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CHARACTERIZATION OF INVARIANT MEASURES AT THE
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We study systems of particles on a line which have a maximum, are
locally finite and evolve with independent increments. “Quasi-stationary
states” are defined as probability measures, on theσ -algebra generated by
the gap variables, for which joint distribution of gaps between particles
is invariant under the time evolution. Examples are provided by Poisson
processes with densities of the formρ(dx) = e−sxs dx, with s > 0, and
linear superpositions of such measures. We show that, conversely, any quasi-
stationary state for the independent dynamics, with an exponentially bounded
integrated density of particles, corresponds to a superposition of Poisson
processes with densitiesρ(dx) = e−sxs dx with s > 0, restricted to the
relevantσ -algebra. Among the systems for which this question is of some
relevance are spin-glass models of statistical mechanics, where the point
process represents the collection of the free energies of distinct “pure states,”
the time evolution corresponds to the addition of a spin variable and the
Poisson measures described above correspond to the so-called REM states.

1. Introduction. Competitions involving large numbers of contestants are
an object of interest in various fields. One could list here the energy levels of
complex systems and the free energies of competing extremal states of spin-glass
models [10] and include a broad range of other examples. We are particularly
interested in dynamical situations where the competition continues in “time,”
though time may be interpreted loosely. For example, in the motivating example
of spin-glass models [10], a point process on the line represents the collection of
the free energies of distinct “pure states” of a system of many spin variables, and
the “time evolution” corresponds to the incorporation in the system of yet another
spin variable.

Influenced by the terminology of statistical mechanics, we use here the term
state to mean a probability measure on the relevantσ -algebra of subsets of the
space of the point process configurations. For much of the discussion which
follows, the relevance would be limited to the information concerning only the
relative positions of the points, relative to the one which leads at the given instant.

Received February 2003; revised February 2004.
1Supported in part by NSF Grant PHY-99-71149.
AMS 2000 subject classifications. 60G70, 60G55, 62P35.
Key words and phrases. Stochastic processes, Poisson processes, invariant measures, large devia-

tions, spin glasses, REM states.

82



CHARACTERIZATION OF INVARIANT MEASURES 83

As in the pictures seen in marathon races, often the point process describing the
relative positions appears to be time invariant. We refer to such states as quasi-
stationary.

In this paper we characterize the quasi-stationary states for the class of systems
in which the evolution occurs by independent identically distributed increments of
the individual contestants. The main result is that any such state, of a point process
with locally finite configurations with more than one point and exponentially
bounded density, corresponds to a linear superposition of Poisson processes with
densities of the form

ρ(dx) = e−sxs dx(1.1)

with s > 0. This may be rephrased by saying, in the terminology coined by
Ruelle [11] (who invokes the work of Derrida [6]), that all quasi-stationary states
correspond to superpositions of the random energy model (REM) states.

REMARK. Our main result may have a familiar ring to it, since the above
distributions are known to describe the “Type-I” case of the extremal statistics [8].

REMARK. It would be of interest to see an extension of the classification of the
quasi-stationarity to a broader class of dynamics where the evolution may exhibit
correlations. One may note that the REM states have an extension, based on a
hierarchical construction, to the family of the GREM states [2, 11], which exhibit
quasi-stationarity under a broad class of correlated dynamics. Is that structure
singled out in some way by its broader quasi-stationary properties?

In the following section we introduce the concepts more explicitly. We refer to
the system as the Indy-500 model, ignoring the fact that for a number of obvious
reasons this is not a faithful description of the dynamics in that well-known car
race.

2. The Indy-500 model. The configuration space of the Indy-500 model is
the space� of infinite configurations of points on the line, which are locally finite
and have a maximum (in the order ofR). Its elementsω ∈ � can also be described
as sequences,ω = {xn}n=1,2,..., with

x1 ≥ x2 ≥ · · · and xn → −∞.(2.1)

(Variables written asxn should by default be understood to be ordered.) In the time
evolution considered here the points evolve by independent increments.

As is generally the case with stochastic evolutions, the dynamics can be
presented in two ways: as a stochastic map, in which the configurationω ∈ �

is changed in a random way—through the independent increments, or as a
reversible transformation taking place in a larger space, which encompasses the
full information about both the future and the past dynamics. Our terminology is
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based on the former view; however, the second perspective provides a useful basis
for the intuition guiding the analysis.

Thus, the time evolution is given by a stochastic map determined by the
collection of random variablesη = {hn}n=1,2,...:

Tη : {xn} �→ {x̃n} with x̃n = x�n + h�n,(2.2)

wherehn are independent random variables with a common probability distribu-
tion g(dh) on R, and� is a permutation ofN, which depends on bothω andη,
aimed at recovering the monotonicity forx̃n. In other words,� = �(ω,η) is a
relabeling of the moving particles according to the new order.

For a given probability measureµ(dω) on�, we denote byT µ the correspond-
ing probability distribution of the one-step evolved configuration{x̃α}. To be ex-
plicit: the average overT µ corresponds to averaging over bothµ andη.

One needs to pay some attention to theσ -algebras on which the measures
µ andT µ are to be defined. Since we are interested in the classification of states
which are onlyquasi-stationary, we allow those to correspond to probability
measures defined on a smallerσ -algebra than the one usually used for point
processes on a line. (Such a change makes the result only stronger.)

The standardσ -algebra, which is natural for the state space of particle
configurations, is generated by the occupation numbers of finite intervals (see,
e.g., [4]). Let us denote it byB. Measurable functions include allψ :� → R of
the form

ψf (ω) := ∑
n

f (xn)(2.3)

with bounded measurable functionsf : R → R, of compact support. However, in
this work we are interested in probability measures on the smallerσ -algebraB̃
generated by functions which are invariant,ψ(Sbω) = ψ(ω), under the uniform
shifts

Sb : {xn} �→ {x̃n} with x̃n = xn + b.(2.4)

Functions which are measurable with respect toB̃ depend on the configuration
only through the sequence of the distances of the particles from the leading one:

un = x1 − xn.(2.5)

Thus, a probability measureµ on (�, B̃) is uniquely determined by the “modified
probability generating functional” (MPGFL)

G̃µ(f ) = Eµ

(
exp

{
−∑

n

f (x1 − xn)

})
,(2.6)

with f (·) ranging over smooth positive functions of compact support. [The regular
“probability generating functional” is defined withoutx1 in (2.6).]

One can now formulate a number of distinct “steady-state” conditions, where
the termstate refers to a probability measure on a suitableσ -algebra, which is not
always the same.
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DEFINITION. A stationary state is a probability measureµ(dω) on (�,B)

which is invariant under the stochastic mapT , that is,T µ = µ, or more explicitly,

Eµ(ψ(T ω)) = Eµ(ψ(ω))(2.7)

for anyB-measurableψ , where the expectation functionalEµ includes an average
over bothω (distributed byµ) andT [determined through{hn}, as in (2.2)].

A steady state is a probability measureµ(dω) on (�,B) for which there is a
nonrandomV (= the “front velocity”) such thatT µ = SV µ, that is,

Eµ

(
ψ(T {xn})) = Eµ

(
ψ({xn + V }))(2.8)

for all B-measurable functionsψ .
A quasi-stationary state is a probability measureµ(dω) on theσ -algebraB̃

(sub-σ -algebra ofB) such that (2.7) restricted toshift-invariant functionsψ holds,
that is, for which

Eµ

(
ψ({un})) = Eµ

(
ψ({ũn}))(2.9)

with {un} the gaps defined by (2.5), and{ũn} the gaps for the configuration
ω̃ = T ω.

For an alternative characterization of quasi-stationary measures, in terms which
are more standard for point processes, let us note that each configuration is shift-
equivalent to a unique element of the set

�o = {{xn}|x1 = 0
}
.(2.10)

The “normalizing shift”S :ω �→ S−x1(ω)ω induces a measurable map from(�, B̃)

to (�o,B) ⊂ (�,B), and thus also a map (for which we keep the symbolS) which
associates to each probability measureµ on (�, B̃) a probability measureSµ on
(�,B), supported on�o. The measureµ is quasi-stationary if and only if the
corresponding measureSµ is invariant underST —the time evolution followed by
the normalizing shift.

Stationarity is a special case of the steady state, and the latter reduces to it
when viewed from a frame moving at a fixed speed. Quasi-stationarity is the less
demanding property of the three mentioned above, and is the condition of interest
if one follows only the relative positions.

Through a combination of the results in [9] and [3] one may conclude that any
steady state of the Indy-500 model, whose jump distribution satisfies thenonlattice
condition (meaning that its support is not contained in any set of the form
a + bZ ⊂ R), is a Poisson process with a density of the formρ(dx) = se−sx dx.
These are the REM states which are discussed in the next section.

