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2 Handbook of Optical and Laser Scanning 

1.1 INTRODUCTION  

The M2 model is currently the preferred way of quantitatively describing a laser beam, 
including its propagation through free space and lenses; speci�cally, as ratios of its param-
eters with respect to the simplest theoretical gaussian laser beam. The present chapter 
describes the model and measuring techniques for reliably determining—in each of the 
two orthogonal propagation planes—the key spatial parameters of a laser beam; namely, 
the beam waist diameter 2W0, the Rayleigh range zR, the beam divergence Θ, and waist 
location z0. 



  
  
 

  

  
  

  
  
  
 

  
 

 
 
  

 
 

 
  

 
  
 
  
 
 
 

  

  
 

  

 
  

3 Characterization of Laser Beams: The M2 Model  

1.2 HISTORICAL DEVELOPMENT OF LASER-

BEAM CHARACTERIZATION  

In 1966, six years after the �rst laser was demonstrated, a classic review paper1 by Kogelnik 
and Li of Bell Telephone Laboratories was published, which served as the standard reference 
on the description of laser beams for many years. Here the 1/e2 diameter de�nition1,2 for the 
width of the fundamental-mode gaussian beam was used. The more complex transverse 
irradiance patterns, or transverse modes, of laser beams were identi�ed with sets of eigen-
function solutions to the wave equation, including diffraction, describing the electric �elds 
of the beam modes. These solutions came in two forms: those with rectangular symmetry 
were described mathematically by Hermite–Gaussian functions, those with cylindrical sym-
metry by Laguerre–Gaussian functions. So with the appropriate basis set, any beam could 
be decomposed into a weighted sum of the electric �elds of these modes, at least in principle. 
Mathematically, for this expansion to be unique the phases of the electric �elds must be 
known. This is dif�cult at optical frequencies. Irradiance measurements alone, where the 
phase information is lost in squaring the E-�elds, does not allow determination of the expan-
sion coef�cients. This “in principle but not in practice” description of light beams was all that 
was available and seemed to be all that was needed for several succeeding years. 

Workers often measured beam diameters by scanning an aperture across the beam to 
detect the transmitted power pro�le. Apertures used were pinholes, slits, or knife-edges, 
and the beam diameters were (and still are) de�ned based on the measurement effect that 
would be produced on a fundamental-mode beam. Commercial laser beams were speci-
�ed as being pure fundamental mode, the lowest order or zero–zero transverse electro-
magnetic wave eigenfunction, “TEM00.” 

In 1971, Marshall3 published a short note introducing the M2 factor, indicating M (=√M2) 
as the multiplying factor by which the diameter of a beam is larger than that of the funda-
mental mode of the same laser resonator. Marshall’s interest lay with the effects produced  
by industrial lasers and since they depend on focused spot size, he pointed out that they 
depend on M2. No discussion was given of how to measure M2 and the concept languished 
thereafter for several years. 

From the late 1970s and into the 1980s, Bastiaans,4 Siegman,5,6 and others developed the-
ories of bundles of light rays at narrow angles to an axis based on the Fourier transform 
relationship between the irradiance and the spatial frequency (or ray-angle) distributions 
to account for the propagation of the bundle. Such a bundle of rays is a beam. The beam 
diameter was de�ned as the standard deviation of the irradiance distribution (now called 
the second-moment diameter, when multiplied by four), and the square of this diameter 
was shown to increase as the square of the propagation distance—an expansion law for 
the diameter of hyperbolic form. These theories could be tested by measuring just the 
beam’s irradiance pro�le along the propagation path. 

In about 1987, one of us designed a telescope to locate a beam waist for an industrial CO2 

laser at a particular place in the external optical system. The design was based on measure-
ments showing where the input beam waist was located and on blind faith that the laser 
datasheet claim for a “TEM00” beam was correct. This telescope provided nothing like the 
expected result. Out of despair and disorientation came the energy to make more beam 
measurements and from these measurements came the realization that the factor that lim-
ited the maximum distance between the telescope and the beam waist it produced was 
exactly the same factor by which actual focus-spot diameter at the work surface exceeded 



  
  

 

 
   

 
 

  
  

 
 
  

  

  

  
 
 

  

 
  
 
 

 

 
  

 
 

 
 

4 Handbook of Optical and Laser Scanning 

the calculated TEM00 spot diameter. That factor was M2 and when used in modi�ed Kogelnik 
and Li equations, design of optical systems for multimode beams became possible.7 This 
ignited some interest in knowing more about laser beams than had previously been consid-
ered suf�cient. Laser datasheets that claimed “TEM00” were no longer adequate. 

In the 1980s, commercial pro�lers8 reporting a beam’s 1/e2 diameter became ubiquitous.  
By the end of the 1980s, experience with commercial pro�lers and these theories con-
verged with the development6 of the theoretical M2 model and a commercial instrument9 

to measure the beam quality based on it, which �rst became available in 1990. The time to  
determine a beam’s M2 value dropped from half a day to half a minute. 

With high accuracy M2 measurements more readily available in the early 1990s, the report-
ing of a beam’s M2 value became commonplace, and commercial lasers with good beams 
were now speci�ed10 as having M2 < 1.1. The International Organization for Standards 
began committee meetings to de�ne standards for the spatial characterization of laser 
beams, ultimately deciding on the beam quality M2 value based on the second-moment 
diameter as the standard.11 This diameter de�nition has the best theoretical support, in 
the form of the Fourier transform theories of the 1980s, but suffers from being sensitive to  
noise on the pro�le signal, which often makes the measured diameters unreliable.12,13 That 
led to the development in 1993 of rules14 to convert diameters measured with the more for-
giving methods into second-moment diameters for a large class of beams. 

The M2 model as commercially implemented does not cover beams that twist as they 
propagate in space, those with general astigmatism.15,16 The earlier Fourier transform the-
ories and their more recent extensions do, however, and allow for ten constants17 needed 
to fully characterize a beam (adding to the six used in the M2 model). Recently, in 2001, the 
�rst natural beam18 (as opposed to a test beam arti�cially constructed) was measured by 
Nemes et al. that required all ten constants for its complete description. 

Several recommendations can be made for characterizing a beam. Model the beam only  
to the level of complexity appropriate to your needs: three constants suf�ce if the beam 
spot is round at all propagation distances; six constants cover beams with simple astig-
matism, divergence asymmetry, or waist asymmetry; ten constants are needed for beams 
with elliptical spots whose orientation twist in space (general astigmatism). Measure your 
beams with a reliable method, and when required, convert those values at the end into ISO 
standard units. Lastly, stay appraised of developments in instrumentation that may meet 
your need with more convenience, speed, and accuracy. 

1.3  ORGANIZATION OF THIS CHAPTER  

Section 1.2 provides an historical introduction to the �eld, outlining how the �eld devel-
oped to its present state. 

The technical discussion begins in Section 1.4 by explaining the M2 model. This mathe-
matical model built around the quantity M2 (variously called the beam quality, times-
diffraction-limit number, or the beam propagation factor) describes the real, multimode beams 
that lasers produce and how their properties change when propagating in free space. 

This discussion is continued in Section 1.5 covering the transformation of a beam through 
a lens. Section 1.6 explains the different methods used to de�ne and measure beam diam-
eters, and how measurements made with one method can be converted into the values 
measured with one of the other methods. This includes the standard diameter de�nition 
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5 Characterization of Laser Beams: The M2 Model  

adopted by the International Organization for Standardization (ISO), the second-moment 
diameter, and the experimental dif�culties encountered with this method. 

The technical development continues in Section 1.7 where the logic and precautions 
needed in measuring the beam quality M2 are presented. Thoroughly discussed is the 
“four-cuts” method (a cut is a measurement of a beam diameter), the simplest way to obtain 
an accurate M2 value. 

Section 1.8 discusses the common and possible types of beam asymmetry that may be 
encountered in three dimensions when the propagation constants for the two orthogonal 
(and usually independent) propagation planes are combined. The concept of the “equivalent 
cylindrical beam” is introduced to complete the technical development of the M2 model. 
Propagation plots for beams with combinations of asymmetries are illustrated. A short dis-
cussion follows of “twisted beams,” those with general astigmatism, which are not covered 
in the M2 model, and require a beam matrix of ten moments of second order for their com-
plete description. This second-order beam matrix theory is a part of the underpinnings of 
the ISO’s choice of the noise-sensitive second-moment diameter as the “standard.” 

Section 1.9 applies the M2 model to an analysis of a stereolithography laser-scanning sys-
tem. Using results of earlier sections, by working backward from assumed perturbations 
or defects in the scanned beam at the work surface, the deviations in beam constants at the 
laser head that would produce them are found. An overview of the M2 model, in Section 
1.10, concludes the text. 

A glossary follows explaining the technical terms used in the �eld, with the references 
ending the chapter. 

1.4 THE M2 MODEL FOR MIXED-MODE BEAMS 

In laser beam-scanning applications, the main concern is having knowledge of the beam 
spot-size—the transverse dimensions of the beam—at any point along the beam path. The 
mixed-mode (M2 > 1) propagation equations are derived as extensions of those for the funda-
mental mode, so pure modes and particularly the fundamental mode are the starting point. 

1.4.1  Pure Transverse Modes: The Hermite–Gaussian  
and Laguerre–Gaussian Functions 

Lasers emit beams in a variety of characteristic patterns or transverse modes that can occur 
as a pure single mode or more often, as a mixture of several superposed pure modes. The  
transverse irradiance distribution of a pure mode is the square of the electric �eld ampli-
tude versus the transverse distance from the beam axis, which when measured is termed a 
transverse pro�le. This amplitude is described mathematically by Hermite–Gaussian func-
tions if it has rectangular symmetry, or by a Laguerre–Gaussian function if it has circular 
symmetry.1,2,5,19 These functions when plotted reproduce the familiar spot patterns—the 
appearance of a beam on an inserted card—�rst photographed in Reference 20 and shown 
in References 1 and 19. Computed spot patterns are displayed here in Figure 1.1. The com-
putations were done in Mathematica for the �rst six cylindrically symmetric modes, in 
order of increasing diffraction loss for a circular limiting aperture. These modes are the 
solutions to the wave equation for a bundle of rays propagating at small angles (paraxial 
rays) to the z-axis, under the in�uence of diffraction and are of the general forms1,2,7 
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FIGURE 1.1 
Computed spot patterns for cylindrically symmetric modes in order of increasing diffraction loss for a circular lim-
iting aperture. The subscript numbers pl above each image indicate the mode order. Starred modes are constructed 
as shown, as the sum of a pattern with a copy of itself rotated by 90°: (a) First three modes. (b) Next three modes. 

In Equation 1.1a, Hm(x/w)Hn(y/w) represents a pair of Hermite polynomials, one a function 
of x/w, the other of y/w, where x, y are orthogonal transverse coordinates and w is the radial 
scale parameter. In Equation 1.1b, Lpl(r/w, φ) represents a generalized Laguerre polynomial, 
a function of the r, φ transverse radial and angular coordinates. These polynomials have 
no dependence on the propagation distance z other than through the dependence w(z) in 
x/w, y/w, or r/w. The w(z) dependence describes the beam convergence or divergence. The 
other function u is the gaussian 

Because the radial gaussian function splits into a product of two gaussians, one a function 
of x, the other of y, the Hermite–Gaussian function splits into the product of two functions, 
one in x/w only and the other in y/w only, each of which is independently a solution to the 
wave equation. This has the consequence that beams can have independent propagation 
parameters in the two orthogonal planes (x, z) and (y, z). 

These functions of the transverse space coordinates consist of a damping gaussian fac-
tor, limiting the beam diameter, times a modulating polynomial that pushes light energy 
out radially as polynomial orders increase. The order numbers m, n of the Hermite poly-
nomials, or p, l of the Laguerre polynomial of the pure mode also determine the number 
of nodes in the spot pattern, for which the modes are named. They are designated as 
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7 Characterization of Laser Beams: The M2 Model  

transverse electromagnetic modes, or TEMm,n for a mode with m nodes in the horizontal 
direction and n nodes in the vertical direction, or TEMp,l for a mode with p nodes in a 
radial direction—not counting the null at the center if there is one—and l nodes in going 
angularly around half of a circumference. Figure 1.2a through f, show the theoretical beam 
irradiance pro�les for the six pure modes from Figure 1.1. Because these are the six low-
est loss modes,21,22 they are commonly found in real laser beams. The modes as shown all 
originate in the same resonator—they all have the same radial scale parameter w(z). The 
addition of an asterisk to the mode designation—a “starred mode”—signi�es a compos-
ite of two degenerate (same frequency) Hermite–Gaussian modes or as here, Laguerre– 
Gaussian modes in space and phase quadrature to form a mode of radial symmetry. This 
is explained in Reference 20, discussed in Reference 5, p. 689, and shown in Figure 1.1 for 
a mode pattern with an azimuthal variation (l ≠ 0) as the addition of the mode with a copy 
of itself after a 90° rotation, to produce a smooth ring-shaped pattern. 

The simplest mode is the TEM00 mode, also called the lowest order mode or fundamental 
mode of Figures 1.1 and 1.2a, and consists of a single spot with a gaussian pro�le (here Lpl 

FIGURE 1.2 
Synthesis of a mixed-mode as the weighted sum of pure modes. The theoretical pinhole pro�les (a) to (f) for 
the six pure radial modes from Figure 1.1, shown in the �rst column, are summed with weighting fraction ∑ of 
the third column to produce the mixed-mode pro�le (g). The beam qualities M2

4� for each mode, in the second 
column, are similarly summed with weight ∑ to produce the mixed-mode beam quality also shown in (g). The 
matching experimental pinhole pro�le is shown in (h). 
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is unity). The next higher-order mode has a single node (Figures 1.1 and 1.2b) and is appro-
priately called the “donut” mode, symbol TEM*01. The next two “starred” mode spots look 
like a donut with larger holes, the spot pattern of the TEM10 mode looks like a target with a 
bright center, and the TEM11*  mode spot looks like a target with a dark center (Figures 1.1 
and 1.2). All higher-order modes have a larger beam diameter than the fundamental mode. 
The six pure modes of Figure 1.2 are shown with the vertical scale normalized such that 
when integrated over the transverse plane, each contains unit power. 

The physical reason that Hermite–Gaussian and Laguerre–Gaussian functions describe  
the transverse modes of laser beams is straightforward. Laser beams are generated in reso-
nators by the constructive interference of waves multiply re�ected back and forth along the 
beam axis. For this interference to be a maximum, permitting a large stored energy to satu-
rate the available gain, the returned wave after a round trip of the resonator should match 
the transverse pro�le of the initial wave. The functions that do this are the eigenfunctions 
of the Fresnel–Kirchhoff integral equation used to calculate the propagation of a paraxial 
rays with diffraction included.5,19 In other words, these are precisely the beam irradiance 
pro�les that in propagating and diffracting maintain a self-similar pro�le, allowing after a 
round trip, maximum constructive interference and gain dominance. 

1.4.2 Mixed Modes: The Incoherent Superposition of Pure Modes 

While a laser may operate in a close approximation to a pure higher-order mode, for example, 
by a scratch or dust mote on a mirror forcing a node and suppressing a lower-order mode 
with an irradiance maximum at that location, actual lasers tend to operate with a mixture 
of several high-order modes oscillating simultaneously. The one major exception is lasing 
in the pure fundamental mode in a resonator with a circular limiting aperture, where the 
aperture diameter is critically adjusted to exclude the next higher-order (donut) mode. Each 
pure transverse mode has a unique frequency different from that for adjacent modes by tens 
or hundreds of MHz. This is usually beyond the response bandwidth of pro�le measuring 
instruments so any mode interference effects are invisible in such measurements. 

Figure 1.2g shows a higher-order mode synthesized by mixing the �ve lowest order 
modes of Figure 1.2a through e in a sum with the weightings shown in the column labeled 
Σ. These weights—also called mode fractions—were chosen by a �tting program to match 
the result to the experimental pinhole pro�le (see Section 1.6.4.2) of Figure 1.2h. In the 
experiment14 the number of transverse modes oscillating and their orders were known (by 
detecting the radio-frequency transverse mode beat notes in a fast photodiode). This infor-
mation was used in the �tting procedure. The laser was a typical 1-m-long argon ion laser 
operating at a wavelength of 514 nm, except that a larger than normal intracavity limiting  
aperture diameter was used to produce this mode mixture. 

Because the polynomials of Equation 1.1 have no explicit dependence on z, the pro�les 
and widths of the modes in a mixture remain in the same ratio to each other and speci�-
cally to the fundamental mode as the beam propagates. This means that however the diam-
eter 2W of a mixed-mode beam is de�ned (several alternatives are discussed in Section 1.6), 
if this diameter is M times larger than the fundamental-mode diameter at one propagation 
distance, it will remain so at any distance: 

This equation introduces the convention that upper case letters are used for the attributes 
of high-order and mixed modes and lower case letters used for the underlying fundamen-
tal mode. 
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1.4.3 Properties of the Fundamental Mode Related to the Beam Diameter 

The attributes of the simplest beam, a fundamental mode with a round spot (a cylindrically 
symmetric or stigmatic beam) are reviewed in Figures 1.3 and 1.4. The beam pro�le varies as the 
transverse irradiance distribution and is given by the function of gaussian form1,2 (Figure 1.3a): 

The symbol I denotes a detector signal proportional to irradiance (and by using I instead 
of E, the recommended symbol for irradiance, avoids confusion with the electric �eld 
of the beam). The peak irradiance is I0, and the radial scale parameter w introduced in 
Equation 1.1 can now be identi�ed as the distance transverse to the beam axis at which the 
irradiance value falls to 1/e2 (13.5%) of the peak irradiance. This 1/e2 diameter de�nition, 
introduced1, 2 in the early 1960s, has been universally used since with one exception. (The 
one exception is in the �eld of biology where the fundamental-mode diameter is de�ned 
as the radial distance to drop to 1/e (36.8%) of the central peak value, making beams in 
biological references a diameter 2w′ = √2w instead of 2w.) Many different beam diameter 
de�nitions have been used subsequently for higher-order modes (these are discussed in 
Section 1.6) but they all share one common property: when applied to the fundamental-
mode, they reduce to the traditional 1/e2 diameter. 

Tables of the gaussian function are usually listed under the heading of the normal dis-
tribution, normal curve of error, or Gauss distribution and are of the form (see p. 763 of 
Reference 23) 

2 ⎞⎡ 1 ⎤ ⎛ −x
I ( )x = ⎢ 1/2 ⎥exp⎜ 2 ⎟  (1.5) 

⎣s(2p) ⎦ ⎝ 2s ⎠ 

FIGURE 1.3 
Properties of the fundamental mode related to the beam diameter, explained in the text; (a) de�nition of the 1/e2 

diameter as the distance between the 13.5% levels on the pinhole pro�le; (b) relation between the peak irradi-
ance and average irradiance; (c) transmission fraction through a circular aperture. 
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FIGURE 1.4 
Propagation properties of the pure gaussian, fundamental-mode beam. The wavefront curvatures are exagger-
ated to show their variation with propagation distance. 

where � is the standard deviation of the gaussian distribution. Comparing Equation 1.4 
and Equation 1.5 shows that the 1/e2 diameter is related to the standard deviation � of the 
irradiance pro�le, as de�ned in Equation 1.5, as 

2w � 4V . (1.6) 

For a beam of total power P, the value of the peak irradiance I0 is found5 by integrating 
Equation 1.4 over the transverse plane (yielding I0 times an area of �w2/2) and equating 
this to P. The result 

2P 
(1.7) I0 � Sw2 

is easily remembered by noting that “the average irradiance is half the peak irradiance.” 
This is a handy, often-used simpli�cation allowing the actual beam pro�le to be replaced 
by a round �at-topped pro�le of diameter 2w for back-of-the-envelope conceptualizations 
(see Figure 1.3b). 

If the gaussian beam is centered on a circular aperture of diameter 2a the transmitted 
fraction T(a/w) of the total beam power is given by a similar integration5 over the cross-
sectional area as (see Figure 1.3c): 

a ⎡ a 
2 ⎤⎛ ⎞  ⎛ ⎞

T ⎜ ⎟ = 1 − exp ⎢−2⎜ ⎟ ⎥ . (1.8) 
⎝ w⎠ ⎝ w⎠⎣ ⎦ 

This gives a transmission fraction of 86.5% for an aperture of diameter 2w, and 98.9% for 
one of diameter 3w. In practice, a minimum diameter for an optic or other aperture to pass 
the beam and leave it unaffected is 4.6w to 5w to reduce the sharp edge diffraction ripples  
overlaid on the beam pro�le to an amplitude of <1%.5 It is interesting to note that for a low 
power, visible, fundamental-mode beam, the spot appears to be a diameter of about 4w to 
the human eye viewing the spot on a card. 
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The transmission of a fundamental-mode beam past a vertical knife-edge is also read-
ily computed. The knife-edge transmission function is  T(x/w) = 0 for x′ < x, T = 1 for x′ > 
x, where x is the horizontal distance of the knife-edge from the beam axis and x′ is the  
horizontal integration variable. In Equation 1.4, the substitution r2 = x2 + y2 is made, the  
integration over y yields multiplication by a constant, and the �nal integration over x′ is   
expressed in terms of the error function as: 

⎡ ⎤ ⎛ ⎞  x ⎛ 1 ⎞  ⎛ 2 x⎞
T ⎜ ⎟ = ⎜ ⎟ ⎢1 ± erf ⎥ , + if x < 0, − if x > 0.   (1.9) 
⎝ w⎠ ⎝ 2⎠ ⎜

  ⎢ ⎠⎣ ⎝ w ⎟
⎥⎦

The error function of probability theory in Equation 1.9 is de�ned (see p. 745 of Reference 23) as  
⎛ 2 ⎞ 

erf (
t 

t) = ⎜ ⎝ S ∫
exp(−u2 )du⎟   (1.10) 

  0 ⎠ 

and is tabulated in many mathematical tables. The 1/e2 diameter of a fundamental-mode   
beam is measured with a translating knife-edge by noting the difference in translation dis-
tances of the edge (x1 − x2) that yield transmissions of 84.1% and 15.9%. By Equation 1.9 this   
separation equals  w, and the beam diameter is twice this difference.* 

1.4.4  Propagation Properties of the Fundamental-Mode Beam  

The general properties expected for the propagation of a gaussian beam can be outlined  
from simple physical principles. As predicted by solving the wave equation with dif-
fraction, a bundle of focused paraxial rays converges to a �nite minimum diameter 2w0, 
called the waist diameter. The full angular spread  � of the converging and, on the other  
side, diverging beam is proportional to the beam’s wavelength � divided by the mini-
mum diameter,10  �  ∝  �/2w0. A scale length zR for spread of the beam, is the propagation  
distance for the beam diameter to grow an amount comparable to the waist diameter, or   
z � ~ w , giving z  ∝  w 2

R 0 R 0 /�. Because the rays of the bundle propagate perpendicularly to  
the wavefronts (surfaces of constant phase), at the minimum’s location the rays are parallel  
by symmetry and the wavefront there is planar. At large distances z − z0 from the waist  
diameter location at  z0—the propagation axis is  z—the wavefronts become Huygen’s wave-
lets diverging from  z0 with wavefront radii of curvature R(z), and eventually become plane  
waves. Since the wavefronts are plane at the minimum diameter at the waist and at large  
distances on either side, but converge and diverge through the waist, there must be points   
of maximum wavefront curvature (minimum radius of curvature) to either side of z0. 

