed points of the Markov operator TF corresponding to F are
those functions which are measurable with respect to BF = f−1(B) essentially, among which,
by an argument set forth in the proof of Corollary 2.11.1, are functions of the form ψ = θ ◦ f ,
where θ is an integrable Borel function. By Theorem 2.11, for any integrable Borel function θ,
Tefθ = θ ◦ f a.s. and Tfeθ ◦ f = θ a.s. Thus, for all integrable Borel functions θ,

TfeTFTefθ = θ a.s.

Since the Borel functions are dense in L1 (all continuous functions are Borel functions, for
example, and the continuous functions are dense), it follows that TfeTFTef is the identity
operator on L1([0, 1]), hence, by the canonical isomorphism of copulas and their corresponding
Markov operators, Theorem 2.8, that CfeFCef = M . Now one-sided inverses with respect to
M , when they exist, are unique, Theorem 2.1, whence we must have CfeF = Cfe, since both
CfeF and Cfe are left inverses of Cef . Pre-multiply this relation by Cef to obtain

CefCfeF = CefCfe.

On the other hand, since TFψ is a fixed point of TF (using the fact that T 2
F = TF ), it

must by Theorem 2.10 be measurable with respect to BF = f−1(B) essentially, so that, by
Corollary 2.11.1, it is a fixed point of TefTfe. Thus

TefTfeTFψ = TFψ a.s.

Since this holds for all integrable Borel functions ψ, we must have TefTfeTF = TF . It follows
from the isomorphism of copulas and their corresponding Markov operators that CefCfeF =
F . Since we showed above that CefCfeF = CefCfe, it must be true that F = CefCfe. QED
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As noted above, Theorem 2.11 does not assert that elements of f−1(B) are the only
invariant sets of CefCfe, only that such such sets are among the invariant sets of CefCfe. But
the fact that these are the only invariant sets does now follow from Theorem 3.4.

Corollary 3.4.1. Let S be a nonatomic sub-σ-algebra of the Borel subsets of [0, 1]. If f
is a measure preserving Borel function for which S = f−1(B) essentially, the invariant sets of
the idempotent copula CefCfe are S essentially.

Proof. Given a nonatomic sub-σ-algebra S, there exists a unique idempotent Markov operator
whose invariant sets are essentially S, namely the conditional expectation operator T : ψ →
E(ψ | S), [8]. Let F be the idempotent copula associated to T under the correspondence of
Theorem 2.8. Then BF = S essentially, since F and T have the same invariant sets. By Theorem
3.4, F = CefCfe. The invariant sets of CefCfe are thus essentially the given nonatomic sub-
σ-algebra S. QED

In fact, in [8], Sempi demonstrates that conditional expectation operators on L1[0, 1] are
in one-to-one correspondence with idempotent Markov operators on L1[0, 1], hence also with
idempotent 2-copulas. In effect, we address here a question left open at the end of [8] – how
to obtain an explicit expression for the idempotent copula whose invariant sets are the given
sub-σ-algebra S. Corollary 3.4.1 gives the answer to this question for nonatomic S.

Observe that the measure preserving function f in Corollary 3.4.1 is not unique; it is only
the idempotent copula CefCfe which is uniquely determined by S. Cf. Corollary 2.4.2 above.

4 Totally atomic idempotent copulas

A totally atomic idempotent copula is conjugate to an ordinal sum consisting of copies of
the product copula P . In this section, we define terminology and prove this result.

It was noted Section 1 that the product copula P is a totally atomic copula. Indeed, its
invariant sets are the sets whose measure is 0 or 1. We first show that it is the only such
idempotent copula.

Theorem 4.1. Let E be an idempotent copula whose invariant sets are sets whose measure
is 0 or 1. Then E = P .

Proof. Let TE be the Markov operator associated with E. For all ψ ∈ L1, TEψ is a fixed point
of TE , since T

2
E = TE , hence by Theorem 2.10 TEψ is BE measurable. Since BE = {φ, [0, 1]}

essentially, TEψ is an essentially constant function, regardless of ψ. Set ψ = χ[0,y] and let κ(y)
denote the a.s. constant value of TEχ[0,y]. Then

κ(y) = TEχ[0,y](x) =
d

dx

∫ y

0

E,2(x, t) dt = E,1(x, y).

Integrate this expression from 0 to x to obtain E(x, y) = xκ(y). Since E(1, y) = y, κ(y) = y
and E(x, y) = xy. QED

We show next that if an idempotent copula E is totally atomic, and its atoms are intervals
(ak, ak+1), the sum of whose lengths is 1, then E is an ordinal sum of copies of the product
copula. We will then address the general case.

It is easy to verify that a copula C has an ordinal sum decomposition on a partition
P : {(ak, bk)} if and only if C(ak, ak) = ak and C(bk, bk) = bk for all k. If this condition is
satisfied, the copulas Ak assigned to intervals (ak, bk) are uniquely determined by the copula C
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which possesses the ordinal sum decomposition. We leave it to the reader to verify the validity
of the condition.