Our main result is that for the infinite systems discussed herequasi-stationary
probability measures can only be linear superpositions (as probability measures)
of the above steady states restricted toB̃.
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REMARK. The restriction, in the above statement, to infinite number of
particles excludes the trivial example of aquasi-stationary state which is not
the projection of anysteady state, which is provided by a single point moving
on the line by independent increments. In this case the state looks stationary from
the perspective of the “leader”: there is always just one point, at the origin. There
is, however, no steady velocityV such that (2.8) holds.

REMARK. Linear superpositions (of measures on the suitableσ -algebras)
preserve the property ofquasi-stationarity though not that ofsteady state—due,
in the latter case, to the possible variation in the front velocities.

3. The REM states. We recall that for a probability measureρ(dx) on R,
a Poisson process with the densityρ is a probability measure on(�,B) for
which the occupation numbers for disjoint setsA ⊂ R form independent random
variables,ξ(A;ω) ≡ ξ(A), with the Poisson distributions

Prob
(
ξ(A) = k

) = ρ(A)k

k! e−ρ(A) and meanE(ξ(A)) = ρ(A).(3.1)

We denote byµs,z(dω) the Poisson process with densityρs,z(dx) = se−s(x−z) dx

on R.
The special role of the above states in the present context is already seen in the

following statement, which is based on known results.

PROPOSITION 3.1 (Based on [3, 9–11]).For any nonlattice single-step
probability distribution g(dx), the collection of the steady states corresponding
to the evolution by i.i.d. increments {hn} with the distribution g(dh), as described
by (2.2),consists exactly of the probability measures µs,z(dω) [on (�,B)], with
s > 0, z ∈ R. For each of these states, the corresponding front velocity V is the
solution of

esV =
∫

esxg(dx).(3.2)

Furthermore, with respect to µs,z(dω), the past increments also form an i.i.d.
sequence, however with a modified distribution: conditioned on {x̃n}, the variables
{h�n} form a sequence of i.i.d. variables with the probability distribution

g̃(dh) = eshg(dh)∫
R

esyg(dy)
.(3.3)

Thus for these steady states the distribution of the increments changes
depending on whether one looks forward or backward in time (!). In other words,
the permutation�n(ω) transforms the sequence of i.i.d. variables{hn} into an i.i.d.
sequence ({h�n}) with a different distribution. (Of course this is possible only in
infinite systems.)
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PROOF OF PROPOSITION 3.1. The evolution by independent increments is
well known, and easily seen, to take a Poisson point process into another such
process with the density modified through convolution (ρ �→ ρ ∗ g). Therefore,
just the steady-state property of the statesµs,z is an elementary consequence
of the behavior of the exponential density under convolutions. However, for the
more complete statement made above it is useful to appreciate the following
observation, concerning two possible ways of viewing the collection of variables
ω̃ = {(xn, hn)}. The following are equivalent constructions of a point process in
R × R:

(i) A collection of points{xn} is generated via a Poisson process onR, with
the densityρ(dx), and then to each point is attached, by its order onR, a random
variable{hn}, taken from an i.i.d. sequence with the distributiong(dh).

(ii) The configuration is generated directly as a Poisson point process inR×R,
with the two-dimensional densityρ(dx)g(dh).

The transition of the perspective from (ii) to (i) requires only the second factor
in the product measure onR × R to be normalized

∫
R

g(dh) = 1.
Now, the map(x,h) �→ (x +h,h) ≡ (x̃, h) takes the Poisson process describing

ω̃ into another Poisson process onR × R, which yields the joint distribution of the
“new” positions paired with the steps “just taken.” In case ofµs,z(dx)×g(dh), the
density of the new process is:se−sx dxg(dh) = se−s(x̃−h) dx̃g(dh). This can also

be written as a product[∫ esyg(dy)]se−sx̃ dx̃ × eshg(dh)∫
esyg(dy)

, where now the second
factor is properly normalized. By the previous observation it immediately follows
that:

(i) The positions after the jump{x̃n} are distributed as a Poisson process onR

with the modified densitỹξ(dx) = [∫ esyg(dy)]se−sx̃ dx̃ = se−s(x̃−V ) dx̃, that is,
{x̃n} have the same distribution as{xn} + V with V satisfying (3.2).

(ii) When conditioned on the configuration{x̃n}, the jumps just taken are
generated by an independent process onR with the probability density given
by (3.3), as claimed.

For the converse statement, that is, to prove that all steady states are of the
REM type, one may first note that ifµ(dω) is a steady state for the dynamics
corresponding tog(dx), with the front velocityV , thenµ is stationary under the
dynamics corresponding to a shifted single-step distribution:gV (dx) = g(d(x −
V )). The classification of stationary states, and hence also steady states, is found
in [9], where it is implied that any stationary measure is a superposition of Poisson
processes whose random density solves the equationρ = ρ ∗ g. As established
in [3], for nonlatticeg(dh) the only solutions in the space of positive measures
are measures of the formξ(dh) = [Ae−sh + B]dh. The condition that the typical
configurations be bounded on the positive side imply thats > 0 andB = 0. �

Having introduced the REM states, we are ready to formulate the main result.
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4. Classification of quasi-stationary states.

DEFINITION 4.1. A probability measureµ on � is g-regular if for almost
everyT ω = {ω, {hn}n}, with respect toµ(dω)

∏
n∈Z g(dhn), the point configura-

tion {xn + hn}n is locally finite, with a finite maximum.

Theg-regularity ofµ means that with probability 1 the configuration obtained
through the independent increments has a maximum and can be ordered. This is a
preliminary requirement for the possible quasi-stationarity ofµ. It is easy to see
that a sufficient condition forg-regularity is met in the situation discussed next.
The general sufficient condition is the finiteness, for allx ∈ R, of

E(card{n :xn + hn ≥ x}) = Eµ

(∑
n

Probg(hn ≥ x − xn)

)
.(4.1)

In the following, to simplify the exposition and to avoid confusion we will
always assume that att = 0 the rightmost particle in the configuration is atx1 = 0
(we can do this without loss of generality); we will denote byxn the positions of
the particles att = 0 and byyn the positions of the particles att = τ .

Following is our main result:

THEOREM 4.2. Let g be a probability measure with a density on R and let µ

be a probability measure on (�, B̃), satisfying∫
esxg(x) dx < ∞ ∀ s ∈ R(4.2)

and

Eµ({� of particles within
(4.3)

distance y of the leading particle}) ≤ Aeλy ∀y ≥ 0

for some λ > 0 and A < ∞. If µ is quasi-stationary with respect to the dynamics
corresponding to independent increments with the distribution g, then it is
supported on Poisson processes with densities se−sx dx, s > 0.

The meaning of the theorem is that the probability space� can be split into
pieces and the process on each piece of� is a Poisson process with a density
se−sx dx for a particulars.

In the proof we shall use the fact that point processes are uniquely determined
by their probability generating functionals (as discussed in [4]). Our derivation of
Theorem 4.2 proceeds along the following steps.

1. First we note that any quasi-stationary state can be presented as the result
of evolution of arbitrary duration (τ ) which starts from a random initial
configuration, distributed by the given quasi-stationary state, and evolves
through independent increments.
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2. Analyzing the above dynamics, we show that for largeτ the resulting distribu-
tion is asymptotic to Poisson processes with the corresponding (evolving) den-
sities. Thus, it is shown that the quasi-stationary measureµ can be presented
as the limit of a superposition ofrandom Poisson processes, where the ran-
domness is in both the Poisson measure and the resulting particle configuration
(Theorem 5.1).

3. Applying a result from the theory of large deviations (Theorem A.1), and
some compactness bounds which are derived from quasi-stationarity, we show
that the quasi-stationary measure admits a representation as a random Poisson
process, whose Poisson densities (F ) are the Laplace transforms of (random)
positive measures (Theorem 6.1). Furthermore, in this integral representation
of µ, F may be replaced by its convolution withg, followed by a normalizing
shift.

4. For the last step we develop some monotonicity tools (Section 7), for which the
underlying fact is that under the convolution dynamics the Laplace measures
increase their relative concentration on the higher values of the Laplace para-
meter (Theorem 7.3). This corresponds to the statement that unless the function
F is a strict exponential, under the convolution dynamics the functionF be-
comes steeper, and the distribution of the gaps is shifted down. Using a strict
monotonicity argument, we show that quasi-stationarity requires the measures
in the above superposition to be supported on pure exponential functions (or, al-
ternatively stated, functions whose Laplace measure is concentrated at a point).

The final implication is that the quasi-stationary measure is a superposition of
REM measures, as asserted in Theorem 4.2.

Let us remark that Section 7 may be of independent interest. It is noted there
that within the space of decreasing functions which are the Laplace transforms of
positive measures on[0,∞), convolution with a probability measure makes any
function steeper, in the sense presented below, except for the pure exponentials on
which the effect of such a convolution is only a shift.