The actual beam propagation equations describing the change in beam radius  w(z) and  
radius of curvature  R(z) with  z, are derived1,2,5 as solutions to the wave equation in the com-
plex plane and show all of these features. They are (see Figure 1.4): 

(z − z0 )
2 

  (1.11) w(z) = w0 1 + 
z2

 R 

⎡ z2 
) 

R(z) = (z − z ) 1 R 
⎤   (1.12

0 ⎢ +
(z z− ) 2 ⎥

      ⎣ 0 ⎦ 
pw2 

z 0 
R      � 

l 
(1.13) 

2l 2w
q �

p
� 0   (1.14) 

 w0 zR

*  The knife-edge transmission function is illustrated later in Figure 1.8c and 1.8f of Section 1.6. 



and  

\ (z) = − tan  −1 ⎛ z ⎞ 
.   (1.15)  

⎜ ⎟
  ⎝ zR ⎠ 
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In these equations, the minimum beam diameter 2w0 (the waist diameter) is located at z0   
along the propagation axis  z. A plot of  w(z) versus  z, beam radius versus propagation dis-
tance [Equation 1.11] is termed the axial pro�le or propagation plot and is a hyperbola. The  
scale length for beam expansion,  zR, is termed the Rayleigh range [Equation 1.13] and has  
the expected dependence on � and  w0. The radius of curvature R(z) of the beam wavefront,   
as given by Equation 1.12, has the expected behavior. At large distances from the waist— 
the region termed the “far-�eld”—and where |z − z0| >> zR the radius of curvature �rst  
becomes R  → (z − z0) and then becomes plane when |R| → ∞ as |z − z0| → ∞, and also is  
plane at (z − z0) = 0. By differentiating Equation 1.12 and equating the result to zero the  
points of minimum absolute value of the radius of curvature are found to occur at  z − z0 = 
±zR and have the values Rmin = ±2zR. The full divergence angle � develops in the far-�eld,  
the beam envelope is asymptotic to two straight lines crossing the axis at the waist location  
(Figure 1.4). Finally,  �(z) is the phase shift5,24 of the laser beam relative to that of an ideal  
plane wave. It is a consequence of the beam going through a focus (the waist), the gaussian  
beam version of the Gouy phase shift.24  

By Equation 1.11, the diameter 2w(z) of the beam increases by the factor √2 (and for a round  
beam the cross-sectional area doubles) for a propagation distance ±zR away from the waist  
(Figure 1.4). This condition is often used to de�ne the Rayleigh range zR,5,25 but another  
signi�cant condition is that at these two propagation distances the wavefront radius of   
curvature goes through its extreme values (|R| = Rmin). The Rayleigh range can be de�ned   
as half the distance between these curvature extremes. The region within a Rayleigh range  
of the waist is de�ned as the “near-�eld” region. Within this region wavefronts �atten as  
the waist is approached and outside they �atten as they recede from the waist. A positive  
lens placed in a diverging beam and moved back towards the source waist will encounter  
ever-steeper wavefront curvatures so long as the lens remains out of the near-�eld. On  
the lens output side, the transformed waist moves away from the lens, moving qualita-
tively as a geometrical optics image would. When the lens enters the near-�eld region still  
approaching the source waist, ever-�atter wavefronts are encountered and then the trans-
formed waist  also approaches the lens. The laser system designer who misunderstands  
this unusual property of beams will have unpleasant surprises. Many laser systems have  
undergone emergency redesign when prototype testing revealed this counter-intuitive   
focusing behavior! In many ways, Rayleigh range is the single most important quantity in   
characterizing a beam (notice that this is a factor in all of Equations 1.11 through 1.15). It  
will be shown in the next section that measurement of a beam’s Rayleigh range is the basis  
for measuring the beam quality M2 of a mixed-mode beam. 

As the lowest order solution to the wave equation, the fundamental-mode with a gauss-
ian irradiance pro�le of a given waist diameter 2w0 is the beam of lowest divergence, at the   
limit set by diffraction,10 of any paraxial bundle with that minimum diameter. Con�ning   
a bundle to a smaller diameter proportionally increases—by diffraction—the divergence   
angle of the bundle, and the product 2w0� is an invariant for any mode. The smallest pos-
sible value, 4�/�, is achieved only by the fundamental mode. This is just the Uncertainty   
Principle for photons—laterally con�ning a photon in the bundle increases the spread of its  
transverse momentum and correspondingly the divergence angle of the bundle. This limit  
cannot be achieved by real-world lasers but sometimes it is closely approached. Helium–  
neon lasers, especially the low-cost versions with internal mirrors (no Brewster windows),  
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are wonderful sources of beams within 1% or 2% of this limit. Aside from the wavelength,   
which must be known to specify any beam, the ideal, round, (stigmatic) fundamental-mode   
beam is speci�ed by only two constants: the waist diameter 2w0 and its location z0 (or equiv-
alents such as  zR and z0). This will no longer be true when mixed modes are considered. 

As noted at the beginning of this section the propagation constants for the (x, z) and (y, z) 
planes are independent and can be different. In each plane, the rays obey equations exactly  
of the same form6 as Equations 1.11 through 1.15 with subscripts added indicating the x   
or  y plane. For beams with pure (but different) gaussian pro�les in each plane, two more  
constants are introduced for a total of four required to specify the beam. If z0x   ≠  z0y (dif-
ferent waist locations in the two principal propagation planes) the beam exhibits simple  
astigmatism; if 2w0x  ≠ 2w0y (different waist diameters) the beam has asymmetric waists.* 

1.4.5  Propagation Properties of the Mixed-Mode Beam:  
The Embedded Gaussian and the M2 Model  

In Section 1.4.2 a mixed mode was de�ned as the power-weighted superposition of sev-
eral higher-order modes originating in the same resonator, each with the same underlying   
gaussian waist radius  w0 determining the radial scale length  w(z) in their mode functions   
[Equations 1.1 and 1.2]. This underlying fundamental mode, with w0 �xed5 by the radii of   
curvature and spacing of the resonator mirrors, is called the embedded gaussian for that   
resonator regardless of whether or not the mixed mode actually contains some fundamental-  
mode power. To treat the mixed-mode case, use is made7 of the fact that its diameter is every-
where (for all z) proportional to the embedded gaussian diameter. From Equation 1.3 the  
 substitution w(z)  = W(z)/M in Equations 1.11 through 1.15 yields the mixed-mode propaga-
tion equations:  

(z − z )2 

W(z) = W0 1 + 0   (1.16a) 
  z2 

R 

⎡ z2 ⎤
R(   z) = (z − z ) 1 + R

0   (1.17 a) ⎢ ⎥(z           ⎣ −  z 2 
0 ) ⎦ 

pW 2 

Z    
  R � 0 � z

M
2 (1.18)
l 

R 

and  
2M2l 2W 

Γ =  =  0 = Mq.   (1.19)  
  pW0 zR 

The mixed mode, a sum of transverse modes with different optical frequencies, no longer  
has a simple expression for the Gouy phase shift analogous to Equation 1.15. The conven-
tion followed here is that upper case quantities refer to the mixed mode and lower case  
quantities refer to the embedded gaussian. 

Also useful are the inverse forms of Equation 1.16a and Equation 1.17a expressing the  
waist radius  W0 and waist location z0 in terms of the beam radius  W(z) and wavefront cur-
vature  R(z) at propagation distance z: 

W(z)
W0 =   (1.16b) 

1+ [pW(z  )2/M2 lR(z  )]2 
  

*  These beam asymmetries are illustrated later in Figure 1.15 of Section 1.8. 
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These forms are obt ained from Reference 1, with the substitution w   = W/M in their  
Equations 24 and 25. 

Many of the properties of the fundamental-mode beam carry over to the mixed-mode one   
(Figure 1.5). Since W0 = Mw0, substitution of this in the middle part of Equation 1.19 yields the   
last part, the mixed-mode divergence is  M times that of the embedded gaussian. Similarly,   
the beam propagation pro�le W(z) also has the form of a hyperbola (one  M times larger) with   
asymptotes crossing at the waist location. The Rayleigh ranges are the same for both mixed   
and embedded gaussian modes as substituting  W0 =  Mw0 in the middle of Equation 1.18   
shows, so the radii of curvature and the limits of the near-�eld region are the same for both.   
The mixed-mode beam diameter still expands by a factor of √2 in a propagation distance of   
zR away from the waist location z0, the starting diameter W0 is just  M times larger.  

In considering propagation in the independent (x, z) and (y, z) planes, there are now two  
new constants needed to specify the beam, M 2

x  and  M 2
y , for a total of six required con-

stants. In making up the mixed mode, the Hermite–Gaussian functions summed in the  
two planes need not be the same or have the same distribution of weights, making M 2 

x ≠ 
M 2

y  a possibility. In this case the beam is said to have divergence asymmetry since Θ ∝  M2   
by the �rst part of Equation 1.19. 

It might be asked, why are these Equations 1.16 through 1.19 termed the “M2 model”   
(and not the “M model”)? There are two reasons. The �rst is that the embedded gauss-
ian is buried in the mixed-mode pro�le, and cannot be measured independently, mak-
ing it dif�cult to directly determine  M. The mixed-mode diameter still grows by √2 in a  

FIGURE 1.5 
Propagation properties of the mixed-mode beam drawn for M2 = 2.63. The embedded gaussian is the funda-
mental-mode beam originating in the same resonator. The wavefront curvatures are exaggerated to show their  
variation with propagation distance.  
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propagation distance zR from the waist location, so  zR can be found from several diameter  
measurements �tted to a hyperbolic form. The waist diameter 2W0 can also be measured,  
thus giving directly, by Equation 1.18, 

This is how M2 is in fact measured, the practical aspects of which will be discussed in 
Section 1.7. (As an aside, notice that Equation 1.20 shows that M2 scales as the square of 
the beam diameter; this is used later in the discussion of conversions between different 
diameter de�nitions in Section 1.6.4.) 

The second reason is the more important one: M2 is an invariant of the beam, and is con-
served26 as the beam propagates through ordinary nonaberrating optical elements. Like 
the fundamental-mode beam whose waist diameter-divergence product was conserved, 
the same product for the mixed-mode beam is 

This is larger by the factor M2 than the invariant product for a fundamental mode. 
Equation 1.21 can be rearranged to read 

Here �n = 2�/�W0 is recognized as the divergence of a fundamental-mode beam with a waist 
diameter 2W0, the same as the mixed-mode beam. This is called the normalizing gaussian; 
it has an M times larger scale constant W0 = Mw0 in its exponential term than the embedded 
gaussian and it would not be generated in the resonator of the mixed-mode beam. It does 
represent the diffraction-limited minimum divergence for a ray bundle constricted to the 
diameter 2W0. Thus by Equation 1.22 the invariant factor M2 can be seen to be the “times-
diffraction-limit” number referred to in the literature.5 This also identi�es M2 as the inverse 
beam quality number, the highest quality beam being an idealized diffraction-limited one 
with M2 = 1, while all real beams are at least slightly imperfect and have M2 > 1. 

The value of the M2 model is twofold. Once the six constants of the beam are accurately 
determined (by �tting propagation plot data for each of the two independent propagation  
planes) they can be applied by the system designer to accurately predict the behavior of the 
beam throughout the optical system before it is built. The spot diameters, aperture trans-
missions, focus locations, depths of �eld, and so forth can all be found for the vast majority 
of existing commercial lasers. The second value is that there are commercial instruments 
available that ef�ciently measure and document a beam’s constants in the M2 model. This 
permits quality control inspection of the lasers at �nal test, or whenever there is a system 
problem and the laser is the suspected cause. Defective optics can introduce aberrations 
in the beam wavefronts. If inside the laser, they increase M2 by forcing larger amounts of 
high-divergence, high-order modes in the mixed-mode sum. If outside the resonator, they 
also adversely affect M2. Measurement of the beam quality during system assembly, after 
each optic is added to detect a downstream increase in M2, can aid in quality control of the 
overall optical system. 

Beams excluded from the model as described are those whose orthogonal axes rotate 
or twist about the propagation axis (called beams with general astigmatism15,16,27) such 
as might come from lasers with nonplanar ring or out-of-plane folded resonators. The 
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symmetry of the beam is determined by the symmetry of the resonator. Fortunately, few 
commercial lasers produce beams having these characteristics. An overview of the full 
range of symmetry possibilities for laser beams is discussed in Section 1.8.3. 

The fact that M2 is not unique, that is, that a given value of M2 can be arrived at by a 
variety of different higher-order modes or mode weights in the mixed mode is sometimes 
stated to be a de�ciency of the M2 model. This is also its strength. It is a simple predictive 
model that does not require measurement and analysis to determine the mode content in a 
beam. In the evolution of beam models, the original discussion1,2 pointed out that as eigen-
functions of the wave equation, the full (in�nite) set of Hermite–Gaussian or Laguerre– 
Gaussian functions (Equation 1.1) describing the electric �eld of the beam modes form 
an orthonormal set. As such they could model an arbitrary paraxial light bundle with a 
weighted sum. This is true only if the phases of the E-�elds are kept in the sum, and mea-
suring the phase of an optical wave generally is a dif�cult matter. Summing the irradiances 
(the square of the E-�elds) breaks the orthonormality condition and for years it was not 
obvious that a simple model relying only on irradiance measurements was possible. Then  
in the 1980s, methods based on Fourier transforms of irradiance and ray angular distribu-
tions of light bundles were introduced,4,6 which showed that as far as predictions of beam  
diameters in an optical system were concerned, irradiance pro�le measurements would 
(usually) suf�ce. The M2 model was born, and commercial instruments10 for its application 
soon followed. Later we realized that modes “turn on” in a characteristic sequence as dif-
fraction losses are reduced in the generating resonator. This makes a given M2 correspond 
to a unique mode mix in many common cases after all (see Section 1.6.4). 

1.5  TRANSFORMATION BY A LENS OF FUNDAMENTAL  

AND MIXED-MODE BEAMS 

Knowledge of how a beam is transformed by a lens is not only useful in general, but in 
particular, a lens is used to gain an accessible region around the waist for the measure-
ments of diameters that are analyzed to produce M2 (see Section 1.7). This transformation 
is discussed next. 

In geometrical optics a point source at a distance s1 from a thin lens produces a spheri-
cal wave whose radius of curvature is R1 at the lens (and whose curvature is 1/R1), where 
R1 = s1. In traversing the lens, this curvature is reduced by the power 1/f of the lens ( f is the 
effective focal length of the lens) to produce an exiting spherical wave of curvature 1/R2 

according to the thin lens formula: 

An image of the source point forms at the distance R2 from the lens from convergence of 
this spherical wave. Note that the conventions used in Equation 1.23 are the same as in 
Equation 1.17, namely, the beam always travels from left to right, converging wavefronts 
with center of curvature to the right have negative radii, and diverging wavefronts with 
centers to the left have positive radii. [The usual convention in geometrical optics28 is that 
converging wavefronts leaving the lens are assigned positive radii, which would put a 
minus sign on the term 1/R2 of Equation 1.23.] 
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The quantities used in the beam-lens transform are de�ned in Figure 1.6. Following  
Kogelnik1 the beam parameters on the input side of the lens are designated with a subscript 
1 (for “1-space”) and on the output side with a subscript 2 (for “2-space”). The principal plane 
description28 of a real (thick) lens is used, in which the thick lens is replaced by a thin one 
acting at the lens principal planes H1, H2. Rays between H1 and H2 are drawn parallel to the 
axis by convention, and waist locations z01 and z02 are measured from H1 and H2 respectively 
(with distances to the right as positive for z02 and distances to the left as positive for z01). 

A lens inserted in a beam makes the same change in wavefront curvature as it did in 
geometrical optics [Equation 1.23], but the wavefront R2 converges to a waist of �nite diam-
eter 2W02 at a distance z02 given by Equation 1.17b. For each of the two independent propa-
gation planes, there are three constants required to specify the transformed beam, and 
three constraints needed to determine them. The lens should be aberration-free (typically, 
used at f/20 or smaller aperture) and, if so, the beam quality is not changed in passing 
through it, giving the �rst condition M2

2 � M1
2 . The second constraint is that the wavefront 

curvatures match, between the input curvature modi�ed by the lens [Equation 1.23], and 
the transformed beam at the same location as speci�ed by the transformed beam constants 
through Equation 1.17a. A beam actually has two points with the same magnitude and 
sign of the curvature, one inside the near-�eld region of that sign and one outside, which 
differ in beam diameters. The ambiguity as to which point is matched is removed by the 
third constraint, that the beam diameter is unchanged in traversing the (thin) lens. 

These three constraints de�ne three equations that next are solved for the transformed 
waist diameter and location. This is facilitated by Equations 1.16b and 1.17b for W0 and z0 as 
functions of W(z) and R(z). The solution1,29–31 is written in terms of the transformation constant 
Γ (using the modern symbols from a commercial M2 measuring instrument9) as follows: 

A set of these equations apply to each of the two principal propagation planes (x, z) 
and (y, z). 

“1 - space” “2 - space” 

2W02 

2W01 

zR2zR2 
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FIGURE 1.6 
De�nitions of quantities used in the beam-lens transform. 
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FIGURE 1.7 
Parametric plots of the transformed waist location as a function of the input waist location for the beam-lens 
transform, with f as the lens focal length and the Rayleigh range zR1 of the input beam as parameters. 

The transform equations [Equations 1.24 through 1.28] are not as simple as in geometri-
cal optics because of the complexity of the way the beam wavefront curvatures change 
with propagation distance, Equation 1.17a. Like the image and object distances in geomet-
rical optics, the transformed beam waist location depends on the input waist location— 
but also depends, as does the wavefront curvature, on the Rayleigh range of the input 
beam. The most peculiar behavior as the waist-to-lens distance varies is when the input 
focal plane of the lens moves within the near-�eld of the incident beam, |z01 − f| < zR1. 
Then the slope of the z02 versus z01 curve turns from negative to positive (in geometrical 
optics the slope of the object to image distance curve is always negative). This sign change 
can be demonstrated by substituting Equation 1.24 into Equation 1.28 and differentiating 
the result with respect to z01. As the lens continues to move closer to the input waist, the 
transformed waist location also moves closer to the lens, exactly opposite to what hap-
pens in geometrical optics. In the beam-lens transform, the input and transformed waists 
are not images of each other (in the geometrical optics sense). Despite the intransigence 
of beam waists, the object–image relationship of beam diameters at conjugate planes on 
each side of the lens does apply just as in geometrical optics. A good modern discus-
sion of the beam-lens transform is presented in O’Shea’s textbook32 (where his parameter  
�2 = Γ here). 

A pictorial description of the beam-lens transform is given by a �gure in Reference 30, 
redrawn here as Figure 1.7. Variables normalized to the lens focal length f are used to show 
how the transformed waist location z02/f varies with the input waist location z01/f. The 
input Rayleigh range zR1/f (also normalized) is used as a parameter and several curves are 
plotted for different values. The anomalous slope regions of the plot are evident. The geo-
metrical optics thin lens result, Equation 1.23, is recovered when the input Rayleigh range  
becomes negligible, zR1/f = 0 (the condition for a point source), and the slopes of both wings 
of the curve are then always negative. 

1.5.1 Application of the Beam-Lens Transform to the Measurement of Divergence 

An initial application of the beam-lens transform equations is to show that the diver-
gence of the input beam Θl in 1-space of Figure 1.6 can be determined by measuring the 
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beam  diameter 2Wf at precisely one focal length behind the lens exit plane H2 in 2-space  
from the equation: 

2Wf
Γ1 = .   (1.29)  

f   

This result is independent of where the lens is placed in the input beam. This follows  
by �nding in 2-space the diameter 2Wf at  z2 = f [from Equation 1.16a] and substituting  
Equations 1.19, 1.24, and 1.28: 

⎡ ( 
1/2 

f − z02 )
2 ⎤ ⎛ f ⎞ ⎛ 1 ⎞ 2Wf = 2W02 ⎢1+ 2 ⎥ = 2W02 ⎜ ⎟ ⎜ ⎟⎝ 1/2 ⎠⎣ zR2 ⎠ ⎦ ⎝ zR2 ≅ 

⎛ f ⎞ ⎛ 1 ⎞ ⎛ f ⎞ 
= 22W01 ⎜ ⎟ = 2W 01 = Γ1 f⎜ ⎟  ⎜  ⎝ zR2 ⎠ ⎝ ≅⎠

⎟⎝ zR1  ⎠   

which  is  Equation  1.29.  In  Figure  3b  of  Reference  25  there  is  an  illustration  showing   
how the transform equations operate to keep the output beam diameter one focal length   
from the lens �xed at the value  Θ1 f despite variations in the input waist location,  z01. The  
measurement method implied by Equation 1.29 is the simplest way to get a good value   
for the beam divergence Θ1. Care should be taken to pick a long enough focal length lens   
that the beam diameter is large enough for the precision of the diameter-measurement   
method in use.  

