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Abstract

The cellular membrane constitutes one of the most fundamental compartments of a living cell, 
where key processes such as selective transport of material and exchange of information between 
the cell and its environment are mediated by proteins that are closely associated with the 
membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid 
molecules on the structure, dynamics, and function of membrane proteins are now widely 
recognized. Characterization of these functionally important lipid-protein interactions with 
experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) 
simulations offer a powerful complementary approach with sufficient temporal and spatial 
resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. 
In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-
protein interactions and characterizing lipid-modulated protein structure and dynamics that have 
been successful in providing novel insight into the mechanism of membrane protein function.
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1 Introduction: Biological Roles of the Cellular Membrane

Biological membranes provide effective diffusion barriers that serve not only to separate the 
interior of a cell from its surroundings, but also to define distinct compartments within the 
cell.1–3 At the same time, owing the many embedded proteins, they allow for selective and 
controlled traffic of material and processing of information reaching the cellular membranes. 
Apart from transport of nutrients into the cell and export of waste material to the outside, 
these barriers also allow for establishment of electrochemical gradients between different 
compartments with important biological consequences, e.g., ionic gradients that control the 
function of excitabile cells, differential electrochemical gradients in mitochondria, which is 
essential to energy interconversion, and formation of highly acidic environments in 
lysosomes which are required for disposal of targeted material.3

Biological membranes are complex;1 while predominantly composed of phospholipids, 
cellular membranes can contain a dizzyingly complex array of components with a high 
variability depending on location.4,5 Beyond phospholipids, common components of 
biological membranes include sphingolipids, sterols, carbohydrates attached through 
glycosylation,4 and perhaps most importantly, membrane proteins.3,4 The 
compartmentalization of the interior of the cell, and of its organelles, cannot be maintained 
through mere formation of a lipid barrier. Active regulation by membrane proteins is 
required to maintain distinct conditions on either side of the barrier, as well as to make the 
dynamic changes required as the cell and organism face changing environmental situations 
(Figure 1).6–10

Estimates of the genome suggest that 25% of proteins overall are membrane proteins.11 

Membrane proteins may pass across the full length of the bilayer, or interact in a more 
peripheral manner.3,12 They can directly influence the structure13 and even the composition 
of the cellular membrane, allowing for asymmetric membrane compositions to be 
maintained.6,7,14 Critically, membrane proteins need to also allow for controlled signaling to 
take place across the physical barrier of the cellular membrane3 (Figure 1).
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The structure and function of membrane proteins can be regulated by lipid bilayers and 
specific interactions with its lipid constituents.15–17 Specific binding events are known to 
modulate structure and function of membrane proteins,15 regulating key biochemical 
pathways such as blood coagulation.16 Some membrane proteins are even regulated by 
stereoisomer-specific binding to particular phospholipids.18

Many processes regulated through protein-lipid interactions have direct implications for 
broader human health and disease.16,17,19 In addition, the cellular membrane is a site of 
engagement for proteins involved in a wide variety of disease conditions. For instance, 
amyloid fibril formation is thought to be spurred by anionic membranes.20 Membrane 
binding proteins are also directly involved in a number of microbial attack mechanisms. A 
variety of toxins bind to cellular membranes, where they can either interfere with channels 
and receptors,21 or directly cause pore formation.22 Engagement of proteins with lipids is a 
key first step to viral infection, and lipid composition has been shown to be coupled to other 
steps in the viral replication life cycle.23,24

As the myriad ways in which lipids modulate protein function have become known, there 
has been great interest in gaining atomic-level information on the underlying molecular 
interactions. A variety of experimental techniques have been mustered to gather information 
on interactions between proteins and lipids (Figure 2). Functional techniques involve 
measuring the protein binding or turnover properties with different membrane model 
systems, such as liposomes,34 nanodiscs,35 supported lipid bilayers36 or lipid monolayers.37