5. Representation of µ as a random Poisson process.

5.1. “Poissonization”—the statement. Let F be the space of monotone
decreasing, continuous functionsF :R → [0,∞], with F(x) → 0 for x → ∞ and
F(x) → ∞ for x → −∞. We regard a functionF ∈ F as normalized if

F(0) = 1,(5.1)

and denote byN the normalizing shift:N :F(·) �→ F(· + zF ), with zF = sup{z ∈
R :F(z) ≥ 1}.

For eachF ∈ F , the Poisson process onR which corresponds to the measure
(−)dF will almost surely exhibit a configuration which can be ranked in the
decreasing order ofR. The probability that there is no particle abovex ∈ R is
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exp(−F(x)). Conditioned on the location of the leading particle (x), the rest are
distributed by a Poisson process on(−∞, x] with the densityd(−F). Thus, the
MPGFL [defined in (2.6)] of the Poisson process with densityF , which we shall
denote byĜF (f ), is given by

ĜF (f ) =
∫ ∞
−∞

d
[
e−F(x)]exp

{
−
∫ x

−∞
(
1− e−f (x−y))d(−F(y)

)}
.(5.2)

Let us note that

ĜF (f ) = ĜN F (f ),(5.3)

since the probability distribution of the gaps is not affected by uniform shifts.
For the purpose of the following theorem letSτ be a random variable with the

probability distributionP(Sτ ≥ y) = ∫
I [∑yj ≥ y]g(y1) · · ·g(yτ ) dy1 · · ·dyτ . We

associate with each configurationω, andτ ∈ N, the function

Fω;τ (x) = ∑
m

P (Sτ ≥ x − xm),(5.4)

and denote byzω,τ the position at which

Fω;τ (zω,τ ) = 1.(5.5)

One may note thatFω;τ (x) is the expected number of particles on[x,∞) for
the configuration which will be obtained fromω after τ steps of evolution with
independent increments. If the support ofg(y) is not bounded, one may easily find
configurations for whichFω;τ (·) diverges. However, if the measureµ is g-regular,
then a.s.Fω;τ (·) < ∞. Furthermore, we shall see that ifµ is quasi-stationary, then
the position of the front afterτ steps can be predicted to be in the vicinity of
zω;τ —up to a fluctuation whose distribution remains stochastically bounded (i.e.,
forms a “tight” sequence) asτ → ∞.

The main result of this section is:

THEOREM 5.1. Let µ be a g-regular quasi-stationary measure, for the
independent evolution by steps with some common probability distribution which
has a density g(u). Then for every positive function f of compact support in R,

G̃µ(f ) = lim
τ→∞

∫
�

µ(dω)ĜN Fω;τ (f )

(5.6)
= lim

τ→∞

∫
�

µ(dω)Ĝg∗N Fω;τ (f )

where G̃µ(f ) is the modified probability generating functional defined in (2.6).

This statement implies that the measureµ is, in the “weak sense,” a limit of
random Poisson processes, of measures corresponding to the random functions
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N Fω;τ (·) whose probability distribution is induced fromµ through their depen-
dence onω.

Let us note that this result is related to—but not covered by—the known
statement that any limit of a sequence of point processes which is derived
through successive random independent increments is a mixed Poisson process
(e.g., [4], Theorem 9.4.2). Unlike in that case, the time evolution considered here
incorporates shifts according to the position of the leading point (and the limiting
process is not stationary under translations).

The rest of this section is devoted to the proof of this assertion, for which we
need some preparatory estimates.

First let us make the following observation:

LEMMA 5.2. Any quasi-stationary measure is supported on configurations
with either exactly one particle, or infinitely many.

PROOF. The statement is a simple consequence of the spreading of the
probability distribution of the sum of independent increments, that is, of the
variableSτ . For example, one may consider the function

Y (2)
µ (y) = µ({y1 − y2 ≥ y}).(5.7)

By the dominated-convergence theorem,Y
(2)
µ (y) −→

y→∞ 0. However, for any finite

number of particles, the probability that afterτ steps the smallest gap will exceed
y tends to 1 asτ → ∞. Thus finite configurations of more than one particle can
carry only zero probability in any quasi-stationary measure. Of course, a measure
with exactly one particle is quasi-stationary.�

5.2. Some auxiliary estimates. Given an initial configurationω = {xn}, the
probability distribution of the position of the leading particle afterτ > 0 steps
is dP

(τ)
ω (x), with

P (τ)
ω (x) = Prob

({at timeτ all particles are on(−∞, x]})
(5.8)

= ∏
n

[1− P(Sτ ≥ x − xn)].

We shall need to comparedP
(τ)
ω (x) with the probability distribution associated

with the function

P̃ (τ )
ω (x) = exp

{
−∑

n

P (Sτ ≥ x − xn)

}
= e−Fω;τ (x).(5.9)

REMARK. It is instructive to note thatdP̃
(τ)
ω (x) is the probability distribution

of the maximum of a modified process, in which at first each particle is replaced
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by a random number of descendents, with the Poisson distributionpn = e−1/n!,
and then each particle evolves byτ independent increments, as in the Indy-
500 model. Conditioned on the starting configuration, the modified process is
(instantaneously) a Poisson process. The probability that its maximum is in
(−∞, x] is given by∏

n

[∑
n

e−1

n!
(
1− P(Sτ ≥ x − xn)

)n]
(5.10)

= exp

{
−∑

n

P (Sτ ≥ x − xn)

}
= P̃ (τ )

ω (x).

Our first goal is to show that the probability measuresdP
(τ)
ω (x) anddP̃

(τ)
ω (x)

are “typically”—in a suitable stochastic sense—asymptotic to each other as
τ → ∞. This statement is not true for someω, and it is not difficult to construct
examples of configurations for which it does not hold. We note that it is easy to
show that the step described by the graph ofP

(τ)
ω (·) remains tight, in the sense that

the width of the intervals{x : δ ≤ P
(τ)
ω (x) ≤ 1 − δ} does not spread indefinitely,

asτ → ∞.

LEMMA 5.3. For any quasi-stationary measure µ:

Eµ

(∫ ∞
−∞

sup
n

P (Sτ ≥ x − xn) dP (τ)
ω (x)

)
−→
τ→∞ 0.(5.11)

Furthermore,

Eµ

(
sup
x

∣∣P̃ (τ )
ω (x) − P (τ)

ω (x)
∣∣) −→

τ→∞ 0.(5.12)

REMARK. The supremum in (5.11) is clearly attained atn = 1 (by monotonic-
ity). SincedP

(τ)
ω (x) is a probability measure, and the c.d.f. ofSτ is a bounded func-

tion, the statement means that the maximum typically occurs in a region whose a
priori probability of being reached by any specific point is asymptotically zero.

PROOF OF LEMMA 5.3. Due to the spreading property of convolutions of
probability measures (see [4], Lemma 9.4.1), for anyD < ∞

b(τ,D) = sup
x

P (x ≤ Sτ < x + D) −→
τ→∞ 0.

Observe thatP (τ)
ω (x) ≤ P̃

(τ )
ω (x) ≤ 1 for all x. Let us pickλ > 0 such that

e−x(1+λx) ≤ 1− x ∀x ∈ [
0, 1

2

]
.

Thus ifP(Sτ ≥ x) ≤ 1
2, we have

P̃ (τ )
ω (x) ≤ P (τ)

ω (x)1/[1+λP (Sτ ≥x)].(5.13)
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Suppose thatx is such thatP(Sτ ≥ x) ≤ ε. Then

P̃ (τ )
ω (x) − P (τ)

ω (x) ≤ sup
u∈[0,1]

∣∣u1/(1+λε) − u
∣∣.

Suppose thatx is such thatP(Sτ ≥ x − x1) ≥ ε.
Let n0 = 2

ε
ln 1

ε
. Then for allτ large enough and for alln ≤ n0,

b(τ,−xn) ≤ ε

2
.

Consequently,

P(Sτ ≥ x − xn) ≥ P(Sτ ≥ x) − b(τ, xn) ≥ ε

2
.

Then

−∑
n

P (Sτ ≥ x − xn) ≤ −
(2/ε) ln(1/ε)∑

n=0

ε

2
≤ − ln

1

ε
,

and therefore

P̃ (τ )
ω (x) ≤ e− ln(1/ε) ≤ ε.(5.14)

So in this case we obtain

P (τ)
ω (x) ≤ ε. �

Putting the above together, we have:

LEMMA 5.4. If µ be a quasi-stationary measure, then for each ε > 0,

µ
({

ω : dist
(
dP (τ)

ω , dP̃ (τ)
ω

) ≥ ε
}) −→

τ→∞ 0,(5.15)

where dist is the distance between the two measures, defined as

dist(dP, dP̃ ) = sup
h

{∣∣∣∣ ∫ h(x) dP (x) −
∫

h(x) dP̃ (x)

∣∣∣∣/‖h‖∞
}
.(5.16)

PROOF. The distributionsdP
(τ)
ω (x) anddP̃

(τ)
ω (x) can be written as

dP (τ)
ω (x) = ∑

k

dP (Sτ ≥ x − xk)

1− P(Sτ ≥ x − xk)

∏
n

[1− P(Sτ ≥ x − xn)],
(5.17)

dP̃ (τ)
ω (x) = ∑

k

dP (Sτ ≥ x − xk) × exp

{
−∑

n

P (Sτ ≥ x − xn)

}
.