1.5.2 Applications of the Beam-Lens Transform: The Limit of Tight Focusing 

When the aperture of a short focal length lens is �lled on the input side, the smallest possi-
ble diameter output waist is reached and this is called the limit of tight focusing. This limit  
is characterized by (1) the beam diameter at the lens being given by 2Wlens = Θ2f; (2) the out-
put waist being near the focal plane z02 = f; and (3) there being a short depth of �eld at the  
focus,  zR2/f  ≪ 1. Applying Equation 1.29 in the reverse direction gives the 2-space diver-
gence as the ratio of the beam diameter 2W1f at  f to the left of the lens, to the focal length,  
Θ2 f = 2W1f. By condition (1) this means 2W1f = 2Wlens or that there is little change in the input  
beam diameter over a propagation distance f. That makes the �rst condition characterizing  
the tight focusing case equivalent to zR1/f  ≫ 1. Then from Equation 1.19, 

2 lM2 f
2Wlens � 

pW  02 

or  

2 ⎛ f ⎞ 
2W02 = 2lM = 2lM2 ( f/#) ⎜ ⎟   (1.30)

⎝  pWlens ⎠ 

for the tight focusing limit. Here Siegman’s de�nition5 is used that a lens of diameter Dlens   
is �lled for a fundamental-mode beam of diameter �Wlens (this degree of aperture �lling  
produces <1% clipping of the beam). Thus f/�Wlens = f/Dlens = ( f/#). The depth of �eld of the 
focus is  zR2 = �W 2

02 /M2� = �M2�(f/#)2. This generalizes a familiar result5 for a fundamen-
tal-mode beam to the  M2  ≠ 1 case. 



   

1 
≅ =  .21 (1.31) 
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Marshall’s point3 (from 1971) is made by Equation 1.30, that a higher-order mode beam 
focuses to a larger spot by a factor of M2, with less depth of �eld, and therefore cuts and 
welds less well than a fundamental-mode beam. 

1.5.3 The Inverse Transform Constant 

The transform equations work equally well going from 2-space to 1-space, with one trans-
formation constant the inverse of the other, 

This obviously is true by symmetry but the algebraic proof is left to the reader. 

1.6 BEAM DIAMETER DEFINITIONS FOR 

FUNDAMENTAL AND MIXED-MODE BEAMS 

It has been said that the problem of measuring the cross-sectional diameter of a laser beam 
is like trying to measure the diameter of a cotton ball with a pair of calipers. The dif�culty 
is not in the precision of the measuring instrument, but in deciding what is an acceptable 
de�nition of the edges. 

Unlike the fundamental-mode beam where the 1/e2 diameter de�nition is universally 
understood and applied, for mixed modes a number of different diameter de�nitions7 

have been employed. The different de�nitions have in common that they all reduce to the  
1/e2 diameter when applied to an M2 = 1 fundamental-mode beam, but when applied to 
a mixed mode with higher-order-mode content they in general give different numerical 
values. As M2 always depends on a product of two measured diameters, its numerical 
value changes also as the square of that for diameters. It is all the same beam, but different 
methods provide results in different currencies; one has to specify what currency is in use 
and know the exchange rate. 

Since the adoption11 by the ISO committee on beam widths of the second-moment diam-
eter as the standard de�nition for beam diameters, there has been increasing effort among 
laser users to put this into practice. This de�nition, discussed in Section 1.6.3.5, has the 
best analytical and theoretical support but is dif�cult experimentally to measure repro-
ducibly because of sensitivity to small amounts of noise in the data. The older methods 
therefore persist and the best strategy25 at present is to use the more forgiving methods for 
the multiple diameter measurements needed to determine M2. Then at one propagation 
distance, do a careful diameter measurement by the second-moment de�nition to provide  
a conversion factor. This conversion factor can then be applied to obtain standardized 
diameters at any distance z in the beam. This strategy will likely evolve in the future if and 
when instrument makers respond to the ISO Committee’s choice and devise algorithms 
and direct methods for ready and accurate computations of second-moment diameters. 

1.6.1 Determining Beam Diameters from Irradiance Profiles 

Beam diameters are determined from irradiance pro�les, the record of the power trans-
mitted through a mask as a function of the mask’s translation coordinate transverse to 
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the beam. A suf�ciently large linear power detector is inserted in the beam, with a uni-
formly sensitive area to capture the total power of the beam. Detection sensitivity should 
be adequate to measure ~1% of the total power, and response speed should allow faithful 
reproduction of the time-varying transmitted power. The mask is mounted on a transla-
tion stage, placed in front of the detector, and moved or scanned perpendicularly to the 
beam axis to record a pro�le. An instrument that performs these functions is called a 
beam pro�ler. In a useful version based on a charge-coupled-device (CCD) camera, the 
masking is done on electronic pixel data under software control. 

The beam propagation direction de�nes the z-axis. The scan direction is usually along 
one of the principal diameters of the beam spot and commercial pro�lers are mounted to 
provide rotation about the beam axis to facilitate alignment of the scan in these directions. 
The principal diameters for an elliptical spot are the major and minor axes of the ellipse 
(or the rectangular axes for a Hermite–Gaussian mode). The principal propagation planes  
(x, z) and (y, z) are de�ned as those containing the principal spot diameters. The beam 
orientation is arbitrary and in general may require rotation of coordinates to tie it to the 
laboratory reference frame. It is assumed this rotation is known, and without loss of gen-
erality to give simple descriptive terminology in this discussion, here the z-axis is taken 
to be horizontal, the principal propagation planes as the horizontal and vertical planes 
in the laboratory, with the scan along the x-axis. If the mask requires centering in the 
beam (e.g., a pinhole) to �nd the principal diameter, it is mounted on a y-axis stage as well 
and x-scans at different y-heights taken to determine the widest one at the beam center. 
Alternatively, a mirror directs the beam onto the pro�ler and the spot is put at different 
heights to �nd the beam center by tipping the mirror about a horizontal rotation axis. If 
the beam is repetitively pulsed and detected with an energy meter, the stage is moved in 
increments between pulses. If a CCD camera is the detector, a scan line is the readout of 
sequential pixels and no external mask is required in front of the camera. A CCD camera 
generally requires a variable attenuator33 inserted before the camera to set the peak irra-
diance level just below the saturation level of the camera for optimum resolution of the 
irradiance value on the ordinate axis of the pro�le. 

The results of this process are irradiance pro�les such as shown in Figure 1.8 for two 
pure modes, the fundamental mode in the �rst row and the donut mode in the second, 
where three scans are calculated for each, one for a pinhole (�rst column), a slit (second col-
umn), and a knife-edge (third column) as masks. The traditional de�nitions used to extract 
diameters from these pro�les are the same for the pinhole and slit. This is to normalize the 
scan to the highest peak as 100%, then to come down on the scan to an ordinate level at 1/e2 

(13.5%) and measure the diameter—or clip width—as the scan width between these cross-
ing points (called clip levels or clip points and shown as dots in Figure 1.8). The symbols 
Dpin and Dslit are used for these two diameters. For the knife-edge diameter (symbol Dke) 
the de�nition is to take the scan width between the 15.9% and 84.1% clip points and double 
it, as this rule produces the 1/e2 diameter when applied to the fundamental mode. 

As shown in Figure 1.8 the diameter results for the donut mode (TEM*01) are all larger 
than the 2w diameter of the fundamental mode, as expected. However, the answers for the 
three different methods for the donut mode—and in general, for all higher-order modes— 
are all different! The ratio of the donut mode to fundamental-mode diameter is 1.51, 1.42, 
and 1.53 by the pinhole, slit, and knife-edge methods, respectively. The reason, obviously, is 
that traces of different shapes are produced by the different methods. The pinhole cuts the 
donut right across the hole and records a null at the center; the slit extends vertically across 
the whole spot and records a transmission dip in crossing the hole but never reaches zero 
due to the contribution of the light above and below the hole. Even higher transmission 
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FIGURE 1.8 
Theoretical beam pro�les (irradiance vs. translation distance) from a scanning pinhole (a) and (d), slit (b) and 
(e), and knife-edge (c) and (f) cutting the fundamental and donut modes, illustrating that different methods give 
different diameters for higher-order mode beams. The knife-edge diameter is de�ned as twice the translation 
distance between the 15.9% and 84.1% cut points. 

results with the knife-edge and here the donut pro�le differs from the fundamental one 
only in being less steeply sloped (the spot is wider) and having slight in�ections of the 
slope around the hole at the 50% clip point, the beam center. 

There are two other two common de�nitions. The �rst is the diameter of a circular 
aperture giving 86.5% transmission when centered on the beam. It is variously called the 
variable-aperture diameter, the encircled power diameter, or the “power-in-the-bucket” 
method, and designated by the symbol D86. The last is the second-moment diameter, 
de�ned as four times the standard deviation of the radial irradiance distribution recorded 
by a pinhole scan, and designated by the symbol D4�. For the ratio of donut mode to fun-
damental-mode diameters, these de�nitions give 1.32 and 1.41 respectively, also different 
from the three other values above. 

After the discussion of some common considerations (Section 1.6.2), these �ve diameter 
de�nitions are evaluated in Section 1.6.3 leading to the summary given in Table 1.1. 

1.6.2 General Considerations in Obtaining Useable Beam Profiles 

Five questions are important in evaluating what beam diameter method is best for a given 
application: 

1. How important is it to resolve the full range of irradiance variations? Only a pinhole scan 
(or its near equivalent, a CCD camera snapshot read out pixel by pixel) shows 
the  full range, but this is not of signi�cance in some applications, for example, 
where the total dose of light delivered is integrated in an absorber. 

2. How important is it to use a method that is insensitive to the alignment of the beam 
into the pro�ler? If the test technician cannot be relied on to carefully center the 
beam on the pro�ler, the slit or knife-edge methods still give reliable results, 
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but not the other methods. With a CCD camera there is a trade-off between   
alignment sensitivity and accuracy. For best accuracy, a magnifying lens—of   
known magni�cation—can be placed in front of the camera to �ll the max-
imum   number of pixels, but then the camera becomes somewhat alignment   
sensitive.  

  3.  With what accuracy and repeatability is the diameter determined? The amount of light  
transmitted by the mask determines the signal-to-noise ratio of the pro�le and   
ultimately answers the question. The methods based on a pinhole scan (Dpin, D4�, 
and CCD cameras) suffer from low light levels in this regard. On the other hand, a  
laser beam is generated in a resonator subject to microphonic perturbations, mak-
ing the beam jitter in position and the pro�le distort typically by about 1% of the  
beam diameter, so that a greater instrument measurement accuracy is usually not  
signi�cant.  

  4.  Is the convolution error associated with the method signi�cant? The convolution error  
is the contribution to t he measured diameter due to t he � nite dimensions of   
the s can aperture, either the diameter H of a pinhole or width   S of a slit. A   
10-micron focused spot cannot be accurately measured with a pinhole of 50-mi-
cron diameter. The distortion of a pinhole pro�le of a fundamental mode is shown  
in Figure 1.9a as a function of the ratio of hole diameter to the mode width  H/2w. 
The peak amplitude drops and a slight broadening occurs as H/2w increases. The  
central 100% peak amplitude point is “washed out” or averaged to a lower value  
in the pro�le by the sampling of lower amplitude regions nearby as the �nite   
diameter pinhole scans across the center as Figure 1.9b indicates. The reduction  
in peak amplitude of the convoluted pro�le is like lowering the clip level below   
13.5% on the original pro�le: the measured diameter becomes larger. Very simi-
lar pro�le distortions occur with a slit scan as a function of  S/2w; here  S is the silt   
width. The ratio of the measured width including this convolution error to the  
correct width is plotted in Figure 1.9c for the pinhole (H) and slit (S). This gives  
the rule of thumb for pinhole scans: to keep the error in the measured diameter to  
1% or less, keep the pinhole diameter H to one-sixth or less of 2w, that is, H < w/3.  
The corresponding rule34 for slits is the measured diameter is in error by <1% if   
the width  S is 1/8 or less of 2w. For modes like TEM10 of Figure 1.2d with a fea-
ture (the central peak) narrower than that of the fundamental mode, the aperture   
widths  H or  S should be no bigger than these same fractions of the narrow fea-
ture’s width. (Note, McCally34 uses the biologist’s de�nition of 1/e clip points for   
the fundamental-mode diameter, a factor 1/√2 smaller than our 1/e2 diameter; his  
results require conversion.)  

Distortion of the pro�le can be a more subtle effect and can give misleading results. When  
measuring a predominantly TEM*01 focused beam through the waist region, for exam-
ple, a pinhole pro�ler will at �rst show the expected trace, with a dip in the middle like  
Figure 1.8d or e. This will change to one with a central peak as in Figure 1.8a at the propa-
gation distance along the beam where the pinhole is no longer small compared to the beam   
diameter. The donut hole can fall through the pinhole! 

Convolution errors are a concern normally only when working with focused beams, as   
when measuring divergence by the method of Section 1.5.1. Generally, however, it is desirable   
to go to the far-�eld, reached by working in 2-space at the focal plane behind an inserted lens,   
to obtain a true (undistorted) pro�le. The beam coming out of the laser often has “diffractive   
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FIGURE 1.9 
Convolution of the theoretical fundamental-mode pro�le in a scan with a pinhole or slit of �nite dimensions (H, 
diameter of the pinhole; S, width of the slit; 2w, the 1/e2 diameter of the mode). (a) Distortion of the shape and 
width of the pinhole pro�le as H/2w increases. (b) Plan view of the pinhole scan showing “washout” of the 100% 
amplitude point. For the pinhole shown, H/2w = 0.24, corresponding to the third curve down from the top in 
(a). (c) Convolution error, or ratio of the measured diameter 2wmeas to the true diameter 2w, as a function of H/2w 
for the pinhole and S/2w for the slit. 

overlay,” low-amplitude high-divergence light diffracted from the mode-limiting internal 
aperture, overlaid on the main beam. The resulting interference can signi�cantly distort the 
pro�le, even at <1% amplitude of the diffracted light. It is the E-�elds that interfere; for an 
irradiance I = E2 overlaid by a 0.01 E2 distorting component, the E-�elds add and subtract 
as E ± 0.1 E at the interference peaks and valleys. The resulting fringe contrast ratio, Ipeak/ 
Ivalley = [(1.1)/(0.9)]2 = 1.49 is a signi�cant distortion to the pro�le even though the power in the 
diffractive overlay is insigni�cant. Moving the pro�ler some distance away from the output 
end of the laser spreads the diffractive overlay rapidly compared to the beam expansion, but 
often several meters additional distance is required. This leaves the use of a lens to reach the 
far-�eld as the answer, and convolution distortion then must be dealt with. 

Aligning a small-diameter (e.g., 10 micron) pinhole to a small (e.g., 100 micron)-focused 
spot is another problem. The search time to achieve overlap and some transmitted signal 
for peaking alignment can be very long if done manually, so having a fast update rate— 
10  scans a second is good—provided by commercial instruments can be a major aide. 
Some instruments9 have electronic alignment systems to facilitate �nding the overlap of 
small pinhole and small beam. 

Knife-edges have no convolution error to the extent that they are straight (razor blades 
are straight8 to <2 microns deviation over 1000 microns length). The circular aperture of 
the encircled power method is usually a precision drilled hole and has no convolution 
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error so long as it is accurately round and made in a material much thinner than the hole 
diameter (to avoid occultation error). 

5. Are the diameter measurements along the propagation path free of discontinuities and 
abrupt changes? Consider making many diameter measurements along the propa-
gation axis, and �tting the data to a hyperbola to �nd the beam’s Rayleigh range 
and beam quality. Discontinuities in the data will make a poor �t and �nal result. 
Such discontinuities can arise35 with the 1/e2 clip-level diameter de�nitions with 
mixed modes with low peaks on the edges, as in Figure 1.2g, only lower. As the 
mode mixture changes to bring the outer peaks near the clip level, the measured 
diameter can jump from the separation of the outer peaks of the pro�le to the width 
of the central peak as amplitude noise perturbs the pro�le. Similarly, for a mixed 
mode with rectangular symmetry, as azimuth is continuously changed from the 
major principal plane direction towards the minor one, the relative amplitude of 
the outermost peaks of the pro�le can drop.35 The clip point then can jump discon-
tinuously with perturbing noise when the height is near the clip level. Only Dpin 

and Dslit are subject to this dif�culty. 

This last question can be rephrased to ask, is the diameter de�nition readable by a machine? 
A human observer will notice an outer peak of height near the clip level causing the pro-
�ler readout to �uctuate, and correct the situation by adjusting the mode mixture, the 
azimuth, or the clip level. A machine will take the bad data in, and produce unreliable 
results. When a lot of diameter data needs to be gathered, as in measuring a propagation 
plot to determine M2, automated machine data acquisition is desirable. In this regard, the 
knife-edge diameter is best, as it always produces an unambiguous monotonic trace for all 
higher-order and mixed modes. 

1.6.2.1 How Commercial Scanning Aperture Profilers Work  

Commercial pro�lers8 typically use the 1/e2 diameter de�nition with pinhole and slit 
masks, and occasionally will report an incorrect diameter due to the “not entirely machine 
readable” defect of these de�nitions. These pro�lers use a rotating drum to carry a slit 
or pinhole mask smoothly and rapidly (typically at a 10 Hz repetition rate) in front of a 
large area detector inserted into the drum. On the �rst pass through the laser spot, the 
electronics remembers the 100% signal level, and on the second pass when the 13.5% clip 
level is crossed as the signal rises, a counter is started. This counts the angular increments 
of drum motion from an angular encoder, which when multiplied by the known drum 
radius, provides the mask translation in spatial increments of 0.2 microns. (In newer, high 
precision designs discussed in the next paragraph this increment has been reduced to 0.01 
microns.) When the clip level is passed as the signal falls, the counter is stopped and the 
value of the beam diameter—total counts times spatial increment—is reported. Actually, 
what is reported on the digital readout is an average selected by the user of the last two to 
20 measurements, to slow the report rate down to what can be read visually. If a pure donut 
mode is scanned with the pinhole version of this instrument [the pro�le of Figure 1.8d], the 
counter starts at the clip-level dot on the left (x/w = −1.51) but stops as the falling clip level  
is met at the left edge of the donut hole (x/w = −0.16). The scan continues and the counter 
turns on again as the clip level is passed with the rising signal at the right edge of the donut 
hole (x/w = +0.16), because the drum has not completed a revolution to reset the counter 
for a new measurement. Finally, the counter turns off again at the rightmost  clip-level dot  



  
 

 

 
 

  
 

 
 
 
 

 
 
 

 
 
  

  

  
  
  
  
  

  

 

 
 

 
 

  
   

 
 
 
 

27 Characterization of Laser Beams: The M2 Model  

(x/w = +1.51), and the diameter reported is the actual diameter minus the width of the hole 
at the clip-level height, an error of about −11%. This possible error usually goes unnoticed 
because the dips in mixed-mode pro�les do not often go as low as 13.5%. 

In recent years scanning aperture pro�lers have been mechanically upgraded to pro-
vide more precision (0.01 micron spatial resolution) and interfaced with PC controllers 
to provide more features in addition to beam diameter: full 12-bit digitized pro�les and 
the D4� diameters calculated from them (not just clip widths and analog traces), pro�le 
peak position, centroid position, spot ellipticity (with slit or knife-edge pro�lers carrying 
two orthogonal apertures), and even absolute power (when so calibrated). With micron-
sized apertures and submicron sampling, beam diameters of 5 microns can be measured 
to 2% accuracy. As before, different detector types (silicon, germanium, or pyroelectric) 
cover wavelengths from UV to Far IR. Beams pulsed at repetition frequencies down to 
1 kHz can be measured with pro�lers having user-controlled variable scan speed (drum 
speeds are slowed to intercept enough pulses to build up the pro�le). In addition they can  
measure beams without attenuation, as compared to camera-based systems that typically 
require six to nine orders of magnitude attenuation. Infrared beams at power levels of 
3 kW focused to diameters of 175 µm have been directly measured with cooled pro�lers 
�tted with copper apertures. 

Commercial pro�lers, because of their speed and accuracy, are a major improvement for 
frequent beam diameter measurements over the traditional practice of a manually driven 
translation stage carrying a razor blade (or slit) across the beam. Focused beams in par-
ticular need high instrument accuracy to resolve the small spot and provide the real time 
update rate to acquire a signal by overlapping the aperture with the beam. With a signal lin-
earity range of 104 and a spatial resolution (if convolution error is neglected) of 0.01 microns 
over a 9-mm scan range (106 spatial resolution elements) one of these small, new pro�lers 
brings an impressive potential of 1010 information bits to the problem of measuring a beam 
diameter. Compare this to a modern CCD camera of 9-mm sensor width, 5-micron pixel 
spacing (2 × 103 spatial resolution elements), and 12-bit (4 × 103) linearity range, for a total of 
107 information bits. It is understandable why in measuring beam quality M2, pro�ler-based 
instruments surpass camera-based ones in speed and accuracy. The camera, of course, has  
its own advantages of giving a two-dimensional map of all the irradiance peaks in the laser 
spot and its ability to measure beams from low repetition rate pulsed lasers. 

1.6.3 Comparing the Five Common Methods for Defining 
and Measuring Beam Diameters 

The discussion that follows and Table 1.1 summarize the properties of the �ve diameter 
de�nitions. 