Depending on the protein studied, relevant physicochemical or biochemical properties can 
be measured with techniques such as optical spectroscopy,38,39 calorimetry,40,41 

electrochemistry,42,43 mass spectrometry,44,45 magnetic resonance,46,47 etc. On the other 
hand, structural techniques measure the size and shape of protein-lipid assembly with 
varying degrees of spatial resolution. For example, by connecting a transmembrane protein 
to a fluorescent label, super-resolution fluorescence microscopy can directly visualize the 
shape of an organelle membrane envelope as well as the protein distribution in it,48–51 

approximately corresponding to a resolution of 10–100 nm. In the 1–10 nm regime, 
spectroscopy methods such as Förster/fluorescence resonance energy transfer (FRET)52 and 
double electron-electron resonance (DEER)53 can detect large conformational transitions of 
membrane transporters during their catalytic cycles.54 In comparison, small angle X-ray/
neutron scattering55,56 and atomic force microscopy (AFM)57,58 can monitor the global 
changes in cellular membranes. Zooming further in, X-ray crystallography,59 nuclear 
magnetic resonance (NMR)60 and electron cryo-microscopy (cryo-EM)27,61 can yield 
atomic details of protein-lipid interactions.

These techniques have greatly enriched our knowledge of protein-lipid interactions, but 
obtaining data at both high spatial and temporal resolutions has proven prohibitively 
challenging. While X-ray crystallography and cryo-EM provide detailed structural 
information (Figure 3), dynamic information is lacking. In addition, it is unusual to be able 
to co-crystallize the protein with more than a handful of lipids, thus giving little information 
on the effect of their interactions within the larger bilayer context. NMR, on the other hand, 
provides dynamic information, but only for relatively small protein systems. Fluorescence 
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techniques can glean information at the 10–100 nm resolution without atomic details. 
Functional assays are excellent in examining whether specific lipid-protein interactions have 
a major impact on the ultimate function, but often cannot provide information on the 
underlying molecular mechanisms.

Molecular dynamics (MD) simulation and its related methods hold great promise in 
characterizing the structural and dynamical aspects of lipid-protein interactions critical to 
membrane protein function.62,63 Atomistic MD simulations allow for temporal resolutions 
of as high as 1 fs and spatial resolutions of sub-angstrom level. It is nowadays possible to 
simulate membrane protein interactions with lipid bilayers of complex compositions and in 
increasingly realistic environments. While challenges remain, particularly in the ability to 
obtain sufficient sampling of processes in the cellular environment, simulations have already 
allowed us to characterize critical lipid-protein interactions in membrane environments.62

In this article, we aim to review simulation studies that have given insight into lipid-protein 
interactions, particularly those with functional implications. The focus of this review is on 
MD studies where a protein was simulated in the presence of explicit lipids and where lipid-
protein interactions and their structural, dynamical, or functional ramifications were 
analyzed and reported. First, we will provide an overview of major simulation techniques 
used in computational studies of biological membranes, namely, atomistic (all-atom (AA) or 
united atom (UA)), coarse-grained (CG), and multiscale descriptions, and modeling 
techniques used to embed/insert membrane-associated proteins into a lipid bilayer. Then, 
results obtained through simulations will be detailed in the subsequent two sections, divided 
into interactions between lipids and integral membrane proteins and peripheral membrane 
proteins. We will then discuss specific lipids that play special roles in modulating protein 
structure and function. Finally, effects of proteins on membrane structure as captured 
through simulations will be reviewed.

We will not include simulations of pure lipid bilayers, or studies in which a protein was 
simulated in a bilayer context, but no examination was made of interactions between the 
protein and lipids. As the focus is on lipid-protein interactions, we will generally not discuss 
simulations merely using implicit membrane models. Simulations of peptides are generally 
excluded from this review, except in cases were a truncated peptide was used to gain insight 
into a larger protein system, e.g., in studies of Ras linkers. Studies discussed were mostly 
performed from the late 1990s to the present. Some earlier simulations, which are too short 
to give information on protein-lipid phenomena, but are of interest for history of 
development of protein-lipid simulations, are covered in our historical discussion in the 
Computational Methods section.

2 Computational Methods to Characterize Lipid-protein Interactions

Biomolecular phenomena take place on a range of temporal and spatial resolutions. As with 
experimental methods, the choice of computational method is determined by the type of 
phenomena to be studied. Most computational studies of protein-lipid interactions use 
classical MD simulations, which employ Newton’s equations of motion to describe the 
dynamics of particles (e.g., atoms) in a biomolecular system. Several packages have been 
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developed to apply MD to biomolecular systems.64–66 A variety of molecular 
representations, including atomistic (all-atom and united-atom), coarse-grained (CG) and 
multiscale hybrid models, have been employed to investigate lipid-protein interactions 
(Figure 4). All of these methods use the basic approximation of representing molecules as a 
set of interaction sites (e.g., atoms), with the number of atoms in each interaction site 
defining the resolution of the method.