By Lemma 5.3 we obtain that∣∣P (τ)
ω (x) − P̃ (τ )

ω (x)
∣∣ ≤ ε ∀x.
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If P(Sτ ≥ x) ≤ ε, then we obtain by the same arguments as in the previous lemma
that ∣∣dP̃ (τ)

ω (x) − dP (τ)
ω (x)

∣∣ ≤ ε dP̃ (τ)
ω (x).

Integrating with respect to h
‖h‖∞ over thex such thatP(Sτ ≥ x) ≤ ε, we obtain

that the result is small.
If P(Sτ ≥ x) > ε, then

∏
n�=k

[1− P(Sτ ≥ x − xn)] ≤ ε and exp

{
−∑

n

P (Sτ ≥ x − xn)

}
≤ ε.

Consequently for suchx∫
h(x)

‖h‖∞
dP̃ (τ)

ω (x)

≤ √
ε

∫ ∑
n

dP (Sτ ≥ x − xn)exp

{
−1

2

∑
n

P (Sτ ≥ x − xn)

}
≤ const

√
ε,

and also using 1− x ≤ e−x for x > 0∫
h(x)

‖h‖∞
dP (τ)

ω (x)

≤ √
ε

∫
d
∑
n

P (Sτ ≥ x − xn)exp

{
−1

2

∑
n

P (Sτ ≥ x − xn)

}
≤ const

√
ε. �

5.3. “Poissonization”—the proof. We are now ready to prove the main result
of this section.

PROOF OFTHEOREM 5.1. Due to the quasi-stationarity of the measureµ,
one may evaluatẽGµ(f ) by taking the average of the future expectation value
of exp{−∑

n f (y1 − yn)}, corresponding to the configurationω as it appears at
time t = 0.

In the following argument we fix the (nonnegative) “test function”f , and take
D < ∞ such that suppf ⊂ [−D,0]. In the approximations which follow we use
the fact that exp{−∑

f (y1 − yn)} is a bounded function (≤ 1), which is integrated
against a probability measure. As before,ω-dependent quantities are denotedo(1)

if in the limit τ → 0 they tend to 0 “in law,” that is, the probability distribution
which they inherited fromω is nonzero only for[0, ε] for anyε > 0.
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The conditional expectation of the future value of exp{−∑
f (y1 − yn)},

conditioned on the initial configurationω, is

Eω

(
exp

{
−∑

f (y1 − yn)
})

=
∫ ∞
−∞

e−f (0) dP (Sτ ≥ x − xk)(5.18)

× ∏
n�=k

[1− P(Sτ ≥ x − xn)]

× ∏
n�=k

∫ x
−∞ e−f (x−y) dP (Sτ ≥ y − xn)

(1− P(Sτ ≥ x − xn))
,

wheredP (Sτ ≥ x − xk) is the probability that thekth particle is atx at timeτ ,∏
n�=k[1− P(Sτ ≥ x − xn)] is the probability that other particles are at(−∞, x] at

time τ , and
∫ x
−∞ e−f (x−y) dP (Sτ ≥y−xn)

(1−P(Sτ ≥x−xn))
is the expectation ofe−f (x−yn) given that the

particle which is atxn at t = 0 is at(−∞, x] at timeτ .
As in the previous discussion, the contribution ofx such thatP(Sτ ≥ x) ≥ ε to

the integral in (5.18) is negligible.
Considerx such thatP(Sτ ≥ x) ≤ ε. We can write

∏
n�=k

∫ x
−∞ e−f (x−y) dP (Sτ ≥ y − xn)

1− P(Sτ ≥ x − xn)

= ∏
n�=k

[
1−

∫ x
−∞(1− e−f (x−y)) dP (Sτ ≥ y − xn)

1− P(Sτ ≥ x − xn)

]
(5.19)

= (
1+ o(1)

)
exp

{
−
∫ x

−∞
(
1− e−f (x−y))d(∑

n

P (Sτ ≥ x − xn)

)}
.

As noted in (5.3), the normalizing shift has no effect onĜF (f ). The result is the
first of the two equations in (5.6). The second equation is an immediate corollary
of the first one, since

g ∗ Fω;τ = Fω;τ+1.(5.20) �

For a later use, let us note that the arguments used in the above discussion
readily imply the following two bounds.

COROLLARY 5.5. For any ε > 0, there is W(ε) < ∞ such that

Eµ

(∫
|x|>W(ε)

d
[
e−N Fω;τ (x)]) ≤ ε(5.21)
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and

Eµ

(∫
|x|>W(ε)

d
[
e−g∗N Fω;τ (x)]) ≤ ε.(5.22)

PROOF. Let f = I[0,W(ε)]. Denote

φ(W(ε)) = Eµ

[
e−I[0,W(ε)](y1−yn)].(5.23)

Since I[0,W(ε)](x) −→
W(ε)→∞ 1 for x ∈ R and since, in a typical configuration, the

number of particles within distanceW(ε) behind the leader increases to∞ as
W(ε) increases,φ(W(ε)) must decay monotonically to 0 asW(ε) increases. By
takingf = I[0,W(ε)], we see that

φ(W(ε)) =
∫

µ(dω)

∫ ∞
−∞

de−N Fω;τ (x)

(5.24)
× e−(1−e−1)(N Fω;τ (x−W(ε))−N Fω;τ (x)) + O(ετ ).

We can get an estimate onN Fω;τ (W(ε)) from (5.24) by restricting the range of
integration fromW(ε) to ∞ and using thatN Fω;τ (x − W(ε)) − N Fω;τ (x) ≤ 1.

Then, forx ≥ W(ε) we obtain

φ(W(ε)) ≥
∫

µ(dω)

∫ ∞
W(ε)

de−N Fω;τ (x)

× e−(1−e−1)(N Fω;τ (x−W(ε))−N Fω;τ (x)) + O(ετ )(5.25)

≥ e−(1−e−1)
∫

µ(dω)
(
1− e−N Fω;τ (W(ε)))+ O(ετ ).

Similarly, by restricting the range of integration from 0 to∞ and using that
N Fω;τ (x − W(ε)) − N Fω;τ (x) ≤ N Fω;τ (−W(ε)) for x ≥ 0, we obtain

φ(W(ε)) ≥
∫

µ(dω)

∫ ∞
0

de−N Fω;τ (x)

× e−(1−e−1)(N Fω;τ (x−W(ε))−N Fω;τ (x)) + O(ετ )(5.26)

≥ (1− e−1)

∫
µ(dω)e−(1−e−1)N Fω;τ (−W(ε)) + O(ετ ).

Equations (5.25) and (5.26) prove the first part of the corollary.
To prove (5.22) we observe that from the previous part it follows that for allτ

large enough, and sufficiently largeW(ε),

Eµ

∫
|x|≥W(ε)/2

de−N Fω;τ+1(x) ≤ ε

2
.



CHARACTERIZATION OF INVARIANT MEASURES 97

Since for sufficiently largeW(ε) andω in a set of measure 1− ε
2,

zω,τ+1 − zω,τ ≤ W(ε)

2
,

we obtain that

Eµ

∫
|x|≥W(ε)

de−g∗N Fω;τ (x) ≤ ε. �

Corollary 5.5 will be used for an approximation of̂GN Fω;τ (f ) by a quantity
which has better continuity properties as a functional ofF .

6. The Poisson density as a Laplace transform of a random positive
measure. We shall next show that the quasi-stationary measureµ can be
presented as equivalent to a random Poisson process whose density is the Laplace
transform of a random positive measure onR. [Due to the invariance of̃B under
uniform shifts, with no additional restriction the measures may be adjusted so that
ρ(R) = 1.]

Let M be the space of finite measures on[0,∞). To eachρ ∈ M we associate
the Laplace transform function

Rρ(x) =
∫ ∞

0
e−xuρ(du).(6.1)

We denote byFL the space of such functions, that is,FL = {Rρ(·)|ρ ∈ M}.
We shall need to consider “ensemble averages” over randomly chosen elements

of M. These are described by probability measures onM, which would always be
understood to be defined on the naturalσ -algebra onM, for which the measures
of intervals,ρ([a, b]), are measurable functions ofρ. Our goal in this section is to
prove the following statement.