Two properties of ordinal sums are used here. First, if A = ⊕PAk and B = ⊕PBk are
ordinal sums on the same partition P, then A ∗ B = ⊕PAk ∗ Bk. That is, A ∗ B is also an
ordinal sum on the partition and its components are Ak ∗ Bk. Thus, in particular, an ordinal
sum E = ⊕PEk is idempotent if and only if each of the components Ek is idempotent. The
verification is again left to the reader. The second property we state as a lemma:

Lemma 4.1. Suppose that A has an ordinal sum decomposition A = ⊕PAk. Then every
interval (ak, bk) in P is invariant under A. Furthermore, a set Q ⊂ (ak, bk) is invariant under
A if and only if

S = {
x− ak
bk − ak

|x ∈ Q)}

is invariant under Ak.

Proof. If x ∈ (ak, bk),

[TAχ(ak,bk)](x) =
d

dx

∫ 1

0

A,2(x, t)χ(ak,bk)(t) dt

=
d

dx

∫ bk

ak

Ak,2(
x− ak
bk − ak

,
t− ak
bk − ak

) dt

= (bk − ak)
d

dx

∫ 1

0

Ak,2(
x− ak
bk − ak

, s) ds

= (bk − ak)
d

dx
(
x− ak
bk − ak

)

= 1,

where the substitution s = (t− ak)/(bk − ak) was made to obtain the third expression on the
right.

On the other hand, if x /∈ [ak, bk], then

[TAχ(ak,bk)](x) =
d

dx

∫ 1

0

A,2(x, t)χ(ak,bk)(t) dt

=
d

dx

∫ bk

ak

M,2(x, t) dt

=
d

dx
(M(x, bk)−M(x, ak))

= 0,

for if x /∈ [ak, bk], either x < ak, whence M(x, bk)−M(x, ak) = x− x = 0, or bk < x, whence
M(x, bk) −M(x, ak) = bk − ak, so that in each case the derivative vanishes. It follows that
(ak, bk) is invariant under A.

Now let Q ⊂ (ak, bk) and write

S =
1

bk − ak
(Q− ak).

Observe that ξ ∈ S iff x = ak+(bk−ak)ξ ∈ Q, or equivalently x ∈ Q iff ξ = (x−ak)/(bk−ak) ∈
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S. For all x we have

[TAχQ](x) =
d

dx

∫ 1

0

A,2(x, t)χQ(t) dt

=
d

dx

∫ bk

ak

Ak,2(
x− ak
bk − ak

,
t− ak
bk − ak

)χQ(t) dt (since Q ⊂ (ak, bk))

= (bk − ak)
d

dx

∫ 1

0

Ak,2(
x− ak
bk − ak

, s)χQ(ak + (bk − ak)s) ds

= (bk − ak)
d

dx

∫ 1

0

Ak,2(
x− ak
bk − ak

, s)χS(s) ds

=
d

dξ

∫ 1

0

Ak,2(ξ, s)χS(s) ds (substituting ξ = (x− ak)/(bk − ak))

= [TAk
χS ](ξ).

¿From this it follows readily that Q is invariant under A if and only if S is invariant under
Ak. QED

Note that it follows from Lemma 4.1 that a set S is invariant under Q if and only if
Qk = S ∩ (ak, bk) is invariant under Ak for all k.

We will say a partition P : (ak, bk) of [0, 1] is a special partition if ak+1 = bk for all k > 1.

Theorem 4.2. Let P : {(ak, ak+1)} be a special partition of the interval [0, 1]. If E =
⊕PEk and each Ek = P , then E is idempotent and the invariant sets of E are essentially
intervals (ak, ak+1) in the partition, their unions and the empty set. Conversely, if E is an
idempotent copula with the property that BE consists essentially of intervals (ak, ak+1) in the
partition, unions of them and the empty set, then E = ⊕PEk where each component Ek is the
product copula P .

Proof. If E = ⊕PEk and each Ek = P , the only sets invariant under Ek are sets whose measure
is 0 or 1, by Theorem 4.1, hence by Lemma 4.1 the invariant sets of E are essentially intervals
(ak, bk) in the partition, their unions, and the empty set. This proves the first assertion. For
the converse, suppose E is an idempotent copula and its invariant sets are essentially intervals
(ak, ak+1) in the partition P, their unions, and the empty set. The plan is to show that E is
then necessarily an ordinal sum on P. For once that is established, it will necessarily follow
that each component Ek is idempotent, and, by Lemma 4.1, that the only invariant sets of Ek

are sets of measure 0 and 1. Then, by Theorem 4.1, each Ek must be the product copula P .
Thus, the second assertion of the theorem will be proved if we can show that E has an ordinal
sum decomposition on the special partition P.

By a remark above, it will be sufficient to show that E(ak, ak) = ak for all k. To that end,
observe that since (ak, ak+1) is an invariant set of E, we must have for all k

[TEχ(ak,ak+1)](x) = χ(ak,ak+1)(x)

for a.a. x. This says that for all k

d

dx

∫ 1

0

E,2(x, t)χ(ak,ak+1)(t) dt = E,1(x, ak+1)− E,1(x, ak) = χ(ak,ak+1)(x).