All-atom (AA) models employ one interaction site per atom, thereby providing high 
resolution information on molecular interactions (Figure 4). They are limited, however, to 
the microsecond (μs) timescale and to small system sizes on the order of tens of nanometers 
(Figure 5). In a related representation known as the united atom (UA) model, non-polar 
hydrogen atoms and the heavy atoms to which they are bonded are represented by one 
interaction site. Currently, the UA model has comparable limitations to the AA model in 
length and timescale.

The highly mobile membrane mimetic (HMMM) model (Figure 4) is an example of an 
approximate AA model for lipids which allows for enhanced sampling of lipid-protein 
interactions through increased lipid diffusion while maintaining an AA representation for the 
headgroup. CG models reduce the complexity of simulated systems (Figure 4) by using one 
interaction site to represent multiple atoms, allowing simulations to access slow 
biomolecular events on the scale of up to milliseconds (Figure 5). Multiscale simulations, in 
which multiple resolutions are combined in order to take advantage of faster sampling in 
coarser representations while also preserving a detailed description in at least part of the 
system (Figure 4), allow for the study of events for which multiple time and length scales 
may be relevant.

In the following section, we will describe development of these methods from their early 
(see Section 2.1) to their modern successes. We will first discuss AA and UA simulations, 
then move to CG, multiscale methods and HMMM. Finally, we will discuss methods which 
have been developed to facilitate proper embedding of proteins into the membrane, an 
important initial step in simulating membrane proteins and studying lipid-protein 
interactions.

2.1 Early MD Simulations of Biological Membranes

The earliest simulations of membranes go back to the 1980s. Since that time, a synergistic 
combination of growth in computational power and methodological advances has made 
previously unattainable phenomena, such as membrane fusion, within reach of 
computational studies (Figure 5).

To provide a proper description of protein-lipid interactions, modeling explict lipids in a 
bilayer environment was critical. The earliest simulations of highly simplified bilayers, using 
UA models, were performed in the 1980s,68 with special methods employed to avoid the 
need for explicit solvent.69,70 The models were intended to replicate the behavior of a 
decanoate-decanol-water system, which had been previously characterized experimentally.
69,70
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Simulations were carried out by van der Ploeg et al for 80 ps on bilayers consisting of 2×16 
and 2×64 decanoate molecules respectively, with periodicity in only two dimensions.69,70 

Each of ten interaction sites in the decanoate chain was assigned one of three functional 
group types, with Lennard-Jones potential terms varied to reproduce correct behavior.69,70 

The terminal interaction sites of the decanoate chains were modeled to resemble lipid 
headgroups in their behavior, with all other interaction-site types modeled as methylene 
groups or terminal methyl groups.69,70 In order to model realistic bilayer interactions in the 
absence of solvent, harmonic potentials were used to restrain the headgroup position of 
decanoate molecules and approximate their behavior in solution.69 These simulations 
allowed for characterization of lipid bilayer order parameters and tilt of lipid molecules in 
the membrane, and demonstrating the applicability of MD simulations to biological 
membranes (Figure 6A).69,70

Later simulations began to introduce greater realism to the model systems. An over 3,000 
atom, 100–ps simulation added water and ions to the UA decanoate-decanol model, as well 
as providing a fully atomistic description of the headgroups with partial atomic charges.74 

An AA, DLPE system of 2×24 lipids and 553 water molecules was later simulated for 200 
ps, improving bilayer modeling through the use of full phospholipids.75 A simulation with 
DMPC of equivalent size allowed for comparison of differences in headgroup interactions 
for DLPE and DMPC.76 An additional simulation studied lateral diffusion of DPPC in a 
solvated bilayer of 72 lipids.77 The first sufficiently large and detailed system simulated to 
be potentially useful for studying protein-lipid interactions was a set of two 200–lipid POPC 
bilayer simulations solvated with approximately 5,000 water molecules and simulated for 
120 ps (Figure 6B).71

The earliest protein-lipid simulations used the methods of van der Ploeg et al69,70 to examine 
interactions of the simplified decanoate molecule with α-helical polypeptides.78 The 
peptides studied were polyglycine and glycophorin. In one simulation, the glycophorin 
structure was kept α-helical, while the second simulation was performed allowing 
conformational changes to occur.78 In the second simulation, deviations from an α-helical 
conformation were found.78 Order parameters of lipids were assessed as a function of 
distance to the midplane of the membrane. This study effectively explored membrane effects 
on the core region of the protein. However, the short timescale of the simulation as well as 
the drastically simplified membrane model limited the conclusions.