1.6.3.1 Dpin, Separation of 1/e2 Clip Points of a Pinhole Profile 

The pinhole scan reveals the structure of the irradiance variations across the beam spot 
with the greatest accuracy and detail, but does so working with a low light signal level 
and it is subject to convolution error with focused spots. To minimize convolution error, 
several pinholes of diameters H (10-micron and 50-micron pinholes are common) are used 
to keep H < w/3 where w here is the fundamental-mode radius or smallest feature size for  
a higher-order mode beam. The pinhole method requires accurate centering of the beam 
on the scan line of the pinhole and this makes it less adaptable to a machine measurement. 
This diameter de�nition also can give ambiguous results if the pro�le contains secondary 
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peaks of a height close to the clip level. The pinhole pro�le provides the basic data from 
which the second-moment diameter is calculated. Be sure the rule for the pro�le to be free 
of convolution error is met �rst! 

1.6.3.2 Dslit, Separation of 1/e2 Clip Points of a Slit Profile 

The slit scan does not require centering of the beam spot and works at a medium light 
signal level, but does not reveal as much detail of the irradiance variations [compare 
Figure 1.8d and e]. This method is subject to convolution error with focused spots; the 
slit width S should satisfy S/2w < 1/8 with 2w as the smallest feature size of the pro�le. It 
too can give ambiguous results on pro�les with secondary peaks near the clip level. This 
diameter de�nition produces a direct result (that is, without applying the conversion rules 
explained in Section 1.6.4.3) closest to the ISO standard second-moment diameter of the 
three other methods. 

1.6.3.3 Dke, Twice the Separation of the 15.9%  
and 84.1% Clip Points of a Knife-Edge Scan 

The knife-edge does not require centering of the beam spot and works at a high light signal 
level, but reveals almost no detail of the irradiance variations [compare Figure 1.8d and f], 
only the slight in�ection points in the slope of the knife-edge pro�le show that there are any  
irradiance peaks at all. All modes give a simple slanted S-shaped pro�le. There generally is no 
convolution error with this method, and there are no diameter ambiguities when secondary 
peaks are present. Experimentally, it is the most robust diameter measurement and is least 
affected by beam-pointing jitter and power �uctuations, making this method fully machine 
readable. This diameter is the basic one measured in the most common commercial instru-
ment9 designed to automatically measure propagation plots and all six beam parameters. 

1.6.3.4 D86, Diameter of a Centered Circular Aperture   
Passing 86.5% of the Total Beam Power   

Unlike the other diameter measurements, the variable-aperture diameter passes light in 
both the x- and y-transverse planes simultaneously and cannot be used to separately mea-
sure the two principal diameters; it works best with round beams. It must also be centered 
in the beam for accurate results. While an iris or variable aperture can be used, more fre-
quently sets of precision �xed apertures are used instead. A metal plate drill gauge, with 
some of the plate milled away on the back side of the gauge to reduce its thickness to less 
than the smallest aperture size to eliminate occultation error, is a convenient tool. The 
two diameters bracketing the 86.5% transmission point are �rst found, and the �nal result 
computed by interpolation. Alternatively, if there is a long propagation length available, 
an aperture with a transmission near 86.5% may be moved along the beam to locate the 
distance where that diameter produces precisely this transmission. This diameter de�ni-
tion is used mainly for two reasons. For high power lasers—for instance CO2 lasers in the  
kilowatt range—little diagnostic analytical instrumentation is available that can absorb 
this power. A water-cooled copper aperture, however, can still be safely inserted in front of 
a power meter to give some quanti�cation of the beam diameter. The second reason is that 
this diameter is readily computed from the output of a CCD camera and is available on 
camera instrumentation, with the computation locating the beam centroid, making physi-
cal centering of the camera unnecessary. 
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1.6.3.5 D4� , Four Times the Standard Deviation of the Pinhole Irradiance Profile 

This diameter is computed from a pinhole irradiance pro�le, which for accuracy should   
be free of convolution error and diffractive overlay. For a beam with a rectangular cross-
sectional symmetry described by a weighted sum of Hermite–Gaussian modes the calcu-
lation proceeds by �nding the rectangular moments of the pro�le treated as a distribution  
function. The zeroth moment gives the total power P of the beam, the �rst moment the  
centroid, and the second moment leads to the variance �2 of the distribution: 

∞ ∞ 

Zeroth moment or total power P = ∫ ∫ I(x, y)dxdy   
–  

(1.3
  –∞ 

2) 
∞

⎛ 1 ⎞ ∞ ∞ 

First moment or centroid x = ⎜ ⎟ ∫ ∫ xI(x, y)dxdy   (1.33) 
⎝ P⎠          

−∞ −∞ 

⎛ 1 ⎞ ∞ ∞

Second moment x2 = ⎜ ⎟⎝ P⎠ ∫ ∫−∞ −∞  x
2
I(x, y)dxdy  (1.34)  

             

Variance of the distribution V 2 = x 2
2

x − x (1.35)     

Linear second-moment diameter  D � V 4Vx 4 x   (1.36) 

This last equation comes from the requirement that the second-moment diameter reduce   
to the 1/e2 diameter when applied to a fundamental-mode beam, as explained in arriving  
at Equation 1.6. A precisely similar set of equations holds for the moments in the verti-
cal plane (y, z) to de�ne a vertical principal plane centroid and diameter [Equations 1.33  
through 1.36 with  x and y interchanged]:  

Linear second moment diameter D
  4Vy � 4Vy.   (1.37) 

A similar set of moment equations de�nes a radial second-moment diameter, applicable  
to beams with cylindrical symmetry described by a weighted sum of Laguerre–Gaussian  
functions. Here the pinhole  x-scan pro�le is split in half at the centroid point 〈x〉, and the  
half pro�le is taken as the radial variation of the cylindrically symmetric beam. In the  
transverse radial coordinate plane (r, �), the origin is the center of the beam spot de�ned by  
the centroid (〈x〉, 〈y〉) given by the rectangular �rst moments, Equation 1.33. 

2p ∞ 

Zeroth − moment or total power P =  
  ∫ I(r, )rdrd   (1.38) 

0 ∫0 
q q 

⎛ 1 ⎞ 2p ∞ 

Radial second moment r2 =  r3
⎜ ⎟ ∫ ∫ I(r,q)drdq   (1.39) ⎝ P⎠              

0 
 

  0 

Variance of the distribution V 2 > 2
     r  r   (1.40) 

Radial second-moment diameter D   V 
 V 2 2 r 

� 2 2 r   (1.41) 

This last equation derives from the requirement that the linear and radial variances are  
related6 by: 

V 2 + V 2 = V 2x y r .   (1.42) 
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Then for a cylindrically symmetric mode �x = �y, yielding 2�x 
2 = �r 

2 or �x = (1/√2)�r. Since 
for a fundamental-mode beam 2w = 4�x, from the radial mode description of that beam, 
there results6 2w = 4(1/√2)�r = 2√2 �r, which is Equation 1.41. By mixing modes, combina-
tions of Hermite–Gaussian modes can be made to have the same irradiance pro�les as 
Laguerre–Gaussian modes, and vice versa. Therefore, for compactness the symbols D4� 

or M4
2 
V  will be used for either linear or radial second-moment quantities unless there is a  

need to speci�cally distinguish a quantity as a radial moment. 

1.6.3.6 Sensitivity of D4� to the Signal-to-Noise Ratio of the Profile 

The experimental dif�culties in evaluating these integrals with noise on the pro�le 
signal come from the weighting by a high power of the transverse coordinate in the 
second-moment calculation, by the square in the linear case [Equation 1.34], and by 
the cube in the radial case [Equation 1.39]. Take as an example a measurement of a 
fundamental-mode spot with a CCD camera, using 256 counts to digitize the irradiance 
values, and 128 counts used to digitize half the integration range of the transverse coor-
dinate. In the linear case, one noise count (0.4% noise) at the edge of the range—at the 
128th transverse count—is weighted by the factor 1 × (128)2 = 16,384 in the integration, 
versus 256 × 1 counts for the central peak. The contribution of this single noise count 
is 64 times that of the pixel at the central peak in the integration. In the radial case, the 
one noise count at the limiting transverse pixel makes a contribution (128)3/256 = 8192 
times that of the pixel at the central peak. A discussion of the high sensitivity of the 
second-moment diameter to noise on the wings of the pro�le is given in Reference 12. 
There the second-moment and knife-edge methods are compared for �ve simulated 
modes, and the knife-edge found to be considerably more forgiving and in agreement 
with common expectations. 

To manage this sensitivity to noise, it is essential that both some measure of the detector’s 
background illumination and noise be subtracted from the signal, and that the integration 
from the beam centroid outward be truncated at the edges of the illuminated region. Both 
means reduce the effect of noise on the wings of the pro�le. 

A distinction is made between subtraction of background, the detector’s readout with 
the beam blocked, and subtraction of the baseline, the noise �oor of the dark detector. 
Because of the high directionality of laser beams, typically the background can (and 
should) be reduced to insigni�cance by inserting an aperture near the laser (blocking 
concomitant light) and adding a light-shielding tube to the detector (blocking ambient 
light). 

There are differences of opinion as to the best method for subtracting the noise �oor 
with CCD cameras, but recommended here is what is termed “thresholding.” From either 
a dark camera frame or preferably, from the nonilluminated corners of the signal frame, 
a standard deviation is computed for this measured noise, and three times this value sub-
tracted uniformly from the signal frame before data analysis. This avoids taking the dif-
ference between one random noise frame (the background frame) from another (the noise 
on the signal frame), which often just adds noise. 

To set the integration truncation limit, the beam radius is estimated (typically by a diam-
eter-measurement method less sensitive to noise) and the integration is carried out over 
the range of from three to four (estimated) beam radii. The constancy of the computed 
second-moment diameter is observed over this range. Then integration limits are set just 
wide enough to yield a stable second-moment value. When the width setting is judged to 
be correct, the measurement should be repeated to check reproducibility. 
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Other problems with CCD cameras that can look like noise are that they are subject to 
drift, response nonlinearity and nonuniformity, “bleeding” of signal to adjacent pixels, 
and low damage threshold requiring attenuation not only to prevent signal saturation but 
to protect them as well. For these reasons, coupled with the need for analysis software to 
read them out, cameras are best purchased from dealers who have assessed these prob-
lems and will stand behind their instrument’s measurement accuracy. 

In one commercial instrument9 two additional checks are provided to assess the effect of 
noise on the radial second-moment calculation done on a pinhole single line scan. The �rst 
check compares the second-moment diameter calculated from the right half pro�le, to that 
from the left half pro�le. If the beam is indeed cylindrically symmetric and the contribution 
from noise on the pro�le is negligible, the ratio of these two results should be near unity. 
The second check is an option in the calculation called “noise-clip ON/OFF.” In the wings 
of the 256 count wide pro�le where the signal is near zero, noise counts vary the trace above 
and below the average dark level, and the lowest noise pixels acquire a negative sign when 
the linear baseline (between the means of the 20 points on either end of the scan line) is 
subtracted. This is desirable, these negative noise pixels help cancel positive ones, but it is 
straightforward for the processor in the instrument to clip these pixels to a zero value with 
the “noise-clip” option turned ON. The size of the resulting change in the calculated second-
moment diameter provides a test of how large the contribution is from noise in the wings. 

It is also recommended when measuring a second-moment diameter to vary the sources 
of noise on the laser beam. Check that the resonator alignment is peaked, the sources of 
microphonics impinging on the laser are minimized, the laser is warmed up and bolted 
down to the stable table, and so forth, and watch for variations in the second-moment 
diameter. A more complete analysis9 of the effect of noise on diameter measurements 
showed that the standard deviation over the mean of ten repeated second-moment diam-
eter measurements was �ve to ten times larger than that for knife-edge measurements of 
the same beam at (low) signal-to-noise levels from 50 down to ten. With these precautions 
required in interpreting D4� results, it is fair to say that the second moment as currently 
implemented is not a “machine readable” diameter de�nition. 

1.6.3.7 Reasons for D4� Being the ISO Choice of Standard Diameter 

Since there is considerable experimental dif�culty in measuring second-moment diameters, 
why is this de�nition the one adopted11 as the standard by the International Organization  
for Standards? The primary answer is that this de�nition is the one best supported by the-
ory. The general theories of the propagation of ray bundles4,6,19 are based on the Fourier 
transform relationship6 between the irradiance distribution and angular spatial-frequency 
distribution. These show two essential requirements are met if the beam width is de�ned 
by the second-moment diameter [Equation 1.36]. The beam width is rigorously de�ned6 

for all realizable beams [excluding only those with discontinuous edges,6 for which the 
integration Equation 1.34 may not converge] and the square of this width (the variance) 
increases as a quadratic function of the free space propagation distance away from the 
waist. That is, D4�(z) increases with z according to the hyperbolic form (Equation 1.16a). 
All other diameter de�nitions gain legitimacy in propagation theory by being shown to be 
proportional to the second-moment diameter. 

Another important feature of the second-moment diameter is that the beam quality (M2 

values) calculated using it turn out to be integers for either the pure, rectangular-sym-
metry Hermite–Gaussian modes, or the pure, cylindrical-symmetry Laguerre–Gaussian 
modes. Thus not only for the fundamental mode is M4

2 
V � 1 , which happens by de�nition, 
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but for the next higher-order mode, the donut mode, M2 
4V � 2 , and so on counting up by   

unity each time the mode order increases. In general6 the formulas are: 

Hermite − Gaussian  modes M
2 

  4V = (m + n + 1)   (1.43)  

Laguerre − gaussianmodes M
2 = (2p + l + 
2 2V 

 1)   (1.44)    

where  m, n are the order numbers of the Hermite polynomials, and p, l the order numbers  
for the generalized Laguerre polynomials associated with the modes as before (Equation  
1.1). For the six modes shown in Figure 1.2, of increasing order from (a) to (f), the values are  
M2 

4�  = 1, 2, 3, 3, 4, 4 respectively. The integers (m + n + 1) or (2p + l + 1) are termed the mode  
order numbers, and they determine as well the mode’s optical oscillating frequency. Modes  
with the same frequency are termed degenerate. As the mode order number increases, the  
degree of degeneracy increases, there being three degenerate pure modes each for (2p +  
l + 1) = M2 = 5 or 6, four for M2 = 7 or 8, �ve for M2 = 9 or 10, and so on. The diameters of the  
pure modes in second-moment units are just the square root of the mode order numbers  
times the fundamental-mode diameter (by Equation 1.3): 

D
Pure Hermite − Gaussian modes 4V = m + n + 1   (1.45)  

 2w 

D
Pure Laguerre − Gaussian modes 2 2V = 2p + l + 1   (1.46)  

   2w 

Another consequence of the pure modes having integer values of beam quality is that for  
mixed modes, the  M2 

4V  value is a simple power-weighted sum of the integer M2 
4V values of   

the component modes. Finding integers like this in a physical theory is strong indication  
that the quantities have been de�ned and measured “the way nature intended.” 

Another reason for the ISO Committee’s choice of D4� as the diameter standard is that   
the committee members were aware that conversion formulae were available to permit  
diameters measured according to the other de�nitions to be put in standard form. These   
formulae are discussed in the next section. 

The last line of Table 1.1 refers to CCD camera properties. A CCD camera together  
with frame-grabber electronics and appropriate software can be a universal instrument  
capable of providing diameter measurements according to any or all of the de�nitions.  
Affordable cameras do not provide as large a dynamic range for irradiance levels (useful  
range ~1000:1) compared to that for a silicon detector (~104) but good variable attenuators  
are readily available33 to allow camera operation just below saturation to make the most of  
the range that exists. Spatial resolution of 5 micron per pixel may be inadequate for direct   
measurement of focused beams but �exibility, ease of use, and quick access to colorful 2-D  
irradiance maps make it an attractive choice for beam diameters large enough to �ll an  
adequate number of pixels. Imaging optics can be used if necessary to measure smaller  
beams. If improvements in CCD cameras continue at their recent pace, they are likely to  
become superior to all the older methods of measuring beam diameters. 

1.6.3.8 Diameter Definitions: Final Note  

It is important to emphasize that the M2 model can be applied using any reasonable de�ni-
tion of beam diameter as long as the de�nition is used consistently both in making measure-
ments and interpreting calculated values. Results will then be meaningful and reliable.  



 33 Characterization of Laser Beams: The M2 Model  

In fact, there can be cases where it is important to use a “nonstandard” diameter de�ni-
tion. For example, there is a trend toward steeper sides and �attened tops as  M2 increases.   
The effect becomes pronounced for M2 values above ten and at 50 or more, pro�les can be  
aptly described5 as a “top hat” shape. The diameter of such a beam becomes unambiguous  
and it makes sense to abandon the standard de�nitions (D4�, D86, etc.) and just measure the  
diameter of the “top hat” cylinder. The good news is that for such beams, pinhole scans  
would show the diameter at half-maximum irradiance to be insigni�cantly different from   
that at the 1/e2 level. The aperture size that passes 86.5% of the total power will not provide  
as meaningful a result in this situation as the aperture that transmits 95% of the power.  
The latter would likely be little different in size from the one that passes 98%. Curve �tting  
to a series of D95 measurements will yield a set of valid parameters describing the beam but  
this de�nes a new “currency” and one must stay consistent and not mix these diameters  
with those arrived at by a different method or de�nition. 

1.6.4 Conversions between Diameter Definitions 

For a diameter conversion algorithm to be widely applied, it must be normalized, with the  
natural normalization being the diameter of the fundamental mode generated in the same  
resonator as the measured beam, the embedded gaussian. Using Equation 1.3, this essen-
tially changes the problem of converting diameters into one of converting  M2 values. 

The conversion rules that are now part of the ISO beam widths document11 were �rst   
derived empirically and later found to have theoretical support. They apply to cylindri-
cally symmetric modes generated in a resonator with a circular limiting aperture and an  
approximately uniform gain medium. In this case, if M2 

2 2V 
 is known, then the mixture  

and relative amplitudes of the modes oscillating can also be reasonably estimated.  

1.6.4.1 Is M2 Unique? 

Determining the fractions of the pure modes in a mixture for a cylindrically symmetric  
beam from the beam quality alone seems unlikely at �rst, because the beam quality M2 is   
not unique in the mathematical sense. Consider the case of a beam with  M2 = 1.1 in second-
moment units. An experienced laser engineer might guess the likely composition is 90%  
fundamental mode (M2 = 1) and 10% donut mode (M2 = 2) to give  M2 = (0.9) + 2(0.1) = 1.1 for  
the mixed mode, and she/he would be right. For a beam of M2 = 5 however, the problem  
is much harder. The number of possible modes above threshold makes for a large range of  
possible mix fractions within the M2 = 5 constraint. 

Our empirical results showed, however, that for the class of lasers with round beams  
described just,  M2 was unique at least up to values of   M2 

4V � 3 2  . . 14 In these resonators,   
diffraction losses and spatial mode competition in saturating the gain determine the  
mixed-mode composition. As the circular limiting aperture is opened—as the Fresnel  
number of the resonator is increased—some modes grow and others decrease in a predict-
able and reproducible way, such that for each M2 there is a unique known mode mixture.  
Furthermore, this knowledge has allowed us to establish mathematical rules for intercon-
version of beam diameters between the various measurement de�nitions. 

1.6.4.2 Emprical Basis for the Conversion Rules   

We acquired the empirical data14 by using an argon ion laser set up to give beams with   
a large range of M2 values as a function of the diameter of the circular mode-limiting  



 34 Handbook of Optical and Laser Scanning 

aperture. By varying this aperture diameter and the gain—the latter by adjusting the laser  
tube’s current—values of  M2 

2 2V  from 1 to 2.5 were covered with the green line at 514 nm;  
the upper limit was increased to 3.2 by changing to the higher gain of the 488 nm blue line.  
As the blue line was generated in the same resonator, the blue beam diameters here could  
be scaled by multiplying the square root of the ratio of the wavelengths, a factor of 1.027,  
for comparison to the green line diameters. The beam from this laser was split to feed an  
array of monitoring equipment. A radio frequency photodiode and rf spectrum analyzer  
gave how many modes and what mode orders were oscillating. Pro�les were recorded  
with a commercial slit and pinhole pro�ler8 and a commercial beam propagation analyzer9   
to obtain knife-edge diameters,  M2

ke
, and radial second-moment diameters. A CCD cam-

era and software computed the variable aperture diameter. In front of the camera, a lens  
provided a known (1.47 times) magni�cation to �ll an adequate number of pixels, and a  
variable attenuator set the light level.  

As the laser’s internal aperture was opened and the beam diameter enlarged, the mode   
spot alternated from one with a peak in the center to one with a dip at the center in over one-
and-a-half cycles as shown in the pro�les of Figure 1.10b. Seven aperture settings were chosen   
spanning the range of  M2 values, two giving the highest central peaks (A and E), two at the   
deepest dips (C and F), and three transitional ones (AP, named the “perturbed A-mode”, B,   
and D). The full set of diagnostic data at these settings was recorded. Knowing the number of   
modes oscillating and the mode orders at each setting from the rf spectrum, trial mode mix-
tures were assumed. The resulting theoretical pro�les were adjusted14 to match the experi-
mental pinhole pro�les. An example is Figure 1.2, where the theoretical mixed-mode pro�le,   
(g), is matched to experimental pro�le, (h), which is the same as Mode E in Figure 1.10b.  

Once the  TEM*0n  modes were included14 in the mode mix, good matches of pro�les were  
found. These modes are like the donut mode, for which n = 1, but with increasingly larger  
holes in the center as their order (n + 1) increases. Because they have  p = 0 they are “all null”  
(nearly zero in amplitude) in the middle. They make the most of the r3 weighting factor in   
the second-moment integral to reach a given second-moment diameter Mw = √(2p + l +1) w at   
the smallest radius, resulting in the lowest tails14 to their pro�les of all modes of the same-
o rder number. They thus have the lowest diffraction loss for a limiting circular aperture  
and always oscillate �rst among pure modes of the same order as the Fresnel number of the  
resonator is increased. It was noted in Reference 20 that in this aperture-opening process  
there was a gradual extinction of a mode of lower order soon after a mode of next higher  
order reached threshold. This is clearly a gain competition effect won by the higher-order  
mode. A possible physical reason of general applicability discussed in Reference 20 was  
that the larger spatial extent of the higher-order mode provided access to a region of gain   
not addressed by the competing lower-order mode. 