Integrate this expression from 0 to ak+1 to obtain, for all k,

E(ak+1, ak+1)− E(ak+1, ak) = ak+1 − ak.
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Now for k = 1, we have a1 = 0, and E(a1, a1) = 0 = a1, by the boundary conditions
of a copula. Suppose that E(an, an) = an. Since also E(1, an) = an by one of the copula
boundary conditions, and since x → E(x, y) is nondecreasing, it necessarily follows that also
E(an+1, an) = an. Then, by the equation above, E(an+1, an+1) = an+1. Accordingly, by
induction, E(ak, ak) = ak for all k, so E is necessarily an ordinal sum on the special partition.

QED

We address next rearrangements – Borel functions which rearrange the mass in the unit
interval in an essentially one-to-one and onto manner. Rearrangements are the tool we use here
to pull an appropriate measure preserving function out of the hat, so as to obtain the desired
characterization of totally atomic idempotent copulas. Rearrangements are well known, but we
could not find a rigorous proof of the existence of rearrangements with exactly the properties
we need, so we offer a proof here.

Our main result depends on Lemma 4.2 below, whose proof is rather fussy. For a Borel
set S, define a function fS via

fS(x) = λ([0, x] ∩ S).

Then fS maps [0, 1] onto [0, λ(S)] in a continuous and nondecreasing manner. The idea is to
show that fS can be modified in an appropriate manner to obtain a Borel function h : S →
[0, λ(S)] which is measure preserving and which has an essential inverse g which is also a
measure preserving Borel function. The construction is complicated by the fact that we have
to take into account the possibility that S is a Cantor-like set. For a simple example, let rn
be an enumeration of the rational numbers in [0, 1]. Given 0 < ǫ < 1, set

S = (0, 1) ∩ {∪n(rn −
ǫ

2n+1
, rn +

ǫ

2n+1
)}.

Then λ(S) < ǫ, as is easy to verify, and fS is a strictly increasing function which maps [0, 1]
onto [0, λ(S)], as is also easy to verify. Basically, if x1 < x2, there is a rational number rn
between them, and so

fS(x2) = fS(x1) + λ((x1, x2] ∩ S) > fS(x1).

When we restrict fS to S in this case, we delete from the domain a set of positive measure,
and we simultaneously delete some nonempty set from the range. We must somehow account
for this set in defining an essential inverse; to be specific, we must show that what remains
of the range of fS after deleting this set contains a suitable measurable Borel set of measure
λ(S) on which to define an essential inverse function. In the example this is trivial – fS has
a continuous, hence Borel measurable, inverse g, and g−1(SC) is necessarily a Borel set. The
essential inverse to the restriction of fS to S can accordingly be defined on the Borel set
[0, λ(S)] \ g−1(SC). We found it difficult turn this into a general argument, and we use a
somewhat more roundabout approach in the proof of the lemma.

Lemma 4.2. Let S be a Borel subset of [0, 1] with λ(S) > 0. There exist a measure
preserving Borel function h : S → [0, λ(S)] and a measure preserving Borel function g :
[0, λ(S)] → S such that h ◦ g = e essentially and g ◦ h = e essentially, where e is the identity
function e(x) = x.

Proof. Set fS(x) = λ([0, x]∩S), x ∈ [0, 1].We claim that for all t ∈ [0, λ(S)], λ(S∩f−1
S [0, t)) =

t. To see this, let t ∈ (0, λ(S)) and write

a− = inf{x|f(x) = t}

a+ = sup{x|f(x) = t}.
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Then fS(a
−) = fS(a

+) = t, by continuity of fS . (Possibly a
− = a+.) Also fS(x) < t iff x < a−,

so
λ({fS < t} ∩ S) = λ([0, a−) ∩ S) = fS(a

−) = t.

This establishes the claim. The program of the remainder of the proof is to modify fS in such
a way as to limit its domain to S, without destroying the property just established, so as to
obtain a measure preserving function, and then to define an inverse function on the range of
the modified version of fS in an appropriate manner.

Since fS is continuous and nondecreasing, it has a right quasi-inverse fQ
S . That is, there ex-

ists fQ
S : [0, λ(S)] → [0, 1] with the property that f ◦fQ = e. Let D be the set of discontinuities

of fQ
S . For each a ∈ D, let [a−, a+] be the jump interval of fQ

S at a. Let

N1 = ∪a∈D{[a−, a+] ∩ S}.

N1 is a Borel set of measure 0, since λ([a−, a+] ∩ S) = fS(a
+)− fS(a

−) = 0 for all a, and the
number of discontinuities of fQ is at most countable. Let h0 be the restriction of fS to S \N1.
Then h0 : S \ N1 → [0, λ(S)] is one-to-one, since if fS(x1) = fS(x2) = a for some x1 < x2,
then a ∈ D, so neither x1 nor x2 is in the domain of h0. The function h0 is measure-preserving
by the claim proved above.

It proved difficult to show directly that the range of h0 is a measurable set (cf. remarks
preceding the statement of the lemma). To complete the proof, therefore, we proceed in the
following manner: Since Lebesgue measure is a regular Borel measure,

λ(S \N1) = sup{λ(K) |K ⊂ S \N1,K compact }.