THEOREM 6.1. Under the assumptions of Theorem 4.2, there exists a
probability measure, ν(dρ), on M such that for any compactly supported positive
function f on R,

G̃µ(f ) =
∫
M

ν(dρ)ĜRρ (f ),(6.2)

and furthermore,

G̃µ(f ) =
∫
M

ν(dρ)ĜRρ∗g(f ).(6.3)

For Laplace transform functionsF = Rρ , shifts correspond to transformations
of the form

ρ(du) �⇒ e−αuρ(du),(6.4)
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and the normalization condition (5.1) corresponds toρ(R) = 1, that is,ρ ∈ M
being aprobability measure. In view of the invariance (5.3), this normalization
condition may be freely added as a restriction of the support ofν(dρ) in the
statement of Theorem 6.1.

While the result presented in the previous section required only quasi-
stationarity, we shall now make use of the additional assumptions listed in the
main theorem (Theorem 4.2).

In the derivation of Theorem 6.1 we shall apply what may be regarded as the
principle of the equivalence of ensembles, in the language of statistical mechanics.
Specifically, we need the following result, which, as is explained in the Appendix,
is a refinement of the “Bahadur–Rao theorem” of large deviation theory.

THEOREM A.1. Let u1, u2, . . . be i.i.d. random variables with expectation
Egu and a common probability distribution g(u), which has a density and a
finite moment generating function,

∫
eηug(u)du ≡ e�(η) < ∞ for all η. Then,

for any 0 < K < �′(∞) and 0 < β < 1
2 there is ετ ;K,β −→

τ→∞ 0 such that for all
q ∈ [Egu,K] and |x| ≤ τβ ,

Prob({u1 + u2 + · · · + uτ ≥ x + qτ })
Prob({u1 + u2 + · · · + uτ ≥ qτ }) = e−ηx[1+ O(ετ ;K,β)],(6.5)

with η = η(q) determined by the condition

q =
∫

ueηug(u)du∫
eηyg(y) dy

.(6.6)

In our analysis we shall need a bound on the front velocity, and on the possible
propagation of particles from the far tail.

LEMMA 6.2. Let µ be a quasi-stationary g-regular measure with a density
satisfying the assumptions (4.2)and (4.3)of Theorem 4.2.Then:

(i) For any τ large enough, for ω in a set of measure 1− ε,

zω;τ ≤ S

2λ
τ + const where S = ln

∫
e2λxg(x) dx.(6.7)

(ii) There exist αµ(M) and βg(τ ) such that the probability of the complement
of the event

Aτ ;D,K,M = {ω : the configuration obtained after τ steps will have not more
than M particles with yn ≥ y1 − D, and all of them made
a total jump less than Kτ + zω,τ − xn in time from 0 to τ }

satisfies

Prob(Ac
τ ;D,K,M) ≤ αµ(M,D) + βg(τ ) + Cg,µe−δ(K−K0)τ(6.8)

with αµ(M,D) −→
M→∞ 0 for each D < ∞, βg(τ ) −→

τ→∞ 0 and δ > 0.
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REMARK. In the proof below we shall apply the last bound in the double limit:
limK→∞ limτ→∞, with M chosen so that 1� M � K .

PROOF OFLEMMA 6.2. (i) By (4.3) and Markov inequality,

Pµ

({�(−xn) ≤ m} ≥ e2λm) ≤ e−λm.

Therefore by the Borel–Cantelli lemma,

Pµ

{{�(−xn) ≤ m} > e2λm i.o.
} = 0.

This implies that for anyε there existsm0 such that on a set ofω of measure 1− ε,
{�(−xn) ≤ m} ≤ e2λm for all m ≥ m0.

Using the definition ofFω;0 we obtain

Fω;0(x) ≤ e−2λmin(x,−m0) ∀x < 0.(6.9)

Therefore,

Fω;τ (x) ≤ Fω;0 ∗ g(∗τ)(x)
(6.10)

≤ const
∫

e−2λ(x−y)g(∗τ)(y) dy ≤ conste−2λx+τS.

For x = Sτ
2λ

+ const we thus obtainFω;τ (x) ≤ 1. It follows by definition that

zω,τ ≤ Sτ
2λ

+ const.
(ii) The probability that the first condition does not hold in the definition of

Aτ ;D,K,M is, by the quasi-stationarity ofµ,

αµ(M,D) = µ(ω : more thanM particles
(6.11)

are within distanceD of the leader att = 0).

This quantity vanishes forM → ∞ because the number of particles in[y1−D,y1]
is almost surely finite.

To estimate the remaining probability of the complement of the eventAτ ;D,K,M

we split it into two cases, based on the distance which the front advances in timeτ .
That distance is at least the total displacement of the particle which is initially at 0.
The probability that this displacement is less than(Egu − 1)τ is dominated by the
quantity

Prob
(
zω,τ ≤ (Egu − 1)τ

) ≤ Prob
(
Sτ ≤ (Egu − 1)τ

) = βg(τ ).

The choice of 1 is somewhat arbitrary, but even so, standard large deviation
arguments which are applicable under the assumption (4.2) imply thatβg(τ )

decays exponentially.
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The contribution of the other case is bounded by the probability of the following
event:

Prob
(
at least one of the particles ofω will advance inτ steps

a distance greater than[−xn + (Egu − 1+ K)τ ])
≤ Eµ

(∑
n

Prob
(
Sτ ≥ −xn + (Egu − 1+ K)τ

))
(6.12)

≤ Eµ

(∑
n

Eg(e
αSτ )e−α[−xn+(Egu−1+K)τ ]

)

≤
[∫

R

eα(u−Egu)g(u) due−α(K−1)

]τ

Eµ

(∑
n

e−α[−xn]
)
,

whereα > 0 is an adjustable constant. The last factor is finite for 0< α < λ since
under the assumed exponential bound (4.3),

Eµ

(∑
n

e−α[−xn]
)

= Eµ

(
α

∫
dye−αy

∑
n

I[y ≥ −xn]
)

(6.13)

≤ α

∫
dye−αyAeλy = Aα

α − λ
.

The claimed estimate readily follows (choosingλ < α, and definingδ > 0
correspondingly). �

PROOF OF THEOREM 6.1. Applying Theorem A.1 to the function defined
by (5.4), we find that

N Fω;τ (x) = ∑
n

P (Sτ ≥ x + zω;τ − xn)

= ∑
−K(ε)τ≤xn≤0

P(Sτ ≥ zω;τ − xn)
P (Sτ ≥ x + zω;τ − xn)

P (Sτ ≥ zω;τ − xn)

+ ∑
xn≤−K(ε)τ

P (Sτ ≥ zω,τ − xn + x)

= ∑
−K(ε)τ≤xn≤0

P(Sτ ≥ zω;τ − xn)e
−η((zω;τ −xn)/τ)·x[1+ O(ετ )](6.14)

+ ∑
xn≤−K(ε)τ

P (Sτ ≥ zω,τ − xn + x)

=
∫ ∞

0
ρω;τ (du)e−ux[1+ O(ετ )]

+ ∑
xn≤−K(ε)τ

P (Sτ ≥ zω,τ − xn + x),
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with ρω;τ (du) defined as the probability measure with weightsP(Sτ ≥ zω;τ − xn)

at the pointsη(
zω;τ −xn

τ
).

We will now estimate the remainder term
∑

xn≤−K(ε)τ P (Sτ ≥ zω,τ − xn + x).

In the case when limη→∞ �′(η) < ∞ (in the case when the supremum of
the support ofg(x) is finite), the remainder term is zero for largeK(ε) [e.g., if
K(ε) ≥ �′(∞) andx = O(τβ)].

In the case when limη→∞ �′(η) = ∞, the remainder term can be estimated
using the large deviation arguments. By using (A.2) in Theorem A.1 and (6.9) we
obtain ∑

xn≤−K(ε)τ

P (Sτ ≥ zω,τ − xn + x)

≤
∫ ∞
K(ε)τ

P (u1 + · · · + uτ ≥ y + zω,τ + x)e2λy dy

=
∫ ∞
K(ε)τ

exp
{
−τ�∗

(
y + zω,τ + x

τ

)}
(6.15)

×
[∫ ∞

0
exp

{
−ψτ

(
η

(
y + zω,τ + x

τ

))
t

}
dQ(η(y/τ))

τ (t)

]
e2λy dy

= O(ετ ).

The last equality in (6.15) follows because by convexity of�∗

�∗
(

y + zω,τ + x

τ

)
� 2λy

τ
for all y ≥ K(ε)τ,

and because the factor in the square brackets in (6.15) is small.
Therefore

N Fω;τ (x) =
∫ ∞

0
e−uxρω;τ (du)

(
1+ O(ετ )

)
.(6.16)

We observe that

|N Fω;τ (x) − Rρ(x)| ≤ εRρ(x),

|N F ′
ω;τ (x) − R′

ρ(x)| ≤ εR′
ρ(x),

(6.17)
|g ∗ N Fω;τ (x) − g ∗ Rρ(x)| ≤ εg ∗ Rρ(x),

|(g ∗ N Fω;τ )′(x) − (g ∗ Rρ)′(x)| ≤ ε(g ∗ Rρ)′(x).