The �nal mode fractions for the seven mixed modes were determined using a Mathematica  
function called SimpleFit made available by Wolfram Research. These fractions are plotted  
in Figure 1.10a as a function of the resultant beam quality M2 

4V  for the mixed modes. The  
modes turn on in the order of decreasing diffraction loss as shown by McCumber21 and  
then gradually extinguish, as predicted in the preceding paragraph. At each value of M2 

4V   
for this argon ion laser there is a characteristic set of oscillating modes, mode fractions, and  
mode pro�les (Figure 1.10). Here for every M2 value there is a unique mixture of modes.  
From all the data gathered, simple conversion rules given in the next section between  
diameter de�nitions were derived. Over the range measured of  M2 

4V � 1 to 3.2, the error to  
convert knife-edge, slit, and variable aperture diameters to second-moment diameters was  
±2% (one standard deviation). This is a ±4% error in converting M2. The error was ±4% for  
conversion of pinhole diameters to second-moment diameters.  
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FIGURE 1.10  
Observed mode fractions for a beam from a resonator with a limiting circular aperture. As the aperture   
diameter increases  M2 

4V  follows, with the mode fractions changing in a characteristic fashion as higher-order   
modes come above threshold. (a) The mode fractions as a function of M2 

4V . (b) The computed pinhole pro-
�les and their  M2

4� values for the characteristic set of mixed modes A to F measured to determine the mode   
fractions.  

We then tested the rules on other lasers14 within this  M2 range and found that knife-edge   
diameter measurements converted to s econd-moment diameters agreed with directly   
measured second-moment diameters within  ±2%. The conversion error is de�ned as   
the fraction in excess of unity of the D4� diameter obtained by the conversion rule, over  
that obtained directly from the variance of the irradiance pro�le, expressed in percent.  
The knife-edge diameter conversion subsequently was tested on three other gas lasers   
at  M2 

4V = 4.2, 7.5, and 7.7 and found to remain valid to ±2%. However, a test25 on a pulsed   
Ho:YAG laser at  M2 

4V � 13 8.  gave a conversion error of −9%; this is thought to be due to   
the strong transient thermal lensing in this medium affecting the spatial gain saturation.  
This consistency in the face of an extrapolation by a factor of two indicates that these   
conversion rules are fairly robust, valid to the stated accuracy, and that the mixed modes  
on which they are based exist in this large class of lasers. Apparently, for many lasers, M2   
is unique.  

1.6.4.3 Rules for Converting Diameters between Different Definitions 

The empirical results showed there was a linear relationship between Mi � M
2
i  and the  

square root of the second-moment beam quality M � M2 
4V 4V 

, where Mi is the square root  
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of the beam quality obtained by method “i” and i can signify any of the other de�nitions. 
Since all the diameter de�nitions give the same result for the fundamental-mode beam 
(for which the beam quality is unity) the linear relationship can be expressed with a single 
proportionality constant ci� in the form: 

M − 1 = c (M − 1)4V iV i (1.47) 

for the conversion from the method “i” to second-moment quantities. This form ensures 
that the linear plot of M4� versus Mi passes through the origin with no offset term and that 
only the slope constant c is required to de�ne the relationship. 

In the same resonator, the fundamental-mode diameter is given by the ratio of the 
mixed-mode diameter to M. This is true independent of what diameter de�nition is used,  
and thus a second relationship is: 

Di D4V� 2w � . (1.48) 
Mi M4V 

Here Di is the diameter obtained by method “i.” Substituting Equation 1.48 into Equation 
1.47 yields: 

⎛ Di 
⎞ 

D4V = ⎜ ⎟ [ciV (Mi − 1) + 1].
⎝ Mi ⎠ (1.49) 

The values of the conversion constants ci� are listed in Table 1.1 to convert from the diam-
eter de�nitions summarized there to the second-moment diameter, D4�. 

Since each of the other diameter methods is linearly related to the second-moment diam-
eter, they all are linearly related. The conversion constants between the other methods can 
be obtained from those for the second-moment conversions. Let one of the other methods 
be denoted by subscript “j.” From Equation 1.47 there results: 

(M − 1) = c (M − 1) = c (M − 1)4V iV i jV j 

therefore 

⎛ c jV ⎞ (Mi − 1) = (M j − 1).⎜ ⎟⎝ ciV ⎠

By de�nition of a conversion constant for method i → j, 

(Mi − 1) = c ji (M j − 1). 

Hence: 

⎛ c jV ⎞ 
c ji = . (1.50) ⎜ ⎟⎝ ciV ⎠ 

This gives the conversion constants between any two methods in Table 1.1, by taking the 
ratios of their constants for conversion to the second-moment values. Note that Equation 
1.50 also implies that cji = 1/cij, which is also useful. 

The values for the ci� constants in Table 1.1 are an improvement over our earlier results14 

that were incorporated in the ISO beam-test document.11 More experimental data later 
became available, but also it was realized once the mode fractions were determined 
experimentally that the conversion constants could then be calculated from theory alone. 
From the mixed-mode set A to F de�ned by the mode fractions of Figure 1.10a, each of the 
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theoretical diameters Di for the different methods was calculated. By Equation 1.3, these   
were converted to Mi’s. Then plots of  M4� − 1 versus Mi − 1 were least-squares curve �t to  
determine by Equation 1.47 the values of ci� listed in Table 1.1. The   �t for the slope ci�, was  
for one parameter only with the intercept forced to be zero. This gives an internally con-
sistent set of ci�’s so that Equation 1.50 is valid. 

1.7 PRACTICAL ASPECTS OF BEAM QUALITY M2 

MEASUREMENT: THE FOUR-CUTS METHOD 

The four-cuts method means measuring the beam diameter at four judicious axial 
positions, the minimum number—as explained in this section—to permit an accurate 
determination of M2. To execute this method well, several subtleties should �rst be 
understood. 

The simplest way to measure M would be to take the ratio of the mixed-mode beam 
diameter to that of the embedded gaussian as by Equation 1.3, M = W/w, except that the 
embedded gaussian is inaccessible by being enclosed inside the mixed mode. However, 
both beams have the same Rayleigh range. By measuring zR and the waist diameter 2W0 for 
the accessible mixed mode, the beam quality is determined through Equation 1.20: 

The general approach is to measure beam diameters 2Wi at multiple locations zi along the 
propagation path and least-squares curve �t this data to a hyperbolic form to determine 
zR and 2W0. But even by taking this computer-intensive approach, unreliable values will 
sometimes result unless a number of subtle pitfalls25 (often ignored) are avoided on the 
way to good (±5%) M2 values. The pitfalls are highlighted in italics as they are encountered 
in this discussion. 

Well-designed commercial instruments9 avoid these pitfalls, and a button push yields a 
good answer. For the engineer performing the measurement on his or her own, and who 
can start by roughly estimating the beam’s waist diameter and location (using burn paper, 
a card inserted in the beam, or a pro�ler slid along the propagation axis) a minimum 
effort, logical, quick method exists, which circumvents the subtle dif�culties. This is the 
method25 of “four cuts,” the subject of this section. 

The �rst pitfall is avoided by realizing that in the M2 model the beam divergence is no 
longer determined by the inverse of the waist diameter alone (as it is for a fundamental 
mode) but has the additional proportionality factor M2: 

The �rst implication of this additional degree of freedom is that the beam waist must be measured 
directly, not inferred from a divergence measurement. Consider the propagation plots shown 
in Figure 1.11a. Several beams are plotted, all with the same values of the ratio M2/W0 

and therefore the same divergence, but with different M2 [accomplished by having the 
Rayleigh range proportional to W0, see the second form of Equation 1.19 in Section 1.4]. 
From measurements all far from the waist it would be impossible to distinguish between 
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FIGURE 1.11 
Beams of constant divergence (a) and constant waist diameter (b) to illustrate the consequences of M2 ≠ 1. The 
beam must be sampled in both near- and far-�elds to distinguish these possibilities. The curves are drawn 
with values appropriate for a beam of � = 2.1 microns. (Redrawn from Johnston, T.F., Jr. Appl. Opt. 1998, 37, 
4840–4850.) 

these curves to determine M2. On the other hand, in Figure 1.11b are propagation plots for 
several beams with the same waist diameters but different M2 and therefore divergences. 
Here Θ ∝ M2 and by Equation 1.18, zR ∝ 1/M2. Measurements all near the waist could not 
distinguish these curves to determine the divergences. Both near- and far-�eld diameter 
measurements are needed to measure M2. 

Any of the diameter-measurement methods can be used to de�ne an M2 value, and 
the next pitfall is avoided by staying in one currency, and do not mix, for instance, the knife-
edge divergence measurement with the laser manufacturer’s quoted D4� (second-mo-
ment) waist value. Consistently use the most reliable diameter-measurement method 
you have available, and in the end convert your results to values in the standard D4� 

currency. 
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1.7.1 The Logic of the Four-Cuts Method 

The four-cuts method starts with the error estimate for your best method for measuring  
diameters, and uses that to set the tolerances on all other measurements. Let diameters be  
determined to a fractional error g, 

⎛ 2W  
g =  

meas ⎞ − 1 ⎜ ⎟   (1.51)  
  ⎝ 2W ⎠ 

where 2Wmeas  is the measured diameter, and 2W the correct diameter. It is assumed g is small,   
usually 1%–2%. This will yield a fractional precision  h for the beam quality of  h = 3%–5%  
since  M2 varies as the product of two diameters, with a small error added for a required lens   
transform (discussed in Section 1.7.1.1). The term “cut” is used for a diameter measurement,   
after the common use of a knife-edge scan cutting across the beam to determine a diameter.   
Let us de�ne the normalized or fractional propagation distance from the waist as: 

(z − zK( )  z = 0 )
.   (1.52)  

z  R 

Let the fractional error in locating the waist be 
0. For this miss in cut placement in mea-
suring the waist diameter 2W0 to cause an error of less than g, Equation 1.16a gives: 

1 + K2 
0 < g + 1 or K < 2g   0   (1.53)  

for  g  ≪ 1. If  g = 0.01, then 
0 < √(0.02) ≅ 1/7.  The tolerable error in locating z0 is one-seventh of a 
Rayleigh range  for a 1% precision in diameter measurements. 

To locate the waist to this precision, beam cuts must be taken far enough away from  
the waist to detect the growth in beam diameter with distance. At the waist location the  
diameter change with propagation is nil; to precisely locate a waist requires observations  
far from it where the diameter variation can be reliably detected. On both sides away from  
the waist, cuts must be made at distances of a sizeable fraction of the Rayleigh range. 

To �nd the optimum cut distances, look at the fractional change  Q in beam diameter   
versus normalized propagation distance:  

⎛ 1 ⎞ dW K
Q ≡ ⎜ ⎟ = 2 .

    (1.54)  ⎝ (1  W ⎠ dK + K ) 

Figure 1.12 is a plot of this function, Equation 1.54, in which it is easy to see that the maxi-
mum fractional change of  Q occurs at  
 = ±1. By making cuts within −2 to −0.5 and +0.5   
to +2.0 Rayleigh ranges from the waist corresponding to 
 within these numerical values,   
80% of the maximum fractional change is available. This will signi�cantly enhance the  
reliability of the position determination over that made using diameters from less than   
0.5  zR away from the waist.  An accessible span of at least a Rayleigh range centered on the waist 
is needed for diameter measurements. 

Note that Figure 1.12 highlights the physical signi�cance of the propagation locations  
one Rayleigh range to either side of the waist. The wavefront curvature is largest in abso-
lute magnitude there, resulting in the fractional change in diameter Q with propagation  
coordinate z reaching extremes of ±0.5 there as well. 

1.7.1.1   Requirement of an Auxiliary Lens to Make an Accessible Waist   

Most lasers have their beam waists located internally where they are inaccessible. Therefore,  
an accessible auxiliary waist related to the inaccessible one is achieved by inserting a lens  
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FIGURE 1.12 
The fractional change Q in beam diameter as a function of the normalized propagation distance from the waist. 
Cuts made to locate the waist in the shaded regions bene�t from a fractional change of 80% or more of the max-
imum change. This requires a minimum of one Rayleigh range of access to the beam around the waist location. 
(Redrawn from Johnston, T.F., Jr. Appl. Opt. 1998, 37, 4840–4850.) 

or concave mirror into the beam, and making the M2 measurement on the new beam. Then 
the constants found are transformed back through the lens to determine the constants for  
the original beam. This requirement to insert a lens, and then transform through the lens back to 
the original beam constants, is an often-ignored pitfall in making accurate beam measurements. 

The temptation is to use what is available, and just measure the beam on the output side 
of the output coupler. Usually this means the data is all on the diverging side of the waist. 
The problem is that nothing in this data constrains the waist location very well. In the 
curve �t, small errors in the measured diameters will send the waist location skittering 
back and forth to the detriment of the extrapolation to �nd the waist diameter. Inserting a 
lens and making a beam that is accessible on both sides of its waist is a signi�cantly more  
reliable procedure. 

There are three constants (z02, 2W02, M2) needed to �x the 2-space beam shown in Figure 1.6 
for one of the principal propagation planes, so, in principle, only three cuts should suf�ce, 
but then one of them would have to be within the range |
0| < 1/7. The location of this nar-
row range z02 ± zR2/7 is at this point unknown. Therefore four cuts are used, the �rst an esti-
mated Rayleigh range zR2 to one side of the estimated waist location z02, the second and third 
at about 0.9 and 1.1 times this estimated Rayleigh range to the other side (see Figure 1.13). 
These cut locations and the diameters determined there are labeled by their cut numbers i = 
1, 2, 3. Between z2 and z3 there is a diameter that matches 2W1 and the location zmatch of this is 
determined by interpolation: 
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FIGURE 1.13  
The four-cuts method. Shown is the beam propagation plot in 2-space, behind the inserted auxiliary lens; the  
circled numbers indicate the order of the cuts made to locate the waist. The propagation distance zmatch of the  
diameter matching that at the �rst cut at  z1 determines the waist location z02 as halfway between these equal   
diameters. (Redrawn from Johnston, T.F., Jr. Appl. Opt. 1998, 37,  4840–4850.)  

The waist is located exactly halfway between z1 and  zmatch, and the fourth cut is made there  
at z4 to directly measure the waist diameter 2W02 = 2W4 of the 2-space beam and complete  
the minimum data to determine M.2 

1.7.1.2 Accuracy of the Location Found for the Waist   

If the locating cuts (1, 2, and 3 of Figure 1.13) are within the ranges speci�ed from |Q| > 0.4  
and the diameters are measured to the fractional error g, then the error in the normalized  
waist location 
0 is no worse than g/Q = 2.5%. This is much less (since  g is small) than   
the tolerance  2g  = 14.1% = 1/7 determined from inequality Equation 1.53. The measured  
waist diameter is then correct to the fractional error g. 

The fractional error in measurement of diameters g when divided by the fractional  
change in diameter with normalized propagation  Q, yields the fractional error in normal-
ized waist location 
0 = g/Q. The plot of Figure 1.12 is thus actually a quantitative version   
of the statement “to precisely locate a null requires observations far from the null” when  
locating the waist. Diameter measurements inside the range  z02  ±  zR/2 quickly lose any  
ability to contribute precision in locating the waist as here Q drops to zero. 

There is much value in locating the waist as accurately as the diameter-measurement  
tolerance will allow in that it reduces the number of unknown constants to be determined  
by curve �tting from three to two. The number of terms in the curve �t drops by a factor of  
four, and the remaining terms are made more accurate. Some of these terms depend on the  
distance from the waist to the ith-cut location, zi − z02, either squared or raised to the fourth   
power. It is often useful to take a �fth cut at z5 = f as shown by the vertical dashed line in   
Figure 1.13. This cross checks the input beam divergence by Equation 1.29 and balances the  
number of points on either side of the auxiliary waist at z02 to improve the curve �t. 

1.7.2 Graphical Analysis of the Data 

The data, which consists of a table of four- or �ve-cut locations and their beam diameters  
for each of the two independent principal propagation planes, is next plotted. A sample plot  
for the � = 2.1 micron Ho:YAG laser beam analyzed in Reference 25 is shown in Figure 1.14.  
There it was found that with as few data points as required in the four-cuts method, and  
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FIGURE 1.14 
An example of graphical analysis of propagation data for the auxiliary beam in 2-space. The chords give the 
Rayleigh ranges for the x- and y-planes. They are drawn at ordinates on the plot √2 larger than the waist diam-
eters located at z0x and z0y. (Redrawn from Johnston, T.F., Jr. Appl. Opt. 1998, 37, 4840–4850.) 

with the initial waist location and Rayleigh range estimates close to the �nal values (within 
~10%), a simple and quick graphical analysis is as accurate as a curve �t. 

Generally, with more points as in commercial instrumentation, a weighted least-squares 
curve �t of the data to a hyperbolic form is required,25 discussed in Section 1.7.3. The curve 
�t also generates a sum of residuals for a statistical measure of the goodness of �t. 

In the graphical analysis after the points are plotted, smooth curves of approximately 
hyperbolic form are laid in symmetrically about the known waist locations for each princi-
pal propagation plane, here in Figure 1.14 with a French curve. Next, horizontal chords are 
marked off at heights √2 times the waist diameters 2W4 to intersect the smooth curves. The 
distance between these intersection points on each curve are twice the Rayleigh ranges 
2zRx, 2zRy respectively, and these lengths are measured off the plot for use in Equation 1.20 
with 2W0x = 2W4x (and 2W0y = 2W4y) to determine Mx 

2 (and My 
2) for the auxiliary 2-space 

beam. For the data of Figure 1.14 the results were zRx = 17.6 cm and zRy = 17.8 cm, resulting 
in knife-edge beam qualities Mx 

2 � 15 4.  and  My 
2 � 14.9. 

These results are termed the initial graphical solution and can be improved to give the 
corrected graphical solution by using the fact that a better estimate of the waist diameter 
is available than just the closest measured point. By the propagation law, Equation 1.16, if 
the miss distance of the closest point (Cut 4) is 
0 then the best estimate of the corrected 
waist diameter is: 
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The corrected solution uses the Rayleigh range and waist values from the initial graphical 
solution in Equation 1.57 to obtain a corrected waist diameter, and plots a chord at a height 
of √2 times this diameter to determine a corrected length 2zR and M2 from Equation 1.20. 
In the example of Figure 1.14, the chords shown are the corrected chords; only the y-axis  
data changed slightly to zRy = 17.3 cm and My 

2 � 15.2. After curve �tting the same data, the 
fractional rms error (goodness of �t) for the �ve diameter points were the same at <1.9%. 

This good accuracy is a consequence of the four-cuts strategy. The waist diameter is 
directly measured and if the initial estimate for the Rayleigh range is close, the other cuts 
give data points near the intersection points of the chords �xing the 2zR values on the plot. 
The graphical analysis then amounts to an analog interpolation to �nd the best positions 
for the intersection points. 

There are two last steps. The �rst is to transform the 2-space data back to 1-space to get 
the constants for the original beam, using Equations 1.24 through 1.28. This adds a small 
fractional error to the end result due to the uncertainties in z02 and zR2, which contribute 
a slight uncertainty to the transformation constant � of Equation 1.24 (in the example of 
Reference 25, a 2% error in �, 1% additional error in transformed diameters). 

The second step is to convert these knife-edge measurements of Figure 1.14 to standard 
second-moment units as done in Table 3 of Reference 25. The beam of Reference 25 is the 
one that did not work well with the conversion rules of Section 1.1.5. Instead the conversion 
of Mk

2
e � 15 4. to M4

2 
V � 13 8 was done by comparing measurements at cut 5, the focal plane . 

of the auxiliary lens, of the knife-edge diameter to the second-moment diameter calcu-
lated from a pinhole scan. This gave the ratio Dke/D4� = 1.055 or a factor of 1/(1.055)2 = 0.897  
for the M2 conversion. 

1.7.3 Discussion of Curve-Fit Analysis of the Data 

A complete numerical example of a full weighted least-squares curve �t to analyze the 
four-cuts data, or a larger data set, is given in Reference 25 and need not be repeated. There 
are some subtle pitfalls to avoid in using curve �ts on beam propagation data and these 
are brie�y discussed. 

A least-squares curve �t is the only general way to account for all the data properly. 
A common mistake is to use the wrong function for the curve �t, which necessitates a discus-
sion of what is the correct one. The �t should be to a hyperbolic form, Equation 1.16, but that 
is not all. It also should be a weighted curve �t, with the weight of the ith squared residual 
in the least-squares sum being the inverse square power of the measured diameter 2Wi. 

There are three reasons for this choice of weighting. The �rst is that in general in a weighted 
curve �t, the weights36 should be the inverse squares of the uncertainties in the original mea-
surements. For many lasers, the fractional error in the measured diameter is observed to 
increase with the diameter; this is probably due to the longer time it takes to scan a larger 
diameter. The spectrum of both amplitude noise and pointing jitter on a beam tends to increase 
towards lower frequencies and longer measurement times give this noise a greater in�uence. 