We can find, therefore, a sequence of compact sets Kn with the properties that Kn ⊂ S \N1

for all n, Kn ⊂ Kn+1 for all n and λ(Kn) ↑ λ(S \N1). Set

N2 = (S \N1) \ {∪nKn}

and observe that N2 is a Borel set of measure 0. We claim that h0 maps closed sets into closed
sets. To see this, let K be a closed subset of S \ N1, and let yn ∈ h0(K) be a convergent
sequence with limit y. For each n there is a number xn ∈ K for which h0(xn) = yn. Since K
is compact, xn possesses a convergent subsequence xnk

, with limit, say, x. Then fS(x) = y,
by the continuity of fS , and since x ∈ K ⊂ S \N1, x is in the domain of h0, and we have also
h0(x) = y. Thus, y is in the set h0(K), as claimed.

Now set
B = ∪nh0(Kn).

Then B is a union of closed sets, hence a Borel set. Define g0 on B via g0(y) = x where x is
the unique element of S \N1 for which h0(x) = y. Consider the sets Sn(x) = [0, x]∩Kn. Since
g−1
0 (Sn(x)) is closed for all n, it follows that g−1

0 ([0, x] ∩ S) = g−1
0 ([0, x] ∩ S \ (N1 ∪N2)) is a

union of closed sets, hence a Borel set, for all x. Thus, g0 is a Borel function. Similarly, since
h0 and g0 are one-to-one, and h0 is measure preserving,

λ(g−1
0 (Sn(x))) = λ(h−1

0 g−1
0 (Sn(x))) = λ(Sn(x)),

for all n and x. Taking the limit as n→ ∞, it follows that

λ(g−1
0 ([0, x] ∩ S \ (N1 ∪N2))) = λ([0, x] ∩ S \ (N1 ∪N2)).

Now g−1
0 ([0, x]∩S) = g−1

0 ([0, x]∩S\(N1∪N2)), since the range of g0 is contained in S\(N1∪N2),
and λ([0, x]∩S) = λ([0, x]∩S \ (N1 ∪N2)), since both N1 and N2 are null sets. It follows that

λ(g−1
0 ([0, x] ∩ S)) = λ([0, x] ∩ S)
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for all x. Since sets of the form [0, x] ∩ S generate the Borel subsets of S, this implies that g0
is measure preserving. Observe that when x = 1, we obtain λ(B) = λ(g−1

0 (S)) = λ(S). Since
B ⊂ [0, λ(S)], we have that the points in [0, λ(S)] where g0 is not defined constitute a Borel set
of measure 0. To obtain functions g and h satisfying the conclusions of the lemma, we choose
a point s0 ∈ S and define

h(x) =

{
h0(x), x ∈ S \ (N1 ∪N2)

0, x ∈ S ∩ (N1 ∪N2)

g(y) =

{
g0(y), y ∈ B

s0, y ∈ [0, λ(S)] \B.

The domains and ranges of g and h differ from the domains and ranges of g0 and h0 by Borel
sets of measure 0, which guarantees that g and h inherit the measure preserving property.
Also, g ◦ h(x) = x for x ∈ S \ (N1 ∪ N2 ∪ {s0}), and h ◦ g(y) = y for y ∈ B. It follows that
h and g are essential inverses of one another and are measure preserving Borel functions with
the desired domains and ranges. QED

Theorem 4.3 (Rearrangement Theorem). Let {Sk} be an essentially pairwise disjoint
family of Borel sets of positive measure, the sum of whose measures is 1. Then there is an
essentially invertible measure preserving Borel function g : [0, 1] → [0, 1], with essential inverse
h, and a special partition P : {(ak, ak+1)} of [0, 1] such that h−1([ak, ak+1)) = Sk essentially
and g−1(Sk) = [ak, ak+1) essentially for all k.

Proof. Outline. First, replace the sets Sk by an equivalent disjoint collection. Define

Nkn = Sk ∩ Sn

for n > k, and set
N = ∪∞

k=1 ∪
∞
n=k+1 Nkn.

Then N is a Borel null set. Define S̃k = Sk \ N for all k. The sets S̃k are pairwise disjoint,
S̃k ⊂ Sk for all k, and λ(Sk \ S̃k) = 0 for all k.

Next, set a1 = 0 and define

ak =

k−1∑

j=1

λ(Sj), k > 1.

Then P : {(ak, ak+1)} is a special partition of [0, 1], since

∞∑

k=1

(ak+1 − ak) =
∞∑

k=1

λ(Sk) = 1.

Next define g and h, using Lemma 4.2. Lemma 4.2 guarantees the existence of an essentially
invertible measure preserving Borel function hk : S̃k → [0, λ(Sk)] for all k. Let gk : [0, λ(Sk)] →
S̃k be a measure preserving essential inverse of hk. Let Vk ⊂ S̃k \ (h−1

k (0) ∪ h−1
k (λ(Sk))) and

Bk ⊂ (0, λ(Sk)) be Borel sets of measure λ(Sk) on which gk ◦ hk = e and hk ◦ gk = e,
respectively. Define

g(y) =

{
gk(y − ak), ak ≤ y < ak+1

0, y = 1.

h(x) =

{
ak + hk(x), x ∈ S̃k

0, x /∈ ∪nS̃k.
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Then g and h are Borel functions which inherit the measure-preserving property from the
functions gk and hk, as is easy to verify, and g ◦ h = e on ∪kVk, a Borel set of measure 1, and
h ◦ g = e on ∪k{ak +Bk}, a Borel set of measure 1. QED

We will sometimes refer to the functions g and h of Theorem 4.3 as “rearrangements.”