Using (6.17) and Corollary 5.5 we obtain

G̃µ(f ) =
∫ W(ε)

−W(ε)
de−Rρ(x) exp

{
−
∫ x

−∞
(
1− e−f (x−y))(−dRρ(y)

)}+ ε

= ĜW(ε),Rρ (f ) + ε(6.18)
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=
∫ W(ε)

−W(ε)
de−g∗Rρ(x) exp

{
−
∫ x

−∞
(
1− e−f (x−y))(−dg ∗ Rρ(y)

)}+ ε

= ĜW(ε),g∗Rρ (f ) + ε.

[Equation (6.18) will serve as a definition of̂GW(ε),Rρ (f ).]
From (6.16) we observe that for allω in a set of measure 1− ε and for every

K � 1 there exists aK1 � 1 depending onK such that∫ ∞
η(Egu+K)

eDuρω;τ (du) ≤ ∑
xn≤−K1τ

P (Sτ ≥ x + zω;τ − xn).(6.19)

We can chooseK1 by requiring that for allxn ≤ −K1τ ,

zω,τ − xn

τ
≤ Egu + K,

for example,K1 = Egu + K − S
2λ

and we used (6.7).
From Lemma 6.2 [see (6.8)], applied withM = √

K (or any other choice with
1 � M � K), we find that under the assumptions listed above, for anyD < ∞
there existεD(K) with which

lim sup
τ→∞

Eµ

(∫ ∞
η(Egu+K)

eDuρω;τ (du)

)

≤ lim sup
τ→∞

Eµ

( ∑
xn≤−K1τ

P (Sτ ≥ zω;τ − xn − D)

)
+ εD(K)(6.20)

≡ ε̃D(K) −→
K→∞ 0.

The correspondenceω �→ ρω;τ defines a mapping from the space of configura-
tions� into the spaceM, of measures onR, with values restricted to the subset of
probability measures. Corresponding to this map is one which takes the measure
µ on � into a probability measure onM which we shall denote byντ . By this
definition, for any measurable functionX :M → R,∫

M
X(ρ)ντ (dρ) =

∫
�

X(ρω;τ )µ(dω).(6.21)

The space of probability measures on compact subsets ofR is compact, and
so is the space of probability measures on this space. While we do not have
such compactness (since the measures ofM are defined over the noncompactR),
(6.20) with any fixedD > 0 implies that the sequence of measuresντ is tight and
that it has a subsequenceντn which converges in the corresponding “weak
topology” as τn → ∞. Let ν be a limit of such a subsequence. [To prove
the tightness ofντn we observe that it is possible to show that for allτ ,
Rρω;τ (x) ≤ M(x) for some functionM(x) except forω in a set of measureε. The
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set ofρ for which Rρ(x) ≤ M(x) is compact.] We claim that for every positivef
of compact support, suppf ⊂ [−D,0],∫

M

[
ĜW(ε),Rρ (f )

]
ν(dρ) + ε

= lim
n→∞

∫
M

[
ĜW(ε),Rρ (f )

]
ντn(dρ) + ε = G̃µ(f ),

(6.22) ∫
M

[
ĜW(ε),g∗Rρ (f )

]
ν(dρ) + ε

= lim
n→∞

∫
M

[
ĜW(ε),g∗Rρ (f )

]
ντn(dρ) + ε = G̃µ(f ).

The weak convergence means that for anycontinuous functionX :M → R,∫
M

X(ρ)ν(dρ) = lim
n→∞

∫
M

X(ρ)ντn(dρ)

(6.23)
= lim

n→∞

∫
�

X
(
ρω;τn

)
µ(dω).

The continuity argument does not apply immediately to the function which we are
interested in:

ĜW(ε),Rρ (f )

(6.24)
=

∫ W(ε)

−W(ε)
d
[
e−Rρ(x)]exp

{
−
∫ x

x−D

[
1− e−f (x−y)]d(−Rρ(y)

)}
,

which is not continuous inρ. However, ĜW(ε),Rρ (f ) can be approximated
arbitrarily well, in the appropriateL1 sense, by functionals which are continuous.

The functionĜW(ε),Rρ (f ) is not continuous inρ. The difficulty is thatRρ(x)

can be affected by small changes in the measureρ if those occur at high values of
the Laplace variableu. However, we do obtain a continuous function by replacing
Rρ in (6.24) byRIKρ with

IKρ(du) = I[0,η(Egu+K)](u) · ρ(du).(6.25)

It is easy to see that∫
M

(∫ ∞
η(Egu+K)

e−xuρ(du)

)
ν(dρ)

≤ lim sup
τ→∞

∫
�

(∫ ∞
η(Egu+K)

e−xuρω;τ (du)

)
µ(dω)(6.26)

≤ ε̃x(K) −→
K→∞ 0,

where the first inequality is by the generalized version of Fatou’s lemma, and the
second is by (6.20).
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Due to the fact thatf is compactly supported and the integration inx is over
[−W(ε),W(ε)], the difference∫

M

∣∣ĜW(ε),Rρ (f ) − ĜW(ε),RIKρ (f )
∣∣dν(ρ)

is affected only by values ofx ∈ [−W(ε) − D,W(ε)].
Takingx in this interval, we observe that (6.26) implies that∫ ∞

η(Egu+K)
e−uxρ(du) ≤ ε,

except on the set ofω of measureε.
The difference

∫
M |ĜW(ε),Rρ (f ) − ĜW(ε),RIKρ (f )|dν(ρ) is controlled by

|Rρ(x) − RIKρ(x)| and by|R′
ρ(x) − R′

IKρ(x)|, which are small forx ∈ [−W(ε) −
D,W(ε)] except on the set ofρ of measureε, since

∫∞
η(Egu+K) e

−uxρ(du) is small.

One can verify by standard arguments that forK finite ĜW(ε),RIKρ (f ) is
continuous inρ, and that this continuity and the approximation bounds listed above
imply (6.22), thereby proving the first part of Theorem 6.1. The second part is
proved via similar arguments.�

7. Monotonicity arguments. In this section we develop some monotonicity
tools, which will be applied to prove that if a measureµ has the properties listed in
Theorem 6.1, then the corresponding measuresρ areν-almost surely concentrated
on points, that is, the Poisson densitiesRρ are almost surely pure exponential.

7.1. The contraction property of convolutions within FL. The spaceF , whose
elements are positive decreasing continuous functions onR, is partially ordered by
the following relation.

DEFINITION 7.1. ForF,G ∈ F we say thatG is steeper thanF if the level
intervals ofG areshorter than those ofF , in the sense that for any 0≤ a ≤ b ≤ ∞,

(0≤)G−1(a) − G−1(b) ≤ F−1(a) − F−1(b).(7.1)

We adapt the convention that for the (monotone) functionsG ∈ F the inverse is
defined (fora ≥ 0) by

G−1(a) = inf{x ∈ R :G(x) ≤ a}.(7.2)

It is easy to see that, within the class of monotone functionsF , an equivalent
formulation of the relation “G is steeper thanF ” is that for anyu > 0,

G(x) = F(y) �⇒ G(x + u) ≤ F(y + u).(7.3)

Also equivalent is such a principle with the reversed inequality andu < 0.
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Of particular interest for us is the subspaceFL of Laplace transforms of
positive measures. We shall show that within this space, the convolution with a
probability measureg(x) dx makes a function steeper. (It is shown below that the
appropriately shiftedRρ ∗ g is in FL.) A key step towards this result, which is also
of independent interest, is the following lemma.

LEMMA 7.2. Let F = RρF ∈ FL satisfy the normalization condition F(0) = 1
(i.e., F = N F ), and let G = RρG ∈ FL be related to it by

G = N (F ∗ g)(7.4)

for some probability measure g(x) dx. Then, for all λ ≥ 0,∫ λ

0
ρG(du) ≤

∫ λ

0
ρF (du).(7.5)

PROOF. The relation betweenF and G is such that for some normalizing
constantz ∈ R,

G(x) =
∫ ∞
−∞

[∫ ∞
0

e−(x−y+z)uρF (du)

]
g(y) dy =

∫ ∞
0

e−xueS(u)ρF (du)(7.6)

with S(·) defined by

eS(u) =
∫ ∞
−∞

e(y−z)ug(y) dy.(7.7)

Thus

ρG(du) = eS(u)ρF (du),(7.8)

and the normalization conditionsF(0) = G(0) = 1 imply∫ ∞
0

eS(u)ρF (du) =
∫ ∞

0
ρF (du).(7.9)

The functionS(·) is convex, which is easily verified by showing thatS′′ > 0,
by general properties of integrals of the form (7.7), and satisfiesS(0) = 0 (since
g(x) dx is a probability measure). It has, therefore, to be the case that either
ρF (du) is concentrated at a point (whereS = 0), or elseS(·) is negative on[0, ū)

and positive on(ū,∞) for someū > 0. The claimed concentration statement (7.5)
is obviously true for allλ ∈ [0, ū]. Forλ ≥ ū, we note that∫ ∞

λ
eS(u)ρF (du) ≥

∫ ∞
λ

ρF (du).(7.10)

By subtracting (7.9) from (7.10), we find that the claimed (7.5) is valid also
for λ > ū. �

THEOREM 7.3. For any F = Rρ ∈ FL and a probability measure g(x) dx

on R, the function N (F ∗ g) is steeper than F .
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PROOF. Our goal is to derive the inequality (7.1) forG = N (F ∗ g) (and
a < b). By simple approximation arguments, it suffices to do that assuming
limx→−∞ F(x) = ∞.