Later simulations were performed in the 1990s on the gramicidin A channel in a lipid bilayer 
(Figure 6C). This channel proved an ideal case to study because of the small size of the 
protein and the large body of available experimental information which could be compared 
to the simulation results.72 In the earliest simulation, the channel was inserted in a solvated 
16–lipid DMPC bilayer and simulated for 500 ps. NMR order parameters were found to be 
in good agreement with experiment.72 The authors hypothesized that interactions between a 
tryptophan residue and the glycerol moiety of the lipid bilayer observed during their 
simulation might be important for stabilization of the protein-membrane interface. Later 
simulations of the channel were run for 1000 ps (1 ns), allowing for additional analysis of 
lipid-protein interactions79 and characterization of a Na+ binding site.80 In one of the earliest 
studies examining membrane effects of a peripheral protein, phospholipase A2 was 
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simulated at the surface of a monolayer, allowing for desolvation of lipid molecules in the 
proximity of the protein to be assessed.81

At this point, characterization of lipid-protein interactions was still hampered by the short 
timescales accessible by atomistic simulations. Thus during this period non-atomic 
membrane models were used in combination with atomic-level protein representations to 
study phenomena that occur over longer timescales. This included the use of Lennard-Jones 
membrane models to study ion binding in gramicidin A82 and a synthetic ion channel in an 
octane/water system for 1 ns.83 Biphasic systems of this type have continued to be used to 
study slow phenomena, such as peripheral protein binding.84 While these systems lose 
ability to describe interactions in detail, they allow for efficient sampling of protein 
positioning in a membrane-like environment.

Interest in achieving longer timescales spurred development of CG models of phospholipid 
bilayers (Figure 6D).73,85 In the earliest CG lipid bilayer simulation, DMPC was modeled 
using six bead types. One interaction site represented each, respectively, of the choline 
group, phosphate group, glycerol backbone, ester groups, and two types of alkane 
interaction sites. Simulation of the system composed of 50 DMPC lipids and 428 CG water 
molecules was sufficiently fast to allow for spontaneous formation of the bilayer (Figure 6).
73

In the remainder of this section, we follow the development of simulation methodologies for 
protein-lipid interactions beyond these early attempts to their modern incarnations. We will 
first discuss AA and CG simulations and their force field characterization, describing how 
these methods gradually improved to allow for more accurate descriptions of lipid bilayers at 
longer timescales and with greater diversity of bilayer compositions. Multiscale simulation 
methods will then be described. A discussion will follow, of the development and the use of 
a specialized membrane model allowing for enhanced lipid diffusion and consequently 
increased sampling of lipid-protein interactions, the highly mobile membrane mimetic 
(HMMM) model. Finally, we will detail a key step involved in setting up simulations of 
membrane proteins, namely, how to embed proteins within the lipid bilayer, which is a non-
trivial process particularly in the absence of detailed experimental data.

2.2 Atomic-level Simulations

Atomistic simulations use interaction sites to describe individual atoms. Two levels of 
atomistic simulations have been used to study protein-lipid interactions, all-atom (AA) 
models in which every atom is assigned an interaction site, and united-atom (UA) models in 
which all atoms except non-polar hydrogens are represented as individual interaction sites. 
Non-polar hydrogens and the heavy-atoms they are bound to are assigned a single 
interaction site in UA models.

A perennial area of interest for the development of MD simulations are the force fields used 
to set characteristics of the molecules being simulated, such as bonds, angles, dihedrals, and 
partial charges. Parameters are derived by first using quantum mechanical (QM) 
calculations, and then fitting parameters with molecular mechanics (MM) to be consistent 
with the QM and experimental results. The quality of the force field determines the quality 
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of the simulation results. Development of AA force fields for proteins can be traced to the 
1980s.86–88 Popular force fields developed during this period which reproduced important 
characteristics of proteins and are still used for modern simulations, include CHARMM,
89–91 AMBER,92,93 GROMOS,94 and OPLS.95,96 Early versions of each were UA force 
fields.86,88 Due to increases in computational power and limitations inherent to the UA 
approach, AA force fields have since become the standard.86,88 Only the GROMOS force fi 
is still UA, although it forms the basis of additional AA force fields.86,88