Theorem 4.4. Suppose E is a totally atomic idempotent copula. Then there exists a cop-
ula C possessing a two-sided inverse with respect to M and a special partition P : {(ak, ak+1)}
of [0, 1] for which

CTEC = ⊕PFk,

with Fk = P for all k.

Proof. Let BE denote the invariant sets of of E. A maximal collection of essentially disjoint
atoms in BE is necessarily at most a countable collection, since at most a finite number of
disjoint atoms can have measure exceeding any positive real number a. Thus, we write {Sk}
for the collection, indexing the atoms by the positive integers or a suitable subset thereof (we
assume here that the collection is countable and leave to the reader the proof in the case that
the collection is finite). Since E is by hypothesis totally atomic and since the collection is
maximal, we must have ∑

k

λ(Sk) = 1.

Set a1 = 0 and define

ak =

k−1∑

j=1

λ(Sj), for k > 1.

By Theorem 4.3, there exist measure preserving functions h : [0, 1] → [0, 1] and g : [0, 1] →
[0, 1] which map Sk → [ak, ak+1) and [ak, ak+1) → Sk essentially, respectively, and which are
essential inverses of one another. Since g and h are measure preserving Borel functions, we may
construct from them copulas Cge and Che, and by Theorem 2.3 part (9) and Corollary 2.4.1,
these copulas are inverses of one another with respect to M . In fact Che = Ceg, since both are
inverses of the copula Cge, and inverses are unique. Similarly, Ceh = Cge. By Theorem 2.11,
for any measure preserving Borel function f and any set S,

TefχS = χS ◦ f = χf−1(S) a.s., and

Tfeχf−1(S) = TfeχS ◦ f = χS a.s.

Set F = CegECge, so that E = CehFChe. If a set S is invariant under E, that is, if TEχS = χS

a.s., then we calculate, using Theorem 2.11,

TFχg−1(S) = TegTETgeχS ◦ g = TegTEχS = TegχS = χS ◦ g = χg−1(S) a.s.

Thus, g−1(S) is is invariant under F . By parallel reasoning, if S is invariant under F , then
h−1(S) is invariant under E. Since each Sk is invariant under E, it follows that g−1(Sk) =
[ak, ak+1) essentially is invariant under F . Thus, by an argument set forth in the proof of
Theorem 4.2, F has an ordinal sum decomposition on the special partition P : {(ak, ak+1)}.
Furthermore, if Q is invariant under F , then Qk = Q ∩ [ak, ak+1), being the intersection of
invariant sets, is invariant under F , whence h−1(Qk) is invariant under E. But observe that
h−1(Qk) ⊂ Sk essentially and that Sk is an atom. Therefore λ(h−1(Qk)) = 0 or λ(Sk). Since
h is measure preserving, it follows that λ(Qk) = 0 or ak+1 − ak. Therefore, the sets invariant
under F are essentially intervals (ak, ak+1), their unions, and the empty set. It follows from
Theorem 4.2 that

CegECge = F = ⊕PFk,

with each component Fk = P . QED
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As in the case of nonatomic sub-σ-algebras, we can start with the σ-algebra, and construct
the idempotent copula:

Corollary 4.4.1. Let S be a totally atomic sub-σ-algebra of measurable subsets of [0, 1].
There exist a measure preserving essentially invertible Borel function h : [0, 1] → [0, 1] and a
special partition P : (ak, ak+1) of [0, 1] such that the copula

E = Ceh

(
⊕PFk

)
Che,

where Fk = P for all k, has invariant sets essentially equivalent to S.

Proof. Given a totally atomic sub-σ-algebra S, there is an idempotent Markov operator whose
invariant sets are essentially S, namely the Raffaele Vitolo, Dipartimento di Matematica ’E.
De Giorgi’ Universita’ del Salento, via per Arnesano 73100 Lecce ITALY tel.: +39 0832 297425
(office) fax.: +39 0832 297594 home page: http://poincare.unisalento.it/vitolo

conditional expectation operator T : φ → E(φ | S), [8]. Let E be the copula associated to
T under the correspondence of Theorem 2.8, and observe that T and E have essentially the
same invariant sets. Apply Theorem 4.4 to obtain a partition P and invertible copulas Ceh

and Che such that
E = Ceh

(
⊕PFk

)
Che,

where Fk = P for all k. QED

Note again that while the idempotent copula constructed in Corollary 4.4.1 is unique,
neither the special partition P nor the rearrangement h is uniquely determined. The atoms Sk

of S can be labelled in any desired order, for example, which changes P, and the function h
can be modified in any desired fashion to rearrange the mass within an atom Sk ∈ S, before
mapping Sk to the interval (ak, ak+1).