The second reason arises from an empirical study25 of different weightings one of us 
did during the development of a commercial M2 measuring instrument.9 Amplitude noise 
was impressed on the beam of a fundamental-mode ion laser with a known M4

2 
V � 1.03, 

by rapid manual dithering of the tube current while the instrument’s data gathering 
run9 was underway. (Note, the ModeMaster9 collects 260 knife-edge cuts in each of two 
orthogonal planes in a 30-s “focus” run, generating the beam propagation plots.) The 
same data was then �tted to a hyperbola �ve times, with �ve different weighting factors. 
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The weights were the measured diameter raised to the nth power, (2Wi)n, with n = −1, 
−0.5, 0, +0.5, or +1. The weight with n = 0 is unity or equal weight for all data points. Data 
runs were repeated many times with increasing noise amplitude, and the resulting M2 

values for all �ve weighting schemes were compared each time. The equal or negative 
power weightings gave stable M2 values within 3% of the correct value up to 5% peak-
to-peak amplitude noise. The positive power weightings n = +0.5 gave 4%–5% and n = +1 
gave 12%–19% errors in M2 respectively at this noise level. With larger noise amplitudes, 
the positive power weightings gave errors that grew rapidly and nonlinearly. 

A common curve-�tting technique is to use a polynomial �t for the square of the beam diameter 
versus propagation distance. This may be convenient but it could give an unsatisfactory result. 
This technique takes advantage of the wide availability of polynomial curve-�t software, 
and the fact that the square of Equation 1.16 gives a quadratic for W(z)2 as a function of z. 
However, look at what this does. Let 2Wi be the measured ith diameter, and 2Wi ′ be the 
exact diameter with the small deviation between them 2�i = 2Wi − 2Wi ′. In the W2 polyno-
mial curve �t, the ith term is 

2 2 2(W ) = (W ́ + G ) = (W ́  ) + 2W ́Gi i i i i i 

making the residual 

The residual from the exact polynomial curve is weighted in the �t by 2Wi ′, a positive  
power (+1) of Wi ′, and so will give unstable results if there is more than a few percent  
amplitude noise on the beam. At the time of completion of the 1995 ISO document on  
beam-test procedures, this dif�culty with a polynomial curve �t was unrecognized, and  
a polynomial �t was (incorrectly) recommended there; the 2004 version correctly recom-
mends �tting to a hyperbolic form.11  

The third reason for an inverse-power weighting is that mathematically the least fractional   
error results for a ratio quantity like M2 = Θ/�n in Equation 1.22 if the fractional errors from   
the denominator and numerator roughly balance. The residuals from the more numerous   
cuts far from the waist—the points giving the measurement of divergence Θ, or numerator—  
would swamp with equal weighting the fewer (or single) cut at the waist—the point(s) giving   
the divergence of the normalizing gaussian, or denominator. An inverse square weighting   
approximately halves the in�uence of the three or four far points, compared to the unity   
weighting at the waist in the four-cuts method, giving the desired rough balance.  

1.7.4 Commercial Instruments and Software Packages 

There are three main commercial instruments for measuring beam quality and a host of less 
well developed others. The �rst is the original9,35 system designed as a beam propagation 
analyzer and believed at this time to be the most fully developed, the ModeMaster™ from 
Coherent, Inc. The cylindrical scan head (10 cm diameter by 31 cm length) mounts through 
angle and translation alignment stages to a heavy stable-table post. The basic diameter mea-
surements are achieved with two orthogonal knife-edge cuts. Both principal propagation 
planes are measured nearly simultaneously on a drum spinning at 10 Hz behind an auxil-
iary lens. Measurements are restricted to continuous-wave laser beams or high repetition 
rate (>100 kHz) pulsed lasers. The lens moves to carry the auxiliary beam through the plane 
of the knife-edges to assemble 260 cuts in each principal propagation plane making up a 
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pair of propagation plots for the auxiliary beam in a 30-s “focus” pass. A curve �t, with an 
inverse-diameter weighting, to a hyperbola is done and the �tted parameters are trans-
formed through the lens by the on-board processor to present a data report for the original 
beam.* The M2 measurement accuracy is speci�ed at 5% and the waist diameter accuracy at 
2%, with a minimum of 100 sample points taken across the pro�le. The drum also carries 
two pinholes, each of different diameters, giving pinhole pro�les that are processed to give 
direct second-moment diameters. The instrument also measures beam-pointing stability. 
Electronic alignment aids are included. In the original instrument operation was controlled 
through a dedicated electronics console; the current version is driven by a laptop PC. 

The second is the ModeScan™ family of instruments from Photon, Inc. Originally 
intended as an upgrade of a user’s existing 10 Hz rotating drum pro�ler to a beam propa-
gation analyzer, the simplest version is a modular package consisting of a 0.5 m rail to 
manually translate the pro�ler in the beam behind a �xed input lens, with software for the 
user’s PC computer that prompts the user for input of position data. When the data �elds 
are �lled, the software calculates the M2 of this auxiliary beam (the same as the input 
beam’s) and transforms the data through the lens for the other input beam constants. Later 
versions automate the stage drive and data acquisition, expand the software features, and  
include a new pro�ler with a selection of �ve rotation speeds to measure pulsed beams. 
The latest instrument, the ModeScan™ 1780 model, is a new design in a 26 cm × 18 cm × 
8 cm housing gimbal mounted to a 1/2" diameter stable-table post. It incorporates beam 
splitters behind a �xed input lens to pick off ten sample beams, and direct them to a CCD  
array camera. The diameters at these ten different throw distances are measured simulta-
neously and this data �t to a hyperbola to generate the beam constants. Placing ten spots at 
once on the camera sensor reduces the number of illuminated pixels per spot (a minimum 
of 15 pixels per diameter measurement is recommended), but enough are lit that the M2 

measurement accuracy of this and the rest of these systems is listed as 4%–5%. This latest 
model is the only commercial instrument capable of determining beam constants from a 
single pulse, and therefore of showing pulse-to-pulse beam variations. 

The third instrument is the CCD camera-based M2–200 Beam Propagation Analyzer from 
Ophir Spiricon, Inc., operating with pulsed or cw laser beams. The original instrument with 
a 500-mm focal length input lens occupied a 28 cm × 82 cm footprint on the stable table; a 
new model, the M2-200s, uses a 300-mm lens and is a half-size version �tting into 26 cm × 44 
cm. Here a stepper motor and translation stage on a rail moves an optical delay line behind 
the �xed input lens to effectively scan the detector surface through the auxiliary beam. The 
PC computer attached to the system automatically adjusts �lter wheel attenuation, subtracts 
background, sets spot truncation, and calculates the second-moment diameters37 directly 
from the CCD pro�les. A curve �t to a hyperbola is done37 with the results transformed back 
through the input lens to present the constants of the original beam. The M2 measurement 
accuracy is given as 5%. This product, with its long focal length input lenses, is positioned 
to measure the large beams of industrial lasers for process monitoring and control. 

1.8 TYPES OF BEAM ASYMMETRY 

In the previous sections, the means for the spatial characterization of laser beams were 
established. This section looks at commonly found beam shapes and others that are 

* An example of a data report is shown later in Figure 1.17 of Section 1.9. 
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(a) Astigmatism 

(b) Asymmetric 

(c) Asymmetric
    divergence 

waists 

Z0x ≠ Z0y 

W0x = W0y

2 2
Mx = My 

Z0x = Z0y 

W0x ≠ W0y

2 2
Mx = My 

Z0x = Z0y 

W0x = W0y

2 2
Mx ≠ My 

FIGURE 1.15 
Depiction of the three-dimensional appearance of the three basic types of asymmetry for a mixed-mode 
beam: (a) astigmatism, (b) asymmetric waist diameters, and (c) asymmetric divergence. The window insets 
show the wavefront curvatures along the beam path. (Redrawn from Johnston, T.F., Jr. Appl. Opt. 1998, 37, 
4840–4850.) 

possible. The three common types of beam asymmetry are depicted in Figure 1.15. These 
are the pure forms but mixtures of all three are common in real beams. 

1.8.1  Common Types of Beam Asymmetry  

The �rst is simple astigmatism (Figure 1.15a), where the waist locations for the two orthogo-
nal principal propagation planes do not coincide, z0x ≠ z0y, but W0x = W0y, and Mx 

2 = My 
2. 

Because here the waist diameters and beam qualities are the same for the principal propa-
gation planes, so are the divergences, Θ ∝ M 2/W0x = M 2/W0y ∝ Θ  [see Equation 1.19]. x x  y y 

This makes the beams round in the converging and diverging far-�elds. At the two waist 
planes the beam cross sections are elliptical, one oriented in the vertical and the other the  
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horizontal plane, with the minor diameters equal. Midway between the waists, the beam 
becomes round like the “circle of least confusion” point in the treatment of astigmatism28 

in geometrical optics. The simple astigmatic beam is characterized by three round cross 
sections, at the distant ends and midpoint, with orthogonally oriented elliptical cross sec-
tions in between. 

The window frame insets of Figure 1.15 show the wavefront curvatures, which are spher-
ical in the far-�eld, cylindrical at the waist planes with one cylindrical axis horizontal, the 
other vertical, and saddle-shaped at the midpoint between the waists. The wavefront 
curvatures determine the nature of the focus when a lens is inserted. 

Simple astigmatic beams can be generated in resonators with three spherical mirrors, 
with one used off-axis to give an internal focus,38 unless there is astigmatic compensation 
built in as with a Brewster plate of the correct thickness38 added to the focusing arm. Many 
diode lasers are astigmatic but with the other two types of asymmetry as well because the 
channeling effects in the plane parallel to the junction differ from those in the plane per-
pendicular to it, giving two different effective source points for the parallel and perpen-
dicular wavefronts. Beams formed using angle-matched second harmonic generation can 
be astigmatic due to walk-off in the phase matching plane of the beam in the birefringent 
doubling crystal. The diode lasers in laser pointers frequently have a large astigmatism, as 
large as the Rayleigh range for the high-divergence axis. 

The next is asymmetric waists (Figure 1.15b), where the waist diameters are unequal. 
Because of the different waist diameters but with equal beam qualities, in the far-�elds 
where divergence dominates, the cross sections are elliptical with the long axes of the 
ellipses (shown as horizontal) perpendicular to the long axis of the waist ellipse (here 
vertical). In between there are round cross sections at planes symmetrically placed 
around the waist location—the same geometry as in Figure 1.15a, with the ellipses and 
circles interchanged. The wavefronts are plane at the waist, and ellipsoidal everywhere 
else, with curvatures at the round cross sections in the ratio of the square of the waist 
diameters. 

Lasers having an out-of-round gain medium are likely to produce beams with asym-
metric waists. A solid-state laser pumped from the end by an elliptical beam from a diode 
laser is an example. Mode selection is by the combined effects of gain aperturing and 
absorption in the unpumped regions. The resonant beam shape will mimic the geometry 
of the pumped region. Beam walk-off from angle-matched nonlinear processes can also 
produce asymmetric waists. 

The third type is asymmetric divergence (Figure 1.15) where the beam qualities differ in the 
principal propagation planes to give proportionally different divergence angles, Θx ∝ Mx 

2 ≠ 

My 
2 ∝ Θy, but W0x = W0y, and z0x = z0y. The simplest description of this beam is that the mode 

in one principal propagation plane is of higher order than in the other. In the far-�eld, 
cross sections are elliptical as in case (b), but the beam is round only at the waist plane. The 
wavefronts are plane at the waist and ellipsoidal everywhere else and the Rayleigh ranges 
are different in the two principal propagation planes. 

A CW dye laser using a high-viscosity dye jet provides an example of pure asymmetric 
divergence.39 The pump-beam spot was round, but the heat it deposited in the dye stream  
was cooled differentially by the �ow. In the �ow direction the temperature gradient was 
smoothed by the forced convection but in the other direction a more severe thermal gra-
dient existed, causing an aberration that resulted in M4

2 
V y � 1 51  for that plane compared .

to M4
2 
V x � 1.06 for the plane parallel to the �ow with negligible aberration. Because of the 

round pump beam, waist asymmetry was only 2W0y/2W0x = 1.06. 
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1.8.2 The Equivalent Cylindrical Beam Concept 

Beams with combinations of these asymmetries can be depicted with superposed (x, z) 
plane and (y, z) plane propagation plots as shown in Figure 1.16a. More generally there is a 
propagation plot W(�, z) for each azimuth angle � around the propagation axis z. The angle 
� is measured from the x-axis and W(�, z) lies in the plane containing � and the z-axis. The 
three-dimensional beam envelope shown in Figure 1.15a, b, or c is called the beam caustic  

 

FIGURE 1.16  
(a) Experimental propagation plots with beam diameters measured by orthogonal knife-edges for a beam with  
both astigmatism and waist asymmetry. The percentage variation of the constants of the equivalent cylindrical  
beam, computed from the plots for each instrument azimuth, is listed in the right-hand columns. The small  
variations demonstrate the constants are independent of the azimuth of the two orthogonal cutting planes   
intersecting the beam caustic surface. The constants of the equivalent cylindrical beam, in the box, correspond   
to the cuts at an instrument azimuth of 90°. (b) Diagram showing how a half-Brewster prism introduces both  
astigmatism  As  and waist asymmetry W0y/W0x = n to the beam. 



 

  

  
  
 
 
  

 
  
 

  
  

 
 
 
  

 
 

  
  
 
 

 
  
 

  

 
  

 
 

  
   

 
 
 
  
  
 
 

 

49 Characterization of Laser Beams: The M2 Model  

surface, and is swept out by W(�, z) as the azimuth angle � rotates through a full circle 
from 0 to 2�. 

For beams with combinations of moderate asymmetries, it is convenient to de�ne an 
equivalent cylindrical beam. This is a beam with cylindrical symmetry—with a round  
spot for all z—and the real-beam asymmetries are treated as deviations from this round 
beam. The constants de�ning this equivalent cylindrical beam are the best average of the 
beam constants for the two independent principal propagation planes. Many problems 
can be treated with just this simpler equivalent beam. In particular, it has been predicted  
theoretically (A.E. Siegman, personal communication, 1990) and demonstrated experi-
mentally40 that the centered circular aperture computed to give 86% transmission for the 
equivalent cylindrical beam, has this same transmission for the out-of-round real beam. 
The minimum aperture sizes for the real beam after propagation in free space can be 
computed using just the three equivalent cylindrical beam constants. Because the equiva-
lent cylindrical beam is round for all z like the radial modes discussed in Section 1.4, the 
subscript r is used to denote its constants, and the beam is sometimes called the equivalent 
radial mode. 

The equivalent cylindrical beam is best understood by considering the plots of Figure 
1.16a. These were measured with the ModeMaster beam propagation analyzer.9 The pro�ler 
built into this instrument uses two knife-edge masks at right angles to each other. They are 
mounted on a rotating drum at 45° to the scan direction of the drum. This arrangement is 
equivalent to a vertical and a horizontal knife-edge, each scanned at 1/√2 times the actual  
scan speed of the drum, when the analyzer head’s azimuth angle is set to 45° to align one 
knife-edge with the horizontal. Each run to measure beam diameters versus propagation 
distance produces two propagation plots for the diameters at right angles to the two edges. 
Normally the analyzer head’s azimuth angle is adjusted to record the propagation plots in 
the two principal planes of the beam. For Figure 1.16a, the analyzer head’s azimuth angle 
was incremented in 15° steps through 90° and new sets of propagation plots recorded for 
each increment, generating the seven plots shown. 

The asymmetric beam of Figure 1.16a was formed by inserting a Brewster-angle half 
prism41 in the cylindrically symmetric beam Mode E of Figure 1.10b and Figures 1.2g 
and h. The prism was oriented as in Figure 1.16b to produce a compression of the beam 
diameter in one dimension in the (x, z) plane. The prism thus introduces astigmatism and  
waist asymmetry to the beam. From Figure 1.16b the incoming wavefront of radius of cur-
vature R has a sagitta of the arc, d = W2/2R, which remains unchanged upon the transit of 
the prism while the beam diameter is compressed. For the Brewster-angle prism, it can be  
shown41 that the exiting beam diameter is smaller by the factor 1/n, where n is the index of 
refraction of the prism material, here silica with n = 1.46. The radius of curvature exiting 
the prism is thus R/n2. The M2 of the beam is unchanged in traversing the prism. From 
these three conditions both the reduced waist diameter in the x-direction and the astig-
matic distance introduced in the exiting beam can be determined [using Equations 1.16b 
and 1.17b and a little algebra] to be 2W0/n and As = (z0y − z0x) = −(1 − 1/n2)z0, where z0 is the  
propagation distance from the input waist location to the prism. 

The propagation plots of Figure 1.16a are for the directly measured internal beam, behind 
the lens of the beam propagation analyzer. These were used because the beam diameter 
and propagation distance scales of the internal plots remain the same as the instrument 
azimuth is varied and this facilitates comparison of the plots. Notice in the top plot [45° 
instrument azimuth], because the internal propagation plots are shown, the axis with the 
n-times larger divergence and 1/n-times smaller waist is the y-axis, interchanged with the 
compressed x-axis of the external beam in the beam-lens transform of Section 1.5. 
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As the instrument azimuth angle moves around from the initial 45° value (which 
measures the principal propagation planes for this beam) to 90°, the plots from the two 
orthogonal edges coalesce into a single “average” curve, then separate with continuing 
azimuth increments. The plots at 135° are identical to the 45° plots with the x-edge and 
y-edge curves interchanged. The dashed and dotted vertical lines on each plot locate 
the waists for the x-edge and y-edge curves, respectively. The beam constants for the sym-
metric, 90°-azimuth plots are those for the equivalent cylindrical beam. 

To visualize this process of cutting the beam caustic surface with two orthogonal planes, 
then rotating the azimuth of the cutting planes, look at Figure 1.15c. The initially vertical 
(y-edge) plane is cutting the caustic in its highest divergence plane, and moves towards 
a lower divergence W(�, z) plot as the azimuth is incremented. The initially horizontal 
(x-edge) plane is cutting the caustic in its lowest divergence plane, and moves toward a 
higher divergence �W( , z) plot as the azimuth is incremented. When the cutting planes 
reach 45° azimuth to the principal planes of the beam, the orthogonal propagation plots 
match as they would for a round beam with no asymmetries. 

Siegman42 gives the following expressions for the beam constants of the equivalent cylin-
drical beam in terms of the six constants of the real beam: 

The columns of numbers in Figure 1.16a demonstrate that the beam constants of the equiv-
alent cylindrical beam are the same when computed from plots for any azimuth, a neces-
sary condition for the equivalent cylindrical beam concept to be useful. The equivalent 
cylindrical beam quality, waist location, and waist diameter were computed for each azi-
muth increment from the plots shown, and normalized to the constants measured for the 
90° azimuth shown in the box. The percentage errors for these measurements are given in 
the three columns; the magnitudes of all errors are no larger than 2.5% and are within the 
instrument measurement tolerances. 

From Equations 1.58 and 1.59 for an astigmatic beam the equivalent cylindrical waist 
lies between the two astigmatic waists, and the square of the cylindrical waist diameter 
exceeds the sum of the squares of the two astigmatic waist diameters. For a beam with no 
astigmatism (z0x = z0y) the equivalent cylindrical constants become: 
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A beam of this type with different values of  M 2 
x and  M2

y  will have a round spot at the waist  
plane, but not in the far-�eld as illustrated in Figure 1.15c. 

1.8.3 Other Beam Asymmetries: Twisted Beams, General Astigmatism 

The shape of a beam caustic surface is determined by the straight-line paths of rays where  
they emerge at the margin of the particular beam. Such shapes are all examples of ruled  
surfaces and those depicted in Figure 1.15 are hyperboloids. In principle, any paraxial  
ensemble of light rays (i.e., a beam) will be enclosed by a ruled surface. Another example  
is a taut ribbon, and these surfaces can be twisted. Imagine the shapes of Figure 1.15 as  
taut, �exible membranes. Start with a shape similar to Figure 1.15b except with all of the  
cross sections being horizontally elongated ellipses (a beam with both asymmetric waists   
and divergence). Mentally rotate the far-�eld ellipses to vertical, the distant one by +90°  
and the foreground one by −90° azimuth, while keeping the waist ellipse horizontal. In  
propagating from z = −∞ to +∞ the elliptical cross sections of this beam twist through 180°  
of azimuth. Such a twisted beam can be physically realized and is said to have general  
astigmatism.15,16 Here all spots can be ellipses,15 a waist location is de�ned by a cross section  
having a uniform phasefront,16 and the Rayleigh range is de�ned as the distance of propa-
gation away from the waist that increments16 the Gouy phase by �/4.  

Such beams are produced by nonorthogonal5 optical systems, for example, two astig-
matic elements in cascade with azimuth angles that differ by something other than 0°  
or 90°. Rays in the (x, z) and the (y, z) planes are coupled and cannot be independently  
analyzed. The general theory for spatial characterization of such beams uses ray matrices  
weighted by the Wigner density function4,17 averaged over a four-dimensional geometrical  
optics “phase space.” Rays are described by 4 × 1 column vectors; each vector gives the  
position x, y and slope u (=  �x),  v (=  �y) of the ray at the location z along the propagation  
axis. There are 16 possible second-order moments of these variables; they propagate in   
free space with a quadratic expansion law.6,26 The square of the second-moment diameter  
D2

4V  is such a second-order moment and this is theoretical support this diameter de�nition  
enjoys. The beam matrix  P, the 4 × 4 array of these 16 second-order moments, then fully  
characterizes the beam with general astigmatism. 

The 16 possible second moments can be listed as 

2 2x ; xy ; xu ; xv ; y ; ’  yx ’; yu ; yv ; 

2 2u ; ’  ux ’; ’ uy ’; uv ; v ; ’  vx ’; ’ vy ’; ’ vu ’. 

However, by symmetry  〈xy〉 = 〈yx〉, and so on; so that only ten of these are independent  
and in the list those in single quotes are redundant. The moments containing only spatial  
variables  〈x2〉, 〈xy〉, 〈y2〉 can be evaluated as the variances of irradiance pinhole pro�les in   
the  proper direction; the  〈xy〉 pro�le is at 45° to the x- or y-axes. The moments contain-
ing the  angular variables cannot be evaluated directly, but are found by inserting optics  
(usually a cylindrical lens) and measuring downstream irradiance moments at appropri-
ate propagation distances. 