Inclusion of lipids into AA force fields proved initially challenging, due to both the liquid-
crystalline characteristics of lipid bilayers and the paucity of high-resolution structural 
information for lipids.87 In the early 2000s, when AA simulations had become standard for 
proteins, many lipid simulations were performed with UA force fields.87 The AA 
CHARMM and the UA Berger force field parameters for lipids were both commonly used 
during this period. A number of simulations using CHARMM22 for lipids97 reproduced 
experimental results, including a membrane channel within a bilayer.72 The initial MD 
simulations for lipids in the CHARMM22 force field were 100 ps in length, and a number of 
limitations became evident upon extending the timescale to 800 ps.98 The surface tension of 
the CHARMM22 bilayer was too high, causing the surface area to collapse and the bilayer 
to become gel-like unless constant area was imposed during the simulation or a surface 
tension designed to yield the experimental surface area applied. In addition, order 
parameters of lipid atoms near the water-bilayer interface were in error for CHARMM22 
bilayer simulations.98 Notably, the UA Berger lipids did not suffer from these problems.99

CHARMM27100 improved on CHARMM22 lipids through refinement of the Lennard-Jones 
and torsional parameters of the alkane moiety, as well as the torsional and partial charge 
parameters of the phosphate moiety.98 It was used for a range of benchmark studies with 
simulation times reaching 100 ns.98 CHARMM27 was also found to describe lipid-protein 
interactions.98 At longer timescales, however, a systematic overestimation of the chain order 
parameters became evident. CHARM27r101 resolved this problem, but issues with C2 order 
parameters were still evident. It was still not advisable to carry out simulations using the 
NPT ensamble. CHARMM36102,103 yielded the correct headgroup surface area and correct 
chain order parameters using NPT conditions. (Figure 7)

As of 2006, the only lipid force fields commonly in use were the CHARMM AA and Berger 
UA force fields.104 Berger lipids,99 as well as the later Stockholm Lipids (Slipids)105,106 and 
additional force fi supporting lipids,107 have been used in conjunction with the AMBER, 
CHARMM, and OPLS force fi representing the protein portion. Berger lipids are UA lipid 
models, but have also been used with AA models.108,109 Use of UA was originally attractive 
because it resulted in a 60% reduction of pairwise interactions to be calculated. Studies have 
examined protein-lipid interactions for Berger lipids with other protein force fields,104,109 

with overestimation of interactions between protein and lipid tails found for one pairing.104 

A 2016 study which compared CHARMM36, Berger, and Slipids in studying a microbial 
peptide found that membranes with Berger lipids were prone to pore formation, an effect not 
found in the newer CHARMM and Slipids.110
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AMBER force field lipid parameters have also been improved in recent years. The Lipid11 
modular lipid force field for AMBER111 was developed using the General AMBER Force 
Field (GAFF112). It is designed to function more in the manner of a protein force field; 
rather than developing parameters for entire lipids, parameters were designed for head 
groups and tails which could then be combined.111 Use of an additional surface tension term 
was required for Lipid11 in order to prevent a phase transition during simulations. The 
Lipid14 updated modular force field no longer required this additional term.113,114 Lipid 
headgroup and tail charges were modified as well as Lennard-Jones and torsion parameters 
for alkane chains.113 The first systematic parameterization of lipid parameters in OPLS-AA 
was provided at the same time Lipid14 was released.115,116 In the initial parameterization 
effort, lipids showed a transition to crystalline phase at temperatures above the main phase 
transition temperature, but reparameterization of the hydrocarbon torsional potentials and 
Lennard-Jones parameters resolved this issue.116

One significant approximation made by both UA and AA force fields is that atoms operate 
as interaction sites with fixed charges. In reality, these atoms are electronically polarized. 
Polarizable force fields such as DRUDE, in comparison, include polarization effects. Models 
used to incorporate these effects include the inducible point dipole model and the fluctuating 
charge model.117 Early versions of polarizable force fields were implemented in the 
1970s118,119 and began to be studied “intensively” in the 1990s.117 The multipole-based 
polarizable force field AMOEBA was found to provide improved descriptions of structural 
and thermodynamic properties of peptides and proteins.120,121 The DRUDE force field has 
been successfully implemented for both proteins122 and zwitterionic PC and PE lipids123,124 

for simulations up to μs in length.125 While DRUDE-polarizable CHARMM has been used 
to study membrane interactions of ionizable arginine sidechains,126 polarizable force fields 
are yet to be extensively used to study lipid-protein interactions.