5 The mixed case: atomic idempotent copulas which
are not totally atomic

If E is an idempotent copula which is atomic but not totally atomic, then a maximal
collection {Sk} of essentially disjoint atoms of BE has total measure less than 1. We label the
sets Sk starting with k = 2 in this case and set

S1 = {∪k≥2Sk}
c.

Then S1 is a member of BE , no subset of which is an atom. S1 has positive measure, for
otherwise E would be totally atomic. We define a1 = 0 and

ak =

k−1∑

j=1

λ(Sj) for k > 1,

as in the proof of Theorem 4.4, and we construct rearrangements h and g which map Sk →
[ak, ak+1) and [ak, ak+1) → Sk essentially, and are essential inverses of one another, exactly as
before. By the reasoning in the proof of Theorem 4.4, [ak, ak+1) is necessarily invariant under
F = CegECge for all k, whence, by an argument set forth in the proof of Theorem 4.2, F is
necessarily an ordinal sum on the special partition P : {(ak, ak+1)}. Accordingly, we can write

F = ⊕PFk,
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and since trivially F is idempotent, each Fk must be idempotent. By the same logic as used
in the proof of Theorem 4.4, for k ≥ 2, the only subsets of [ak, ak+1) invariant under F are
null sets and sets of measure ak+1 − ak, since for k ≥ 2, each Sk is an atom. Thus, by Lemma
4.1, the invariant sets of Fk for k ≥ 2 are essentially [0, 1] and the empty set. Each component
Fk for k ≥ 2 must therefore be P , Theorem 4.1. But F1 is a nonatomic idempotent, since
otherwise some invariant subset of [a1, a2) would be an atom in BF , whence its inverse image
under h would be an atom in BE , contradicting the maximality of the collection of essentially
disjoint atoms we started with. Accordingly F1 is nonatomic, and by the characterization of
nonatomic idempotents in Theorem 3.4, it must have the form F1 = CefCfe for some measure
preserving Borel function f . This is an outline of the proof of the following theorem.

Theorem 5.1. Suppose E is an idempotent copula which is atomic but not totally atomic.
Then there exist a copula C possessing a two-sided inverse with respect to M , a copula B such
that BBT =M and a special partition P : {(ak, ak+1)} of [0, 1] for which

E = C(⊕PFk)C
T ,

with Fk = P for all k ≥ 2 and F1 = BTB.

If we start with a sub-σ-algebra S of B instead of an atomic idempotent copula E, we
obtain a similar result:

Corollary 5.1.1. Let S be an atomic but not totally atomic sub-σ-algebra of measurable
subsets of [0, 1]. There exist a measure preserving essentially invertible Borel function h :
[0, 1] → [0, 1], a special partition P : (ak, ak+1) of [0, 1] and a nonatomic idempotent F1 such
that the copula

E = Ceh

(
⊕PFk

)
Che,

where Fk = P for all k ≥ 2, has invariant sets essentially equivalent to S.

Proof. The proof follows the proofs of Corollaries 3.4.1 and 4.4.1 and is omitted. QED

Note again that while the idempotent copula constructed in Corollary 5.1.1 is unique,
neither the special partition P nor the rearrangement h is uniquely determined.

6 Consequences of the characterization of idempo-
tent copulas

Theorem 6.1. Every idempotent copula is symmetric, that is, if E is idempotent, neces-
sarily E(x, y) = E(y, x) for all x and y.

Proof. Let E be idempotent. If E is nonatomic, then E = CefCfe. E is symmetric, since
(CefCfe)

T = CefCfe. If E is atomic, then the characterization of one or the other of Theorems
4.4 or 5.1 applies. An ordinal sum of copulas is symmetric if and only if every component is
symmetric, so ordinal sums whose components are P or a nonatomic idempotent are symmetric.
For any symmetric copula A, CTAC is symmetric. Hence the characterization theorems for
nonatomic and atomic copulas imply ET = E. QED

Theorem 6.2. The class of idempotent copulas is a lattice under the partial ordering
E ≤ F if EF = FE = E.
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Proof. We have to show that for any two idempotent copulas E and F , there is a greatest
idempotent G such that G ≤ E and G ≤ F and there is a least idempotent H such that E ≤ H
and F ≤ H.

Given E and F , EF is a copula, and by a classical argument, the function G defined by

G = lim
n→∞

1

n

n∑

k=1

(EF )k

is an idempotent copula. (G = EF = FE, if E and F commute, else EF is a copula but not
an idempotent copula since it is not symmetric, and necessarily G 6= EF .) Furthermore, G
annihilates EF in the sense that

G(EF ) = (EF )G = G.

In addition, G is the greatest idempotent with this property, since if H is any other copula
which annihilates EF , then H annihilates all convex combinations of powers of EF , so that

H(
1

n

n∑

k=1

(EF )k) = (
1

n

n∑

k=1

(EF )k)H = H

for all n. Take the limit, using the one-sided continuity of the ∗ product, to obtain HG =
GH = H, i.e. H ≤ G. We call G the greatest annihilator of EF .