51 Characterization of Laser Beams: The M2 Model  

For a beam with no astigmatism and no waist asymmetry the equivalent cylindrical beam 
quality is: 
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From these moments, beam constants are calculated. The �rst six are the familiar set 2W0x, 
2W0y, z0x, z0y, M0

2 
x, M0

2 
y . The other four address the rate of twist of the phasefront and spot 

pattern with propagation distance, the generalized radii of curvature of the wavefronts 
and the orbital angular momentum43 carried per photon by the beam. Beam classes are 
de�ned44 by values of invariants calculated from the ten second-order moments. A simple 
association of the resultant shapes for the beam caustic envelopes with each class is not 
immediately available from these de�nitions. 

Twisted-phase beams have been generated by inserting an appropriate computer 
designed diffractive optical element into an ordinary beam.45,46 The �rst report of a beam 
from an “ordinary” laser (not one deliberately perturbed to produce a twisted phase) that 
required all ten matrix elements for its characterization, appeared in 2001.18 Nonorthogonal 
beams can arise in nonorthogonal resonators,5 such as in twisted-ring resonators. Until 
instruments are developed17 to measure all elements of the beam matrix P and then are 
applied to characterize beams from many of lasers, the fraction of laser beams with gen-
eral astigmatism will not be clear. The techniques discussed in previous sections are the 
methods that can be used together with various auxiliary optics to measure these second-
order moments. 

1.9 APPLICATIONS OF THE M2 MODEL TO LASER BEAM SCANNERS  

This section applies previous concepts and results to determine appropriate speci�cations 
for a laser used in an industrial scanning system, by working backward from the beam 
properties needed at the work surface. This example shows how parts of the M2 model 
interact in the design of a system and how the model can be applied to solve simpler indi-
vidual problems. 

1.9.1 A Stereolithography Scanner  

The example analyzes an actual stereolithography scanning system, shown in Figure 1.17. 
A multimode ultraviolet beam (of 325 nm wavelength) writes on a liquid photopolymer 
surface under computer control, selectively hardening tiny volume elements of plastic to 
build up a three-dimensional part. After a 1/4-mm thick slice (cross section) of the part 
is completed, a jack supporting the growing part inside the vat of liquid lowers the part 
and brings it back up to 1/4 mm below the surface for the next slice to be written. Parts of 
great complexity can be formed overnight directly from their CAD-�le speci�cations. This 
process is called stereolithography and has created what is termed the “rapid-prototyping” 
industry. 

Beam characteristics for the laser are shown in the data report of Figure 1.17. Much of the 
scanning system design elements used in this analysis are available in the literature.47–50 

The beam from the laser is expanded in an adjustable telescope that also focuses the spot 
on the liquid surface at the optimum beam spot size47 for the solidi�cation process, 2W02 = 
0.25 mm ± 10%, measured with a slit pro�ler. 

Notice �rst that the system geometry de�nes a maximum M2 for the laser beam in this 
application. The rapidly moving y-scan mirror bene�ts from a low moment of inertia and 
has a small diameter A. This is the minimum diameter needed to just pass the expanded 
beam incident on the mirror, making the beam diameter at the mirror 2WA be smaller than 
A only by some safety factor 
 or 2WA = A/
. From this mirror, the beam is focused on the 
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MODEMASTER (tm) Beam Propagation Analy zer REPORT 

Scan Head s/n D630 Detr–1 silicon s/n D429 

Lens–1S singlet: s/n D650 f=109.16mm @ 325.0nm 
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FIGURE 1.17 
A stereolithography scanning system based on a helium–cadmium ultraviolet multimode laser. The pinhole 
focal plane pro�le (upper inset) shows the irradiance pro�le at the surface of the liquid photopolymer. The 
printout from the commercial beam propagation analyzer (lower inset) applies to the beam at the laser output, 
location (−1-). Laser data courtesy of CVI Melles Griot, Inc. 

liquid surface below at the throw distance T shown in Figure 1.17. The maximum con-
vergence angle of the beam focused on the vat surface is therefore Θ2|max = A/
T (a larger 
angle would over�ll the y-scan mirror). The focused beam waist diameter, given in the 
previous paragraph is 2W02; a diffraction-limited beam of that waist diameter—a normal-
izing gaussian—has a divergence angle of �n = 2�/�W02. This de�nes a maximum M2 for 
this application by Equation 1.22 of M2|  =  Θ2| /�  = �W02A/2�
T.max max n 

This may be evaluated in two different ways. From scaling a photograph of the system,49 

an estimate for T can be made as between 0.6 m and 0.7 m, or a reasonable value is 
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T = 0.65 m. The y-scan mirror diameter A is likely that of a small standard substrate, such  
as A ~ 7.75 mm, and a likely safety factor is about 
 ~ 1.5, yielding 2WA ~ 5.2 mm and Mslit 

2 

~ 4.8. This rough estimate is re�ned in Section 1.9.5. This beam quality is given in slit units 
because this is the currency for the focal diameter at the vat; the assumption being made 
that the value of 2WA used is also in slit units for this estimate. 

Alternatively, the beam diameter A/
 can be determined working back from the vat to 
the y-scan mirror since it is known that the laser of Figure 1.17 is designed for this appli-
cation and that the measured data (given in Figure 1.17) are within the nominal beam 
speci�cations. Those measurements are in knife-edge currency9 (see Section 1.9.4). Once 
the knife-edge waist diameter at the vat is found, so is �n = 2�/�W02 and 2WA = TΘ = TM2�n, 
all in knife-edge units. A diameter conversion is thus required to bring the diameter at the 
waist into knife-edge units for a consistent currency. 

1.9.2  Conversion to a Consistent Knife-Edge Currency  

By Equation 1.48, for any diameter de�nition i, the ratio Di/Mi equals the embedded gauss-
ian diameter 2w and therefore the conversion from slit to knife-edge diameters at the vat is 
just Dke = Dslit(Mke/Mslit). The square root of the beam quality Mke is known from the report 
(Figure 1.17), Mke = √(5.24) = 2.289. Here the R or “round beam” column value was used, the 
equivalent cylindrical beam constants as discussed in Section 1.9.4. To determine Mslit, use is 
made of the expression just above Equation 1.50 relating any Mi to any Mj for different diam-
eter de�nitions i and j. This conversion formula requires knowledge of the M2 of the starting 
currency j; M2 is known here only for knife-edge units, so j = knife-edge. The desired ending 
currency is in slit units, i = slit. Then Equation 1.50 gives the required conversion constant, in 
terms of the conversion constants to second-moment diameters from Table 1.1, as: 

This gives (Mslit − 1) = 0.856(Mke − 1) = 1.103, thus Mslit = 2.103 and Mslit 
2 = 4.423. 

Then Equation 1.48 yields the focal diameter at the vat in knife-edge units, 2W02 ke = 0.272 
mm, a knife edge to slit diameter ratio of 1.088 for this beam. The “normalizing gaussian”  
divergence angle above is then evaluated as �n = 1.521 mr, the maximum convergence 
angle is larger than �n by M2 = 5.24, making the beam diameter at the y-scan mirror be 2WA 

= TM2�n = 5.180 mm, all in knife-edge units. 
For comparison, using the knife-edge to second-moment conversion constant from 

Table 1.1 and Equation 1.47 gives the second-moment beam quality and beam diameter at 
the vat of M4

2 
� = 4.19 and 2W02|4� = 0.243 mm. The irradiance pro�le in Figure 1.17 shows 

the relative size of the second-moment diameter to the knife-edge diameter. It is evident 
that the former would require a larger safety factor 
 than the latter if used in estimating 
a safe minimum mirror aperture. 

For the remainder of this section, diameters are all in knife-edge units and for simplicity 
the subscripts indicating this are suppressed. 

1.9.3 Why Use a Multimode Laser? 

What is the advantage of a multimode laser in this application? First, the critical optic, 
the scan mirror of diameter A, required for the larger multimode beam diameter is 
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of reasonable size, so it is possible to use such a larger beam here. The significant 
advantage is seen from the product data sheet for this laser (CVI-Melles Griot Model 
74 Helium–Cadmium laser): with single isotope cadmium used in the laser (the X 
models on the data sheet) the multimode power is 55 mW, the fundamental-mode 
power is 13 mW, a ratio of 4.2 times. With natural isotopic mix cadmium, the num-
bers are 40 mW and 8 mW, a ratio of 5 times. Thus the laser’s output power is roughly 
proportional to its M2, making the multimode laser considerably smaller and less 
expensive than a fundamental-mode laser would be at the power level required for 
this application. 

1.9.4 How to Read the Laser Test Report 

Notice that the beam quality number used in Section 1.9.2 was from the “R” column (for 
radial or round mode) of the REPORT shown in Figure 1.17. These are the beam con-
stants for the equivalent cylindrical beam discussed in Section 1.8.2, the best theoretical 
average6,40,42 of the X and Y column constants for the two principal propagation planes 
on the report. Since there is less than 4% difference between Mx 

2 and My 
2, it is appro-

priate to use the average values in the R column and treat the beam as round for this 
exercise. The fact that the report is all in knife-edge units is signi�ed by the “clip-levels” 
line reading 16%/84% (adjust: times 2.00) as explained in Reference 9. The EXTERNAL 
label means these constants are for the original beam external to the instrument, after the  
lens transform has been done from the constants measured for the INTERNAL auxiliary 
beam inside. Next, listed for the two principal propagation planes in the X and Y columns, 
and the equivalent cylindrical beam in the R column, are: the external beam waist diam-
eter 2W0; the beam diameter 2We at the instrument’s reference surface (the beam entrance 
plane at the front bezel, designated plane B); the waist location z0 measured from plane 
B (the zero point of the beam propagation axis) with negative values being back towards 
the laser;9 the Rayleigh range zR; and the beam divergence. Lastly, the signi�cant beam 
asymmetry ratios are listed, with the astigmatism normalized to the equivalent cylindri-
cal beam’s Rayleigh range. 

The whole report is readily converted into a different currency with a diameter a factor 
of � larger, if desired, by multiplying the M2 values by �2, the diameters and the divergence 
by �, and leaving the z0, zR, values and the asymmetry ratios unchanged. 

1.9.5 Replacing the Focusing Beam Expander with an Equivalent Lens 

The beam expander of Figure 1.17, when left at a �xed focus setting, can be replaced with 
an equivalent thin lens placed at the y-scan mirror location, with the laser moved back 
a distance z01 from the lens, as shown in Figure 1.18b. The propagation over z01 expands 
the beam to match the spot size at this mirror. To �nd z01, Equation 1.16a is used to �nd 
the propagation distance for the required beam expansion of � = 2WA/2W01 = (5.180 mm)/ 
(1.471 mm) = 3.521. Here 2W01 is the laser’s waist diameter in 1-space, on the input side of 
the equivalent lens, from the report of Figure 1.17. From Equation 1.16a, � = √[1 + (z01/zR1)2], 
yielding z01/zR1 = √[�2 − 1], and with the 1-space Rayleigh range zR1 = 0.995 m taken from 
the report, there results z01 = 3.359 m, also shown in Figure 1.18b. 

The equivalent lens focal length fequiv ≡ f is next properly chosen to bring this beam to a 
focus at the vat. Since the waist diameters on either side of the equivalent lens are known, 
by Equation 1.26 the required transformation constant � is also known. This then gives by 
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56 Handbook of Optical and Laser Scanning 

FIGURE 1.18 
Analysis of the stereolithography system. (a) Optimum focus to minimize spot-size change over the working 
surface. For clarity the scan angle shown is larger than the actual scan angle of ±15°. (b) Replacement of the 
focusing beam expander with an equivalent thin lens of focal length fequiv. Parameters for the equivalent lens 
transform of the unperturbed beam are shown. (c) De�nition of an out-of-roundness parameter � ≡ (quadratic 
ratio of astigmatic diameters) for the focal region of an astigmatic beam. The quantities shown are all for the 
vat-side focal region or 2-space. 

Equation 1.24 a quadratic equation solvable for f: 

Inserting 2W02 = 0.272 mm and 2W01 = 1.471 mm in Equation 1.64 gives Γ = 0.03422, and 
this in Equation 1.65 produces f = fequiv = 0.5511 m. In what follows, a precise value of z02 

that corresponds to T in Figure 1.17 is needed and the only value at hand is the previous 
estimate of T = 0.65 m for the y-scan mirror to vat distance. A precise value is needed 
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consistent with the quantities used in the lens transform z01 and fequiv above. This is given 
by Equation 1.28, now that �, z01, and fequiv are known, as z02 = 0.6472 m. This also shows that 
the original estimate of T was reasonable. The nominal values for the quantities involved 
in the equivalent lens transform are shown in Figure 1.18b. The effects of perturbing the 
nominal values are studied in Section 1.9.7. 

1.9.6 Depth of Field and Spot-Size Variation at the Scanned Surface 

With the equivalent lens transform de�ned, questions relating the input beam to the 
scanned beam can be answered. First, what is the amount of defocus over the scanned 
�eld? From Equation 1.27, the Rayleigh range in 2-space at the vat is zR2 = Γ zR1 = 3.404 cm. 
The longest radial scan distance is to the corner of the square vat of side length L = 250 mm, 
Figure 1.17, a distance of √2L/2 = L/√2. The variation in distance from the y-scan mirror to  
the corner of the square vat’s working surface is √[T2 + (L/√2)2] − T = 2.371 cm, or 0.696 times 
the vat side Rayleigh range. By Equation 1.16a, from the center of the vat to the far corner, 
the spot size of the beam will grow by a factor of √[1 + (0.696)2] = 1.219. The simplest way 
to reduce this range is to focus the beam at the middle of a side edge of the vat, at a radial 
distance of L/2 [see Figures 1.17 and 18a]. This splits the defocus amount 2� equally among 
the corners and the middle, to 11% maximum change in spot diameter on the liquid sur-
face over the scanned �eld. Equivalently, the liquid level could be raised by �. However, for 
simplicity the focal distance will be left at T here for the remainder of this analysis. 

1.9.7  Laser Specifications to Limit Spot Out-of-Roundness on the Scanned Surface  

Next, the inverse lens transform, from the vat side back to the laser side, is applied to 
transfer scanning beam speci�cations into laser-beam speci�cations. From Equation 1.31, 
for the transform equations going from 2-space to 1-space, use the inverse transformation 
constant Γ21 = 1/Γ12. 

Since the lens transformation constant depends on both the input waist location and the 
Rayleigh range, in general beams without astigmatism but with some other asymmetry 
when transformed become astigmatic as the results in the remainder of this section show.  
The plan, starting from the nominal, round, equivalent cylindrical beam of Figure 1.17 
transformed to a round beam at the vat, is to perturb the beam at the vat to have a ~10% 
out-of-round spot. This beam is then transformed back to the laser to see which 1-space 
variables change and by how much, to account for the perturbation on the scanned side of 
the lens. The 10% out-of-roundness of the scanned spot is deemed acceptable because that 
amount of growth in spot diameter over the �eld was found acceptable above. 

The perturbations are made as equal changes of opposite sign in the two independent 
propagation planes. For example, 10% out-of-roundness due to waist asymmetry is accom-
plished with a +5% change in W02y and a −5% change in W02x. The resulting changes in 
the 1-space beam constants are not completely symmetrical, due to the nonlinearity of the  
beam-lens transform. The effect of perturbing a constant in only one principal propagation 
plane is given directly in the tables by the percentage changes, the column in parentheses, 
for 1-space shown for that plane. Because the propagation planes are independent, so are 
the percentage changes in each plane. 

1.9.7.1 Case A: 10% Waist Asymmetry  

Assume 2W02x is reduced 5% (to 0.259 mm), and 2W02y is raised 5% (to 0.286 mm) to give a 
waist asymmetry different from unity by 10%. To calculate the effect on the input beam, �rst 
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the new Rayleigh ranges for the beam at the vat are found as zR2x = 3.088 cm (reduced 10%)  
and  zR2y = 3.753 cm (increased 10%). For each of these a new 1/� for the inverse transform  
is computed from Equation 1.24, followed by the remaining constants through Equations  
1.26 through 1.28. The results for the 1-space beam constants, and their percentage change  
shown in parentheses are summarized in Table 1.2. The initial value of 1/� is 29.2259. In   
the table As/zRr stands for the normalized astigmatism As/zRr = (z01y − z02x)/zR1r, where zR1r is   
the Rayleigh range in 1-space of the equivalent cylindrical beam. 

The +10% pure waist asymmetry at the vat (i.e., accompanied by no astigmatism or   
divergence asymmetry) for the most part transforms through the lens to a correspond-
ing +8% waist asymmetry at the laser. The same is true for the divergence asymmetry.   
The different waist diameters at the vat, generate different Rayleigh ranges there and  
in the lens transform produce a −12% normalized astigmatism at the laser. Specify the  
laser to have less than these asymmetries to keep the scanned beam out-of-roundness   
below 10%.  

1.9.7.2 Case B: 10% Divergence Asymmetry  

Here it is assumed  M 2 is reduced 5% and M 2
x y  is increased by 5% to give a +10% change in  

the 2-space divergence asymmetry without changing the waist asymmetry W02y / W02x = 1. By  
Equation 1.18 or 1.19 the Rayleigh ranges on the vat side of the lens change inversely with   
their  M2 to make them zR2x = 3.088 cm, zR2y = 3.753 cm. Applying Equations 1.24 through  
1.28 to each principal plane produces Table 1.3, the results for the 1-space beam constants  
and their percentage change. 

The divergence asymmetry of the beam at the vat carries through the lens to the laser,  
and implies some astigmatism is necessary at the laser (but half as much as Case A) to get  
pure divergence asymmetry at the vat. 

TABLE 1.2  

Laser Constants Corresponding to 10% Waist Asymmetry at the Scanned  
Surface  

Quantity x Ratios, y/x Ratio was: 

1/Γ 29.816 (+2.0 %) 28.540 (−2.4%) 0.957 (−4.3%) 1 

2W01 (mm) 1.415 (−3.8%) 1.526 (+3.8%) 1.079 (+7.9%) 1 

z01 (m) 3.416 (+1.7%) 3.294 (−2.0%) As/zRr = −12.3% 0 

zR1 (m) 0.921 (−7.5%) 1.071 (+7.7%) 1.163 (+16.4%) 1 

Θ1 (mr) 1.537 (+3.8%) 1.425 (−3.7%) 0.927 (−7.3%) 1 

y 

TABLE 1.3  

Laser Constants Corresponding to 10% Divergence Asymmetry at the  
Scanned Surface 

Quantity x Ratios, y/x Ratio

1/Γ 28.896 (−1.1%) 29.532 (+1.0%) 1.022 (+2.2%) 1 

2W01 (mm)   1.463 (−0.6%) 1.478 (+0.5%) 1.011 (+1.1%) 1 

z01 (m)   3.328 (−0.9%) 3.389 (+0.9%) As/zRr = +6.1% 0 

zR1 (m)   1.033 (+3.8%) 0.958 (−3.8%) 0.927 (−7.3%) 1 

Θ1 (mr)   1.416 (−4.3%) 1.544 (+4.3%) 1.091 (+9.1%) 1 

y  was: 



W 1 1
2 

2x (z02r ) ⎛ . 9⎞ 
= 1+ ⎜ ⎟ = 1.059

W02x 
⎝ 3.40⎠  

⎡ W2y (z02x ) ⎤ ⎡W2x (z02y ) ⎤  E = ⎢ ⎥ ⎢ ⎥ .   (1.66)  W W  ⎣⎢ 02y ⎥⎦ ⎣ 02x ⎦ 
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1.9.7.3 Case C: 12% Out-of-Roundness  across the Scanned Surface Due to Astigmatism  

A little discussion is required to de�ne an out-of-roundness parameter for the focal region  
of an astigmatic beam in general before applying the concept to the focus at the vat. It  
has already been shown (Section 1.9.6) that the path length to the liquid surface changes  
over the scanned �eld by 2.37 cm. This path change causes a spot-size variation of 21.9%  
if the spot is focused at the center of the vat, and 11% if focused at the middle of a vat  
edge to reduce the variation across the scanned surface. On top of this, there is an out-of-
round change in the spot, if the beam is astigmatic. The fastest change of shape with  z of   
the elliptical spots in a beam with pure astigmatism, Figure 1.16a, takes place between the  
two astigmatic waists in the focal region, which is the working region for the beam in the  
stereolithography system. Suppose the astigmatic distance z02y − z02x is matched to the path   
length change of 2.37 cm but the edge focus is used to split this distance (see Figure 1.18a).  
This makes the largest path between an astigmatic waist and the liquid working surface  
anywhere in the �eld be 1.19 cm. Then from Equation 1.16a and Figure 1.18c 

where  z02r is the equivalent cylindrical beam waist location halfway between the x and  y   
waist locations. The spot at the vat only goes to 5.9% out-of-round, but the orientation of  
the out-of-round ellipse is along the y-axis in the corners where the liquid is below z02r and  
along the x-axis in the middle of the �eld where the liquid is above z02r. This can have an   
unpleasant effect on the part, because the textures of the x- and y-formed surfaces differ.  
Therefore, an adequate out-of-round parameter for the focal region of an astigmatic beam   
can be de�ned (Figure 1.18c) as  �  ≡ (quadratic ratio of astigmatic diameters), where the  
product of the x-direction and y-direction out-of-round diameter ratios is 

The ratios are evaluated at the two astigmatic waist locations as indicated in Equation 1.66.   
From the above,  � = (1.059)2 = 1.12 for an astigmatic distance equal to the scanned depth of   
�eld; this is taken here as “12% out-of-roundness due to astigmatism” for the �nal example.  

The calculations proceed in this example with  z02x = (0.6472 − 0.0119) m = 0.6353 m and  
z02y = (0.6472 + 0.0119) m = 0.6591 m, with the other 2-space beam parameters left at their  
unperturbed values of Figure 1.18b. Table 1.4 gives the results for the 1-space beam. 