The steady increase in available computing power and development of more efficient 
algorithms, AA simulations are now routinely performed up to μs in length and accurately 
predict a variety of phenomena, including sidechain-lipid interactions. Slow processes, 
however, continue to pose challenging cases to AA simulations. For example, large 
conformational changes involved in the mechanisms of membrane transporters often take 
place over μs or longer. Processes such as protein complex formation are still too slow to 
produce replicate data sets. Due to the expense of AA simulations, non-equilibrium and 
biasing methods such as steered molecular dynamics (SMD)127,128 have been developed to 
allow for more extensive sampling of slow events.

2.3 Coarse-grained and Multiscale Simulations

Even though AA simulations have been successful in addressing a wide range of biological 
questions, their application is still limited to relatively small simulation systems and to fast 
biological processes.129 This led to the development of coarse-grained (CG) methods, which 
assume various levels of reduced representations of the molecular system to enhance the 
computing efficiency, thus allowing the investigation of much larger systems and longer 
timescales.130–138
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During the past few decades, several CG models employing different force fields and 
sampling schemes have been developed, aiming at reducing the number of degrees of 
freedom of modeled systems and allowing for longer timesteps in MD simulations. For 
proteins, one extreme example of the simplified models is the simple lattice HP model which 
contains only two types of beads, representing the hydrophobic and polar amino acids, 
respectively.139,140 Structurally, more realistic models such as SICHO141 were designed to 
replace each amino acid side chain with the corresponding pseudo-atom bead. Although 
these early studies featured with crude representations of low resolution lack accuracy, they 
provided a strong foundation for the development of more accurate CG models. For 
example, using one or two pseudo-atoms to approximate the geometry of amino acid 
backbones and side chains, intermediate resolution models such as CABS142 and UNRES143 

provide more realistic representation of protein structure and enable the characterization of 
more protein features. More recently, by introducing only a subtle level of simplification, the 
PRIMO model144,145 developed by Feig and coworkers allowed for a high-resolution 
representation of proteins closer to atomistic level, while gaining noticeable simulation 
speedup in comparison to AA simulations. More importantly, the PRIMO model enables 
productive studies of membrane protein dynamics in implicit membrane environments.146 

Another high-resolution CG model that is widely used is the Rosetta model147 developed by 
Baker and coworkers, which combines initial CG modeling with atomistic refinement and is 
specifically designed for protein structure prediction.

The MARTINI model148,150–152 (Figure 8A) developed by Marrink and coworkers is the 
most popular CG model for membrane simulations. Its scope was extended from the original 
focus on lipid molecules to other biological molecules such as peptides and proteins, and has 
been continuously developed to be implemented in various simulation packages to 
investigate diverse aspects of protein dynamics and lipid-protein interactions.153–157 The 
MARTINI model uses a four-to-one mapping scheme, with each pseudo-atom bead of 
protein/lipid, water, or ion representing approximately four heavy atoms and the associated 
hydrogens, four water molecules, and an ion with its fi hydration shell, respectively. This 
straightforward mapping scheme of MARTINI enables effective conversion of simulation 
systems between the AA and CG resolutions. CG models remove the fastest vibrational 
degrees of freedom (hydrogen bond vibrations), thus smoothing out the energy landscape in 
comparison to their AA counterparts. The smoothed energy landscape effectively enhances 
the sampling of conformational space, making CG modeling a promising tool for 
quantitative characterization of complex molecular processes such as lipid-protein 
interactions (Figure 8B). While speeding up the sampling of the configuration space is the 
main advantage of CG models, the speed-up is not uniform for all degrees of freedom, 
hindering the calibration of effective timescale of CG simulations.158 Furthermore, the 
reduction of degrees of freedom also affects the thermodynamic properties of a modeled 
system, particularly shifting the balance between enthalpy and entropy. In other words, 
although the free energy differences may be accurately estimated by a CG model, the 
enthalpic and entropic contributions may not be accurate.157

The MARTINI CG model has proven powerful in studying the interactions between 
membrane proteins and lipids, e.g., in proper placement of lipids around integral proteins 
(Section 3), association of peripheral proteins to the membrane surface (Section 4), and the 
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detection of specific lipid binding sites on proteins (Section 5). MARTINI is also able to 
model oligomerization and aggregation processes of membrane proteins, which are 
sometimes mediated by specific lipid molecules in the membrane.