It remains to show that G is the greatest lower bound of E and F in the partially ordered
set of idempotent copulas. To that end, first take the transpose of G(EF ) = (EF )G = G using
the symmetry of E, F and G, to obtain (FE)G = G(FE) = G. Conclude: G is an annihilator
of FE, and if H is the greatest annihilator of FE, necessarily G ≤ H. The same argument,
starting with FE rather than EF shows H ≤ G, whence necessarily G = H. Now consider the
equation

1

n

n∑

k=1

(FE)k = F (
1

n
(M − (EF )n +

n∑

k=1

(EF )k))E,

which is derived using the fact that (FE)k = F (EF )k−1E for all k > 1. Take the limit
as n → ∞, and use the one-sided continuity of the ∗ product, to obtain on the left G and
on the right FGE (since M/n and (FE)n/n both converge to 0). Thus, G = FGE and
FG = F 2GE = FGE = G and GE = FGE2 = FGE = G. Taking transposes, we have
also GF = G and EG = G. Thus, G ≤ E and G ≤ F . If K is any other idempotent which
annihilates both E and F , then K annihilates EF , and since G is the greatest annihilator of
EF , necessarily K ≤ G. Thus, G is the greatest common annihilator of E and F , and the
greatest lower bound of E and F in the partially ordered set of idempotent copulas.

As to a least upper bound: Observe first that the min copula M is a common unit for any
pair of idempotent copulas E and F . Observe next that if K and L are two common units for E
and F , then their greatest lower bound H is a common unit for E and F . This follows from the
fact that for all k (KL)kE = E(KL)k = E and similarly (KL)kF = F (KL)k = F , whence,
by the one-sided continuity of the ∗ product, the Cesaro limit of the powers, which is H,
satisfies both HE = EH = E and HF = FH = F . A Zorn’s lemma argument using maximal
ordered chains of common units for E and F now yields the desired result. The least elements
in any pair of such maximal ordered chains must be equal, else their greatest lower bound
would be a common unit for E and F and could be added to each of the chains, contradicting
maximality. The least element in any such chain, therefore, is the smallest common unit for E
and F . QED
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In Theorems 6.3 and 6.4, and in Corollary 6.4.1, the sub-σ-algebras referred to are all
taken to be the complete representatives of their equivalence classes, cf. Theorem 2.7 and
related discussion for terminology.

Theorem 6.3. Let E and F be idempotent copulas, and let BE and BF denote (comple-
tions of) their sub-σ-algebras of invariant sets. E ≤ F iff BE ⊂ BF .

Proof. Write TE and TF for the Markov operators associated with E and F . If E ≤ F , then
TETF = TFTE = TE . Let S ∈ BE . Then

TFχS = TF (TEχS) = [TFTE ]χS = TEχS = χS a.s.

so that B ∈ BF . For the converse, suppose BE ⊂ BF and let ψ ∈ L1. For every Borel set
B, [TEψ]

−1(B) ∈ BE ⊂ BF so, by Theorem 2.10, TEψ is a fixed point of TF . This says that
TFTEψ = TEψ a.s. for all ψ ∈ L1, hence that TFTE = TE . It follows, by the isomorphism of
copulas and Markov operators, that FE = E. Take transposes, using the fact that idempotent
copulas are symmetric, and obtain also EF = E. We have shown that E ≤ F . QED

Theorem 6.4. For any sub-σ-algebra S ⊂ B, there exists a unique idempotent copula E
for which BE = S essentially.

Proof. This result restates Corollary 3.4.1, Corollary 4.4.1 and Corollary 5.1.1 in convenient
form for use here. The basic result is due to Sempi, [8], and is not really a consequence of the
characterization given here. QED

Corollary 6.4.1. The lattice of idempotent copulas, partially ordered by the ≤ relation,
is lattice isomorphic to the lattice of complete sub-σ-algebras of B, partially ordered by the ⊂
relation, under the mapping E → BE.

Proof. Theorem 6.3 says that the map E → BE is a lattice homomorphism and guarantees
that the map is one-to-one. Theorem 6.4 says that the map is onto. QED

Theorem 6.5. For any copula A there exists an idempotent copula EA which annihilates
A, i.e., EAA = AEA = EA, and is such that EA ≥ E for any other idempotent annihilator E
of A. Furthermore, for any copula A there exists an idempotent copula FA which is a unit for
A, i.e., FAA = AFA = A. and is such that FA ≤ F for any other idempotent unit F for A. In
all cases EA ≤ FA.

Proof. Set

EA = lim
n→∞

1

n

n∑

k=1

Ak.

The argument showing that EA is idempotent and annihilates A is well known, and is omitted.
That EA is the greatest annihilator of A is proved by an argument similar to that used to show
G is the greatest annihilator of EF in the proof of Theorem 6.2. The proof of the existence and
properties of FA is similar to the argument used to show that idempotents E and F possess
a least common unit in the proof of Theorem 6.2. Both are omitted. To see that necessarily
EA ≤ FA, observe that

FAEA = FA(AEA) = (FAA)EA = AEA = EA.