TABLE 1.4  

Laser Constants Corresponding to a 12% Out-of-Roundness  due to  
Astigmatism (� = 1.121) across the Scanned Surface 

Quantity x y Ratios, y/x Ratio was: 

1/Γ 36.794(+25.9%) 23.708 (−18.9%) 0.644 (−35.6%) 1 

2W01 (mm) 1.651 (+12.2%) 1.345 (−9.9%) 0.803 (−19.7%) 1 

z01 (m) 3.651 (+8.7%) 3.110 (−7.4%) As/zRr = −52.4% 0 

zR1 (m) 1.253 (+25.9%) 0.807 (−18.9%) 0.644 (−35.6%) 1 

Θ1 (mr) 1.318 (−11.0%) 1.641 (+10.9%) 1.216 (+24.6%) 1 
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This type of asymmetry, transformed back to the laser side of the equivalent lens, is 
devastating to the 1-space beam constants. More correctly, it would take devastating input 
beam characteristics to produce this large a “quadratic-ratio-of-astigmatic-diameters” 
parameter. There are large percentage changes in 1-space waist asymmetry, astigmatism, 
and divergence asymmetry. Actual lasers with asymmetries this large would be rejected 
by the laser manufacturer, and the scanner manufacturer would not have to deal with 
them. Lasers with suf�cient beam asymmetry to give � = 1.12 at the scanned surface would 
not make it into the �eld. 

In conclusion, the strictest speci�cations found for the laser to meet upon incoming test-
ing were from Case A, yielding 10% waist asymmetry at the vat surface. To stay below this 
out-of-roundness at the vat, the analysis gave bounds at the laser of less than 12% normal-
ized astigmatism and less than 8% waist and divergence asymmetry. These values were 
easily met by the laser tested and reported in Figure 1.17. In an actual situation of setting 
laser speci�cations, several more examples should be run, including cases starting on the 
laser side and calculating the asymmetries that result in the scanning beam. Readers jour-
neying this far into this applications section should now have suf�cient analytical tools 
provided by the M2 model to complete those calculations themselves. 

1.10  CONCLUSION: OVERVIEW OF THE  M2 MODEL  

The M2 model provides description of real beams by generalizing the equations for the 
ideal fundamental-mode beam. Any real beam, whether made up of modes from a stable 
laser resonator or not, is larger in diameter by the factor M—for all propagation distances 
z—than the embedded gaussian beam implicit within it. Thus the change in equations 
takes the form of replacing the 1/e2 radius w of the embedded gaussian beam by W/M, 
where W is the radius of the real beam. This replacement generalizes both the beam propa-
gation and beam-lens transform equations. 

The real beam, with waist diameter 2W0 being larger than the embedded gaussian by 
the factor M for all z, diverges at an M times larger rate. All diffraction-limited beams have 
a gaussian irradiance pro�le, and one of waist diameter 2W0, being M times larger than 
the embedded gaussian diverges at a rate 1/M as fast as the embedded gaussian. Hence 
the real beam divergence is M2 times larger than the diffraction limit. This identi�es M2 

as a beam invariant unchanging in free space propagation or transmission through lenses, 
and as a measure of the beam quality. An M2 of unity is the highest quality, a diffraction-
limited beam, and real beams with larger values have increasing degrees of higher-order 
mode content and wavefront aberration (and hence are also called mixed-mode beams). 

To apply this analytical description of a mixed-mode beam, its M2 must �rst be mea-
sured, and here the simplicity of the ideas becomes more complex. The measurement 
requires �nding the scale length for expansion of the beam diameter with propagation, zR, 
the Rayleigh range. Several diameters at well-chosen z locations on both sides of the waist 
are determined and this data is �t to the correct hyperbolic form. The �t gives three beam 
constants—the beam quality, the waist diameter, and the waist location—for each inde-
pendent and orthogonal principal propagation plane. 

The �rst additional complexity is that different de�nitions give different numerical val-
ues for the diameters for the mixed mode and the higher-order modes it contains. Beam 
diameters are still measured from beam irradiance pro�les, but different pro�ling masks 
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(pinholes, slits, knife-edges, or centered circular apertures) all give different shaped pro-
�les for higher-order modes and hence different diameters. Care is required to keep track  
of which measurement “currency” is in use and to not mix different currencies. A standard 
diameter de�nition—the second-moment diameter, four times the standard deviation of 
a pinhole irradiance distribution of the beam—has been adopted by the ISO. However, 
this diameter is computation intensive and dif�cult to measure reliably because of sen-
sitivity to noise on the wings of the pro�le. Therefore, conversion rules have been devel-
oped applicable to cylindrically symmetric mixed-mode beams permitting measurements 
done in one diameter currency to be changed into another. The basis of these rules is our 
observation that higher-order modes turn on and off in a characteristic sequence as the 
diameter of the circular limiting aperture in the resonator is opened. This associates with 
the increasing second-moment M2 a unique set of mode fractions, allowing accurate con-
version rules to be derived. 

The second additional complexity is that the diameter measurements and curve �ts done 
to determine M2 may give unreliable answers unless several pitfalls in the process are 
avoided. Chief among these is that the mixed-mode waist must be accurately located and 
its diameter physically measured and not inferred or assumed. Since the waists of most 
lasers are buried inside the resonator, this requires the use of an auxiliary lens to form an 
auxiliary beam with an accessible waist. The constants determined for this auxiliary beam 
then are transformed back to those for the original beam by means of the beam-lens trans-
form equations. Commercial instruments that do this automatically are available. 

Beams with pure forms of the classic asymmetries have been illustrated, those with only 
astigmatism, or waist asymmetry, or divergence asymmetry. Beams with combinations 
of asymmetries may be represented by pairs of propagation plots, one for each principal 
propagation plane. Beam asymmetries can also be interpreted as deviations from a theo-
retical “best weighted average” round beam, the equivalent cylindrical beam. There are 
also beams not directly covered in the M2 model whose principal propagation planes twist 
in space like a twisted ribbon—beams with “general astigmatism.” 

Lastly, the M2 model was demonstrated by analyzing an actual laser-beam scanning sys-
tem used in stereolithography. Asymmetries causing out-of-round spots on the scanned 
surface were analytically projected back through the delivery system to determine the size 
of the corresponding asymmetries at the laser source. 

There are many applications of the M2 model. It quanti�es the mode speci�cations for 
commercial lasers, with the means to test to these speci�cations. Its use permits design 
of multimode lasers and their beam delivery systems. The beam transformations occur-
ring in nonlinear optics can be analyzed. The divergence of a high M2 laser beam can be 
matched into the acceptance angle a high numerical aperture �ber, to take advantage of 
the lower cost per unit of output power of a multimode laser. These are just a few of many 
other applications, all with the backup of commercial instrumentation to make the beam 
measurement process easy and ef�cient. This chapter has provided the analytical tools to 
make these applications realities. 

ACKNOWLEDGMENTS  

The authors would like to thank Prof. Emeritus A. E. Siegman, Stanford University, 
for  many  years  of  enlightening interactions  on this  subject;  and  thank for helpful  



   
 
  
 
 

  

 

  
   

     

  
 

 
   

 
 

 
 
 
 

   
  

  
  

 
 

  
 

  
 

  
 

62 Handbook of Optical and Laser Scanning 

discussions: Gerald F. Marshall, the original editor of this book, who always has another 
intriguing question; and G. Nemes of Astigmat, who taught us about beams with general 
astigmatism. In this revised edition, Jeff Guttman of Photon, Inc. updated us on recent 
developments in cameras and pro�lers. Lastly, David Bacher and John O’Shaughnessy of 
CVI Melles Griot, Inc., and especially Gerald F. Marshall contributed very helpful and 
constructive reviews of the manuscript. 

GLOSSARY 

Astigmatism, general: The property of beams having elliptical cross sections for all z, 
with the principal axes of the ellipses rotating with propagation along the beam 
axis (nonorthogonal beams; “twisted” beams). 

Astigmatism, normalized: The difference in waist locations for the two independent prin-
cipal propagation planes divided by the Rayleigh range of the equivalent cylindri-
cal beam, As/zRr = (z0y − z0x)/zRr, usually expressed in percent. 

Astigmatism, simple: Having different waist locations in the two principal propagation 
planes, z0x ≠ z0y. 

Asymmetric divergence: Having different divergence angles Θx ≠ Θy in the two principal 
propagation planes. 

Asymmetric waists: Having different waist diameters in the two principal propagation 
planes, 2W0x ≠ 2W0y. 

Beam caustic surface: The envelope of the beam swept out by rotating the curve of the 
beam radius W(z) versus propagation distance about the propagation axis z. When 
a plane containing the z-axis and at an angle � to the x-axis cuts the caustic sur-
face the intersection gives the propagation plot for azimuth �. See the discussion 
of Figure 1.16a. 

Beam, equivalent cylindrical: A cylindrically symmetric beam constructed mathemati-
cally in the M2 model from the beam constants measured in the two principal 
propagation planes of an asymmetric beam, see the explanation of Figure 1.16a. 
The propagation plot for the equivalent cylindrical beam is obtained from the 
beams of Figure 1.15 by slicing their caustic surfaces along the z-axis at a 45° incli-
nation to the x- or y-axes. This is the best cylindrically symmetric average beam 
for a beam with asymmetry. The subscript r is used to denote the constants for this 
beam, for round or radial symmetry. 

Beam, gaussian: A uniphase beam with spherical wavefronts whose transverse irradiance 
pro�les everywhere have the form of a gaussian function. Such an idealized beam 
is diffraction limited with M2 = 1, a condition that can only be approached by real  
beams. 

Beam, idealized: The abstract mathematical description of a beam (which can have M2 = 1). 
Beam propagation analyzer: An instrument that measures beam diameters as a function 

of propagation distance, displays the 2W(z) versus z propagation plot, and curve 
�ts this data to a hyperbola to determine beam quality M2, waist location z0, and 
waist diameter 2W0. 

Beam propagation constant M2: So called because replacing the fundamental-mode radius 
w(z) in its propagation equation by w(z) = W(z)/M predicts the propagation of the 
mixed mode, of radius W(z). 
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Beam quality: The quantity M2, so called because a real beam has M2 times the divergence 
of a diffraction-limited beam of the same waist diameter; see also “normalizing 
gaussian.” 

Beam, real: An actual beam; all have at least slight imperfections and thus an M2 greater 
than one. 

Clip width: Distance (on the mask translation axis) between the points on an irradiance 
pro�le at a speci�ed fraction (such as 13.5%) of the height of the highest peak. 

Conversions, beam diameter: Empirical rules derived for beams of cylindrical symmetry, 
to convert diameters measured by one method to those measured by another, such 
as slit diameters to knife-edge diameters. 

Convolution error: Contribution to the measured diameter from the �nite size of the scan-
ning aperture; minimizing this is an important consideration for pinhole and slit 
measurements. 

Cut: A beam diameter measurement, from the cutting action of a pro�ler’s scanning 
aperture. 

Diameter, 1/e2: Beam diameter de�ned by the aperture translation distance between clip 
points on an irradiance pro�le at a height of 13.5% = 1/e2 relative to the highest 
peak at 100%. 

Diffractive overlay: Interference from high angle rays overlapping the beam, diffracted 
from the limiting aperture in the resonator. This can distort pro�les taken close to 
the laser output coupler (within a Rayleigh range). 

Eigenfunctions: A set  of functions  fn associated  with  a linear  operator  Q satisfying 
Qfn = cnfn, where the cn are scalar constants (the eigenvalues). Because of this self-
replicating property these functions occur in many physical problems, for example, 
the laser mode functions that also describe the harmonic oscillator and hydrogen  
wave functions in quantum mechanics. 

Embedded gaussian: The fundamental mode of the resonator that generates a mixed-
mode beam. The mixed-mode beam diameter is M times larger than the embed-
ded gaussian beam diameter at all propagation distances z. 

Far-�eld: The propagation region(s) of a beam many Rayleigh ranges away from the waist 
locations. In the far-�eld, the transverse extent of the beam grows linearly with 
increasing distance from the waist. 

Four-cuts method: The simplest method for determining M2, requiring only four well-
chosen diameter measurements both straddling the waist location and at the waist 
location. 

Fresnel number: The square of the radius of the limiting aperture in a resonator, divided 
by the mirror separation and the wavelength. As the aperture is opened and this 
number increases, modes of higher order oscillate and join the mix of modes. 

Gaussian: A mathematical function of the form exp(−x2); see also “beam, gaussian.” 
Hermite–Gaussian function: An eigenfunction of the wave equation including diffrac-

tion, which describes beams of rectangular symmetry, of the form of a gaussian 
function times a pair of Hermite polynomials of orders (m, n). 

Invariant, beam: A quantity that is unchanged by propagation in free space or trans-
mission through ordinary, nonaberrating, optical elements (lenses, Brewster win-
dows, etc.). 

Irradiance: The power per unit cross-sectional area of the beam. 
Laguerre–Gaussian function: An eigenfunction of the wave equation including diffrac-

tion, that describes beams of cylindrical symmetry of the form of a gaussian func-
tion times a generalized Laguerre polynomial of order (p, l). 
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M2: The ratio of the waist diameter-divergence angle product of the mixed-mode beam, to 
that for the embedded gaussian of that beam. A beam invariant, this is also called 
the “times-diffraction-limit” number, the beam quality, and the beam propagation 
factor. 

Mode: The characteristic frequencies and transverse irradiance patterns of beams formed  
in laser oscillators, described by Hermite–Gaussian and Laguerre–Gaussian func-
tions, denoted by the symbols TEMm,n, TEMp,l with m, n or p, l the order numbers 
of the function’s polynomials. 

Mode, degenerate: Two modes with the same optical frequency, and therefore, order 
numbers. 

Mode, donut: A starred mode, TEM*01, with the second-lowest diffraction loss through a 
circular limiting aperture, and an irradiance pro�le with a hole (null) in the center 
(see Figure 1.1). 

Mode, fundamental: The TEM00 mode, with a gaussian irradiance distribution, a single-
spot peaked pro�le, the lowest mode order and smallest beam diameter from a 
given resonator, and with M2 = 1 in the limit of perfection. Thus this mode has the 
lowest diffraction loss through a centered circular limiting aperture. 

Mode, higher order: Any mode of order number greater than that of the fundamental 
mode. 

Mode, longitudinal: A mode of frequency q(c/2L), where c is the speed of light and q is a 
large integer equal to the number of beam wavelengths that �t in the round trip 
path 2L of the resonator. The (q + 1)th longitudinal mode has a frequency (c/2L) 
higher than the qth; each longitudinal mode is associated with a given transverse 
mode. 

Mode, lowest order: The fundamental mode, of order number one. 
Mode, mixed: An incoherent superposition of pure modes, all from the same resonator, 

with a diameter 2W that is M times larger for all z than 2w, the fundamental-mode 
diameter from the set. Also called a real beam as only idealized beams have M2 = 
1 (indicating zero higher-order mode content). 

Mode order number: For Hermite–Gaussian modes, (m + n + 1); for Laguerre–Gaussian 
modes, (2p + l +1); the order numbers determine the mode frequencies and phase 
shifts, and give the mode’s beam quality M4

2 
V  measured in second-moment units. 

Mode or spot pattern: The two-dimensional pattern of the irradiance distribution as 
would be viewed on a �at surface inserted normally in the beam. 

Mode, pure: Any transverse mode that is not a mixture of modes of different orders. 
Mode, starred: A circularly symmetric mode that is a composite of two degenerate modes 

combined in space and phase quadrature, that is, superposed with a copy of itself 
after a 90° rotation (see Figure 1.1). 

Mode, transverse: A mode, designated by the symbols TEMm,n, TEMp,l, whose transverse 
irradiance distribution is described by the Hermite–Gaussian or Laguerre– 
Gaussian functions of m, n or p, l order numbers. 

Near-�eld: The beam propagation region(s) within a Rayleigh range from the waist location. 
Noise-clip option: A test of the sensitivity to noise of the second-moment diameter com-

puted from a pinhole pro�le, consisting of discarding any pro�le data with nega-
tive values after subtraction of the background to see the change this makes in the 
computed diameter. 

Normalizing Gaussian: A diffraction-limited, idealized gaussian beam of the same waist  
diameter as a mixed-mode real beam, whose divergence is used as the denomina-
tor in a ratio with the real beam’s divergence to compute the real beam’s M.2 
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Paraxial: Meaning close to the beam axis, this refers to a ray (or bundle of rays) propagat-
ing at an angle small enough with respect to the central axis that this angle and its 
tangent are essentially equal. 

Power-in-the-bucket: Alternate  term  for  D86, the  variable-aperture  beam  diameter  
de�nition. 

Principal diameters (of an elliptical spot): The diameters along the major and minor axes 
of the ellipse. 

Principal propagation planes, independent: The two perpendicular planes containing 
the major and minor axes of an elliptical beam spot (x- and y-axes) and the prop-
agation axis (z). In the M2 model the three propagation constants for each of these  
two planes are independent. 

Pro�le: The record of transmitted power versus translation distance of a small aperture or 
other mask scanned across the beam. 

Pro�le, knife-edge: A pro�le taken with a knife edge mask, yielding a tilted S-shaped 
curve. 

Pro�le, pinhole: A pro�le taken with a pinhole aperture and capable of showing all the 
irradiance highs and lows but requiring careful centering of the beam to the 
scanned track of the pinhole. Signal-to-noise  ratio  and  convolution  error are 
inversely dependent on the pinhole diameter making the hole diameter an impor-
tant consideration. 

Pro�ler: An instrument for measuring beam diameters, that scans a mask (pinhole, slit, or 
knife-edge) through the beam, displays the resulting pro�le, and (usually) reports 
the beam diameter on a digital readout as the scan distance—or clip width— 
between preset clip points on the pro�le. 

Pro�le, slit: A pro�le taken with a slit aperture, showing something of the irradiance 
highs and lows and not requiring centering of the beam to the scanned track. 
Signal-to-noise ratio and convolution error are counterdependent on the slit width, 
making it an important consideration. 

Propagation constants: The set of parameters: waist diameter 2W0, waist location z0, and 
beam quality M2, in each of the two principal propagation planes that de�ne how  
the transverse extent of a beam changes as it propagates. 

Propagation plot: The plot of beam diameter versus propagation distance, 2W(z) versus z. 
For the beams covered in the M2 model, the form of this plot is a hyperbola. 

Rayleigh range: In the M2 model, the propagation distance zR from the waist location 
to where the wavefront reaches maximum curvature, also the distance from the 
waist to where the beam diameter has increased by √2, and the scale length for 
beam expansion with propagation, zR = �W0

2/M2�. 
Resonator: The aligned set of mirrors providing light feedback in a closed path through the 

gain medium in a laser. Since the wavefront curvatures and surface curvatures must 
match at the mirrors, the resonator determines the mode properties of the beam. 

Scan: Movement of a mask or aperture transversely across a beam while recording the 
transmitted power; see “cut.” 

Second-moment diameter: D4�, equal to four times the standard deviation, �, of the trans-
verse irradiance distribution obtained from a pinhole pro�le. 

Second-moment, linear: The integral over the transverse plane of the square of the linear 
coordinate times the irradiance distribution, for example, 〈x2〉, used in calculating 
the variance of the distribution �2 = 〈x2〉 − 〈x〉2. 

Second-moment, radial: The integral over the transverse plane of the irradiance distri-
bution times the square of the radial coordinate measured outwardly from the 
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centroid of the spot, for example 〈r2〉, used in calculating the variance of the distri-
bution �r 

2 = 〈r2〉. In the integration the distribution is weighted by r3 since the area 
element is dA = rdr d�. 

Spot:  The two-dimensional irradiance distribution or cross section of a beam as seen on 
a �at surface normal to the beam axis. 

Stigmatic: Describes a beam that maintains a round cross section as it propagates, or more 
formally, a beam that maintains a rotationally symmetric irradiance distribution 
in free space. (The opposite term is astigmatic, where cross sections are elliptical at 
some propagation distances z.) 

TDL, times-diffraction-limit number: The number of times the divergence of a real beam 
is larger than that of a diffraction-limited beam (called the normalizing gaussian)  
of the same waist diameter; TDL = Θ/�n = M2. Also the factor by which a real-beam 
waist diameter is larger than that for a gaussian beam (M2 = 1) converging at the 
same numerical aperture (NA). 

TEMmn: (For Transverse ElectroMagnetic wave). A symbol used to designate a transverse 
mode of rectangular symmetry described by a Hermite–Gaussian function with 
polynomial orders m, n. 

TEMpl: (For Transverse ElectroMagnetic wave). A symbol used to designate a transverse 
mode of cylindrical symmetry described by a Laguerre–Gaussian function with 
polynomial orders p, l. 

Thresholding: A method for noise reduction in the readout of a CCD camera frame by 
measuring the noise level in nonilluminated portions of the frame (such as the 
corners) from which a standard deviation � is calculated, then subtracting a uni-
form noise �oor level (typically of 3� amplitude) from the entire frame before pro-
cessing the signal. 

Variable-aperture diameter: D86, (or Dxx) the diameter of a centered circular aperture pass-
ing 86.5% (or xx%) of the total power in the beam. 

Waist, beam: The location on the beam propagation plot where the beam diameter is at a 
minimum; also used for the value of this minimum diameter. 

Waist diameters: 2W0x, 2W0y, the minimum diameters in each principal propagation 
plane. 

Waist locations: z0x, z0y, the points along the propagation axis where the minimum (waist) 
diameter(s) of the beam in each of the independent principal propagation planes 
are located. 

Wave equation: Propagation of paraxial rays including the effect of diffraction are 
described by either the Fresnel–Kirchhoff diffraction integral equation of Boyd 
and Gordon2 or the simple scalar wave equation used by Kogelnik and Li;1 both 
have the Hermite–Gaussian and Laguerre–Gaussian functions as eigenfunction 
solutions. 
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