We claim that

N (F ∗ g)(x) ≤ F(x) for x ≥ 0,
(7.11)

N (F ∗ g)(x) ≥ F(x) for x ≤ 0.

We find that the functionsF andG = N (F ∗g) are related just as in the previous
lemma. In order to convert the concentration statement (7.5) into one relatingG(·)
with F(·), we write, using Fubini’s lemma (or integration by parts),

for x > 0 N (F ∗ g)(x) = x

∫ ∞
0

dλe−λx

[∫ λ

0
eS(u)ρ(du)

]
,

for x < 0 N (F ∗ g)(x) = x

∫ ∞
0

dλe−λx

[∫ ∞
λ

eS(u)ρ(du)

]
(7.12)

+
∫ ∞

0
eS(u)ρ(du),

with the corresponding relations holding forF without the factorseS(u). The
inequalities (7.11) follow now by inserting here the relations (7.5), (7.10) and (7.9).

We note that ifF andN (F ∗ g) were shifted so as to be equal at a different
value ofx, then the argument above would also go through. Therefore we obtain
thatN (F ∗ g) is steeper thanF . �

The partial order “G is steeper thanF ” is preserved when any of the functions
is modified by a uniform shift, and also when each is replaced by a common
monotone function of itself, for example,{F,G} replaced by{1− e−F ,1− e−G}.
Following is a useful property of this partial order (another one is presented in
Appendix A.2).

LEMMA 7.4. Let F,G ∈ F be continuous and strictly monotone decreasing
functions with limx→−∞ F(x) = limx→−∞ G(x) = ∞. If G is steeper than F ,
then, for any u > 0,∫

e−[G(x−u)−G(x)] de−G(x) ≤
∫

e−[F(x−u)−F(x)] de−F(x).(7.13)

Furthermore, the inequality is strict unless G is a translate of F (and vice versa).

PROOF. The statement is a simple consequence of the following formula,
and (7.3): ∫

e−[F(x−u)−F(x)] de−F(x) −
∫

e−[G(x−u)−G(x)] de−G(x)

(7.14)

=
∫ ∞

0
dz

[
e−F(F−1(z)−u) − e−G(G−1(z)−u)]. �
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An additional result related to this notion, which may be of independent interest,
is presented in Appendix A.2.

8. Proof of the main result. We shall now apply the monotonicity arguments
for the last leg of the proof of our main result. Theorem 4.2 is clearly implied by
the following statement (see Theorem 6.1).

THEOREM 8.1. Let µ be a measure on the space of configurations �, which
admits a representation as a random Poisson process, described by a probability
measure ν(dρ) on M as in Theorem 6.1, for which both (6.2) and (6.3) hold.
Then the support of the Laplace measure dρ is ν-almost surely a point; that is, the
functions Rρ are almost surely pure exponentials.

PROOF. Let us consider the probability that the first gap exceeds someu > 0.
For a Poisson process, a simple calculation yields

E
(Poisson)
F (x1 − x2 ≥ u) =

∫ ∞
−∞

e−F(x−u)(−dF(x)
)
.(8.1)

Therefore,

Eµ(x1 − x2 ≥ u) =
∫

µ(dω)

∫ ∞
−∞

e−F(x−u)(−dF(x)
)
.

Substituting this in (6.2), or in (6.3), one obtains the corresponding expectation for
the measureµ. Subtracting the two expressions, we find that

0=
∫
M

ν(dρ)

[∫ ∞
−∞

e−Rρ(x−u) dRρ(x) −
∫ ∞
−∞

e−Rρ∗g(x−u) dRρ ∗ g(x)

]
.(8.2)

By the analysis in the previous section (Theorem 7.3 and Lemma 7.4), the
difference in the square brackets in (8.2) is nonnegative. Thus, this relation implies
that ∫

e−Rρ(x−u) dRρ(x) −
∫

e−Rρ∗g(x−u) dRρ ∗ g(x) = 0
(8.3)

for ν-almost everyρ.

Furthermore, by Lemma 7.4 the equality yields thatν-almost surelyRρ ∗ g

coincides with one of the translates ofRρ . The only functions (F = Rρ ) with
this property inFL (or for that matter inF ; see [3]) are pure exponentials, which
correspond toρ concentrated at a point.�
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APPENDIX

A.1. Useful statements from the theory of large deviations. Our goal here
is to derive Theorem A.1 which was used in Section 6. Its statement may be read as
an expression of the “equivalence of ensembles”—in statistical mechanical terms.
The following notation will be used in the theorem.

�(λ) ≡ lnE[eλu1], �∗(y) ≡ sup
λ

(
λy − �(λ)

)
.

The result we used in Section 6 is:

THEOREM A.1. Let u1, u2, . . . be i.i.d. random variables with a common
probability distribution g, which has a density and a finite everywhere moment
generating function. Then, for any 0 < K < �′(∞) and 0 < β < 1/2 there
is ετ ;K,β −→

τ→∞ 0 such that for all q ∈ [Egu,K] and |x| ≤ τβ ,

Prob({u1 + u2 + · · · + uτ ≥ x + qτ })
Prob({u1 + u2 + · · · + uτ ≥ qτ }) = e−ηx[1+ O(ετ ;K,β)],(A.1)

with η = η(q) determined by the condition η(q) = �∗′(q).

PROOF. We will assume thatEgu = 0, since we can replace the random
variablesui by ui − Egu. We will use the same notation as in the proof of the
Bahadur–Rao theorem (see [5]). We denote

η

(
y

τ

)
≡ �∗′

(
y

τ

)
,

�′
(
η

(
y

τ

))
= y

τ
,

ψτ

(
η

(
y

τ

))
≡ η

(
y

τ

)√
τ�′′

(
η

(
y

τ

))
,

Yi ≡ ui − y/τ√
�′′(η(y/τ))

,

Wτ ≡ Y1 + · · · + Yτ√
τ

,

and consider a new measurẽP defined by its Radon–Nikodym derivative

dP̃ (η(y/τ))

dP
(x) = exη(y/τ)−�(η(y/τ)).

Let alsoQ
(η(y/τ))
τ denote the distribution function ofWτ with respect tõP (η(y/τ)).

It is easy to show then thatYi are i.i.d. with mean 0 and variance 1 with respect to
P̃ (η(y/τ)). ThereforeWτ has mean 0 and variance 1 with respect toQ

(η(y/τ))
τ .
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By analogy with the proof of the Bahadur–Rao theorem (see [5]), we can write

P(u1 + · · · + uτ ≥ y) = e−τ�∗(y/τ)
∫ ∞

0
e−ψτ (η(y/τ))t dQ(η(y/τ))

τ (t).(A.2)

For further consideration, we need to estimate the ratio

P(u1 + u2 + · · · + uτ ≥ x + y)

P (u1 + u2 + · · · + uτ ≥ y)
(A.3)

= e−τ�∗((x+y)/τ)+τ�∗(y/τ)

∫∞
0 e−ψτ (η((x+y)/τ))t dQ

(η((x+y)/τ))
τ (t)∫∞

0 e−ψτ (η(y/τ))t dQ
(η(y/τ))

τ (t)
.

By using Taylor’s expansion we can estimate the exponent in (A.3):

−�∗
(

x + y

τ

)
+ �∗

(
y

τ

)
= −η

(
y

τ

)(
x

τ

)
+ O

(
1

τ1−2β

)
,(A.4)

where, to estimate the remainder term in (A.4), we use the integral form of the
remainder in Taylor series and thaty

τ
≤ K , |x| ≤ τβ , �∗′′ = 1

�′′ < ∞, convexity
of � and the assumption that the Laplace transform ofg is finite.

It remains to show that the prefactor in (A.3) is

r(x, y) =
∫∞
0 e−ψτ (η((x+y)/τ))t dQ

(η((x+y)/τ))
τ (t)∫∞

0 e−ψτ (η(y/τ))t dQ
(η(y/τ))
τ (t)

= 1+ O(ετ ).(A.5)

By the Berry–Esseen theorem (see [7]),

sup
x

∣∣∣∣Q(η)
τ (x) −

∫ x

−∞
e−t2/2
√

2π
dt

∣∣∣∣ ≤ 33

4

Eu3
1

(Varu1)3/2

1√
τ

= O

(
1√
τ

)
.