Taking the transpose of FAEA = EA and using the symmetry of idempotents yields also
EAFA = EA. Thus, EA ≤ FA. QED
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Theorem 6.6. An idempotent E is an annihilator of a copula A if and only if E is an
annihilator of AT . An idempotent F is a unit for a copula A if and only if F is a unit for AT .
The greatest annihilators of A and AT are equal. The least units of A and AT are equal.

Proof. This is a direct consequence of the symmetry of idempotents, Theorem 6.1. Details are
left to the reader. QED

Theorem 6.7. Let F be a nonatomic idempotent copula. Suppose that F is a unit for A
and that A has a left inverse with respect to F , that is, there is a copula B such that BA = F .
Then A possesses a unique left inverse, call it C, with respect to F among the copulas for
which F is a unit. Also, F is the least unit of A and of C. Finally,

C = AT .

Identical conclusions hold if F is a unit for A and A possesses a right inverse with respect to
F , with the word “left” replaced by “right” where needed.

Proof. If BA = F , define C = FBF . Then

CA = FBFA

= FBA (since F is a unit for A)

= FF (since B is a left inverse of A with respect to F )

= F (since F is idempotent).

Thus, C is a left inverse of A. F is trivially a unit for C. So far, we have not used the fact
that F is nonatomic. We do so now. Since F is nonatomic, there is a measure preserving Borel
function f such that F = CefCfe, Theorem 3.4. Since F is a unit for A, CFA = CA = F .
Substituting CefCfe in this expression, and pre- and post-multiplying by Cfe and Cef yields

(CfeCCef )(CfeACef ) = CfeCefCfeCef = C2
ff =M,

using parts of Theorem 2.3. It follows that CfeACef has a left inverse with respect to M , and
since a left inverse with respect to M , when it exists, must be the transpose, Theorem 2.1, we
have necessarily

CfeCCef = (CfeACef )
T = CT

efA
TCT

ef = CfeA
TCef ,

using part (6) of Theorem 2.3. Now pre- and post-multiply by Cef and Cfe, and use F =
CefCfe, to obtain FCF = FATF . Since F is a unit for both C and AT , we have C = AT .
This implies the uniqueness of C. To complete the proof, we have to show that F is the least
unit of A and of AT . To that end, let G be any unit for A. Then since ATA = F , we have

FG = (ATA)G = AT (AG) = ATA = F,

whence FG = F . Taking the transpose of this equation, using the symmetry of idempotents,
gives GF = F . F is accordingly the least unit for A and, by Theorem 6.6, also for C =
AT . QED

Remark: We conjecture that also when F is atomic it is true that, when F is a unit for
A and A has a left or right inverse with respect to A, then A possesses a unique left or right
inverse among copulas for which F is a unit, and the left or right inverse is necessarily AT .

We will use the notation CF for the family of copulas for which F is a unit. Define also
GF to be the subset of CF consisting of copulas which have two-sided inverses with respect to
F . Then GF is a group, and when F is nonatomic, it is isomorphic to GM , the set of copulas
possessing two-sided inverses with respect to M :
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Theorem 6.8. Suppose that F is a nonatomic idempotent copula, and write F = CefCfe,
where f : [0, 1] → [0, 1] is a measure preserving Borel function. The mapping Φ : CF → C, of
CF into the the set C of all 2-copulas, given by

Φ(A) = CfeACef ,

is one-to-one and onto and preserves both the ∗ product and convex combinations. Φ maps GF

to GM in one-to-one and onto fashion. Thus, the restriction of Φ to GF is a group isomorphism.
The mapping Φ and its inverse are both continuous with respect to uniform convergence.

Proof. The map Φ is onto, since for any C ∈ C, Φ(CefCCfe) = C. It is trivial to verify that
F = CefCfe is a unit for CefCCfe, hence that CefCCfe is in the domain of Φ. Φ is one-to-one
since if F is a unit for both A and B and CfeACef = CfeBCef , then pre- and post-multiplying
by Cef and Cfe yields FAF = FBF , whence A = B. That Φ preserves convex combinations
is trivial. To see that Φ preserves ∗ products of copulas, observe first that if F is a unit for A
and B, then F is a unit for AB, since F (AB) = (FA)B = AB and (AB)F = A(BF ) = AB,
whence the product of two copulas in the domain of F is also in the domain. We can always
insert F = CefCfe between A and B in the product AB, since F is a unit for each of A and
B. Thus, we have

Φ(AB) = CfeABCef = CfeACefCfeBCfe = Φ(A)Φ(B).

A has a two-sided inverse with respect to F if and only if Φ(A) = CfeACef has a two-sided
inverse with respect to M , by an argument similar to that used in the proof of Theorem
6.7. The group isomorphism assertion in the theorem follows directly from this and the fact
that Φ preserves the ∗ product. As to continuity, if An → A uniformly, then CfeAnCef →
CfeACef uniformly, by the one-sided continuity property of the ∗ product (An → A imples
CfeAn → CfeA implies CfeAnCef → CfeACef ). Thus Φ is continuous. Similarly, if Bn → B
then CefBnCfe → CefBCfe, so Φ−1 is continuous. QED
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