Therefore, ∫ ∞
0

e−ψτ (η((x+y)/τ))t dQ(η((x+y)/τ))
τ (t)

=
∫ ∞

0

e−ψτ (η((x+y)/τ))t−t2/2
√

2π
dt(A.6)

+ O

(
1√
τ

)(
ψτ

(
η

(
x + y

τ

))
+ O(1)

)
.

This formula is especially useful whenψτ ≤ O(1) (i.e., whenη is small) and the
first term on the right-hand side of (A.6) is much larger than the second term. In
this case we obtain

r(x, y) =
∫∞
0 e−ψτ (η((x+y)/τ))t−t2/2 dt + O(1/

√
τ )∫∞

0 e−ψτ (η(y/τ))t−t2/2 dt + O(1/
√

τ )
.(A.7)



110 A. RUZMAIKINA AND M. AIZENMAN

If y is such thatO(1) ≤ ψτ ≤ O(τ1/2), we write the integral as∫ ∞
0

e−ψτ (η(y/τ))t dQ(η(y/τ))
τ (t) =

∫ ∞
0

e−ψτ (η(y/τ))tq(η(y/τ))
τ (t) dt,

whereqτ is the density ofQτ . By the analog of the Berry–Esseen theorem for
densities (see [7]),

sup
x

∣∣∣∣qτ (x) − 1√
2π

e−x2/2
∣∣∣∣ = O

(
1√
τ

)
asτ → ∞.(A.8)

From (A.8) we obtain

r(x, y) =
∫ ∞

0
e−ψτ (η((x+y)/τ))t−t2/2 dt + 1

ψτ (η((x + y)/τ))
O

(
1√
τ

)
(A.9)

×
{∫ ∞

0
e−ψτ (η(y/τ))t−t2/2 dt + 1

ψτ (η(y/τ))
O

(
1√
τ

)}−1

.

The proof of (A.5) now consists of showing that∫ ∞
0

e−ψτ (η((x+y)/τ))t−t2/2 dt −
∫ ∞

0
e−ψτ (η(y/τ))t−t2/2 dt

≤ O(τ−ε)

∫ ∞
0

e−ψτ (η(y/τ))t−t2/2 dt. �

A.2. A class of monotone functionals over FL. Since the notion introduced
in Section 7 may be of independent interest, let us present here a related
result, which offers another instructive insight on the contraction properties of
convolutions inF .

THEOREM A.2. Let F,G ∈ F with G steeper than F . Then, for any positive
and continuous function � on [0,∞) which vanishes at 0 and ∞,∫ ∞

−∞
dt�(G(t)) ≤

∫ ∞
−∞

dt�(F (t)).(A.10)

Furthermore, if � is strictly positive on (0,∞), and G and F are both left-
continuous, then the inequality is strict unless G is a translate of F .

PROOF. By standard approximation arguments (e.g., using local approxima-
tions by polynomials), it suffices to establish (A.10) under the assumption that�

is piecewise strictly monotone.
Employing Fubini’s lemma, or Lebesgue’s “layered cake” formula for the

integral, ∫ ∞
−∞

dt�(F (t)) =
∫ ∞

0
dλ

∫ ∞
−∞

dtI [�(F(t)) ≥ λ].(A.11)
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Under the added assumption on�, the set{t ∈ R :�(F(t)) ≥ λ} is a union of level
intervals ofF , of the form{t ∈ R :aj (λ) ≤ F(t) ≤ bj (λ)} (with {[aj (λ), bj (λ)]}j
determined as the level sets of{�(·) ≥ λ}).

The integral overt on the right-hand side of (A.11) produces the sum of the
lengths of the level-intervals ofF . WhenF is replaced byG, the corresponding
intervals can only get shorter, sinceG is assumed to be steeper thanF , and
thus (A.10) holds.

In view of the above, the conditions for thestrict monotonicity sound
reasonable. However, since the strict monotonicity is very significant it may be
instructive to make the argument explicit. (What follows makes the argument
given just above redundant; however, we keep it because of its simplicity.) It is
convenient to rearrange the above argument as follows. Using our convention for
the inverse function,∫ ∞

−∞
dt�(F (t)) =

∫ ∞
−∞

dt (F )�(F ) =
∫ ∞
−∞

dF−1(a)�(a),(A.12)

and thus ∫ ∞
−∞

dt�(F (t)) −
∫ ∞
−∞

dt�(G(t))

(A.13)
=

∫ ∞
−∞

[dF−1(a) − dG−1(a)]�(a),

wheredF−1(a) and dG−1(a) are measures onR. The assumed relation (7.1)
implies that the differencedF−1(a) − dG−1(a) is itself a positive measure. The
vanishing of its integral against� is therefore possible only if this measure is
supported in the set�−1(0), but that set (viewed as the set of values of the
functionsF andG) contains at most the boundary pointa = 0. It follows that if the
inequality (A.10) is saturated, then the two Stieltjes measures are equal in(0,∞),
and thus

F−1(a) − G−1(a) = Const,(A.14)

which means thatF andG differ by a shift. �

This implies another monotonicity principle, which expresses the fact that
convolutions make functions inFL steeper.

COROLLARY A.2. For any function F ∈ FL and a probability measure
g(x) dx on R,

E
(Poisson)
g∗F (xn − xn+1) ≤ E

(Poisson)
F (xn − xn+1) for all n ≥ 1,(A.15)

and the inequality is strict unless either both quantities are infinite, or F(x) =
e−s(x−z) for some s > 0 and z ∈ R.
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PROOF. The mean value of the gap may be computed with the help of the
expression

xn − xn+1 =
∫ ∞
−∞

{I [t > xn+1] − I [t > xn]}dt.(A.16)

A simple calculation yields

E
(Poisson)
F (xn − xn+1) =

∫ ∞
−∞

dt�n(F (t))(A.17)

with �n(F ) ≡ F(t)n

n! e−F(t). Theorem A.2 applies to such quantities.�

We did not base the proof of Theorem 6.1 on this observation [i.e., use in
Section 7 (A.15) instead of (8.1)] since this argument is conclusive only when
the above expected value is known to be finite for somen < ∞, and we preferred
not to limit the proof by such an assumption (and had no need to).

Acknowledgments. We thank Pierluigi Contucci for many stimulating discus-
sions in the early part of this project. Anastasia Ruzmaikina would like to express
her gratitude to Loren Pitt for his invaluable help and for the financial support from
his grant during the course of this work while a Whyburn Research Instructor at
the University of Virginia, to Larry Thomas for the reading of an earlier draft of
the manuscript and to Almut Burchard, Holly Carley and Etienne DePoortere for
useful discussions.

REFERENCES

[1] BAHADUR, R. R. and RAO, R. R. (1960). On deviations of the sample mean.Ann. Math.
Statist. 31 1015.

[2] BOLTHAUSEN, E. and SZNITMAN , A.-S. (1998). On Ruelle’s probability cascades and an
abstract cavity method.Comm. Math. Phys. 197 247–276.

[3] CHOQUET, G. and DENY, J. (1960). Sur l’équation de convolutionµ ∗ σ = µ. C. R. Acad. Sci.
Paris Sér. I Math. 250 799–801.

[4] DALEY, D. J. and VERE-JONES, D. (1998).An Introduction to the Theory of Point Processes.
Springer, Berlin.

[5] DEMBO, A. and ZEITOUNI, O. (1998).Large Deviations Techniques and Applications, 2nd ed.
Springer, New York.

[6] DERRIDA, B. (1980). Random-energy model: Limit of a family of disordered models.Phys.
Rev. Lett. 45 79–82.

[7] FELLER, W. (1971).An Introduction to Probability Theory and Its Applications 2, 2nd ed.
Wiley, New York.

[8] L EADBETTER, M. R., LINDGREN, G. and ROOTZÉN, H. (1983).Extremes, and Related
Properties of Random Sequences and Processes. Springer, Berlin.

[9] L IGGETT, T. (1979). Random invariant measures for Markov chains, and independent particle
systems.Z. Wahrsch. Verw. Gebiete 45 297–854.

[10] MEZARD, M., PARISI, G. and VIRASORO, M. A. (1987). Spin Glass Theory and Beyond.
World Scientific, Singapore.



CHARACTERIZATION OF INVARIANT MEASURES 113

[11] RUELLE, D. (1987). A mathematical reformulation of Derrida’s REM and GREM.Comm.
Math. Phys. 108 225–239.

DEPARTMENT OFMATHEMATICS

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22903
USA
AND

DEPARTMENTS OFSTATISTICS

AND MATHEMATICS

PURDUE UNIVERSITY

WEST LAFAYETTE, INDIANA 47905
USA
E-MAIL : aar@stat.purdue.edu

DEPARTMENTS OFPHYSICS

AND MATHEMATICS

PRINCETON UNIVERSITY

347 JADWIN HALL

P.O. BOX 708
PRINCETON, NEW JERSEY08544
USA
E-MAIL : aizenman@princeton.edu