Structure prediction studies showed that the accuracy of CG models can be significantly 
improved by refining the final structures with AA simulations.159,160 This strategy thus has 
been applied in many studies, and was often called “multiscale modeling” in that CG 
simulations were first used to facilitate the modeling efficiency and AA simulations were 
then followed to gain more accurate details. The reconstruction of AA models from CG 
models involves backbone rebuilding and side chain adjustment, which have been realized 
by many programs employing diverse algorithms.149

A real multiscale model should allow the coexistence of multiple resolutions in the same 
simulation system simultaneously and reliable algorithms to enable the transfer of 
information between the resolutions.161–166 Multiscale modeling benefits from the efficient 
computing of the CG part of the system, while preserving a higher level of details for other 
parts when needed. This feature makes multiscale approaches powerful and appealing tools 
in characterizing diverse biological systems. One important application of multiscale 
modeling is the investigation of interactions between membrane proteins and the 
surrounding solvents and lipids. As an example of a multiscale approach, in the PACE 
model,167–169 proteins are represented by united atoms while solvent and lipids are 
described by CG particles.

Different flavors of multiscale models have been developed, with the majority defining fixed 
boundaries between different resolutions. The adaptive resolution method, however, allows a 
selected part of the system to change the granularity during the simulation.170–175 One 
representative method developed recently is AdResS,175 which contains a strict atomistic 
region, a strict CG region, and an interfacial region that allows for particle exchange 
between different resolutions. The method offers atomistic-level description at the active 
sites and a desirable CG resolution for the remaining simulation region. The integration and 
exchange of information between the different resolutions remain the key limiting factors for 
multiscale modeling, and better and faster algorithms that allow for more efficient and 
reliable, on-the-fly exchange of resolutions are still in great demand.

2.4 HMMM Simulations

Lipid diffusion at ambient temperatures is on the order of 10−8cm2s−1. As AA simulations of 
membrane proteins are typically run in the 100 ns–1 μs range, orders of magnitude greater 
sampling would be required to allow diffusive equilibration to occur. This makes many 
membrane-associated processes, such as spontaneous lipid mixing and membrane insertion 
of peripheral proteins, difficult to simulate. The highly mobile membrane mimetic (HMMM) 
model was developed to accelerate lipid diffusion while maintaining atomic-level details for 
the headgroup region (Figure 9B).176 HMMM uses lipids that are identical to AA lipids 
except that the acyl tail is truncated. The space between the truncated lipid tails is then filled 
with an organic solvent such as DCLE (dichloroethane) to reproduce some of the 
characteristics of the hydrophobic core of a lipid bilayer.176
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It was demonstrated that a triphasic system containing truncated PS lipids, DCLE solvent, 
and water would spontaneously form a core layer of DCLE with lipids at the perimeter and 
water in the external region.176 The spontaneous bilayer formation occurred within 20 ns, 
with over 80% of initially water-submerged lipids reaching the DCLE interface within 10 ns.
176 Five systems were tested with area per lipid ranging from 68 Å2 to 294 Å2, yielding lipid 
diffusion constants at least 10 times that of full-length lipids.176 Structural analysis showed 
that the HMMM model reproduced key membrane elements, such as degree of hydration 
and counter-ion penetration.176 To test efficacy of the method with a protein system, the 
coagulation Factor VII GLA domain, which had previously been studied using AA 
simulation with the goal of understanding its membrane binding,177 (Figure 9A) was chosen. 
In AA simulation, however, it was not possible to model spontaneous binding of the protein. 
Using HMMM, the GLA domain bound spontaneously to PS-HMMM membranes in ten 
independent, resulting in a converged model of the membrane-bound GLA-domain.176

Since the introduction of the HMMM model, the method has been applied to a wide variety 
of membrane-associated systems.176,178–197 Furthermore, the energetics of amino acid 
partitioning into the bilayer were assessed.181 PMFs calculated for sidechain insertion into 
the interfacial region showed that HMMM reproduced accurate results of AA and CG PMFs 
obtained for insertion into full lipid bilayers.181 The HMMM with a DCLE core, however, 
did not accurately describe core energetics for protein partitioning.181 HMMM has been 
integrated into the CHARMM-GUI input generator, allowing for convenient generation of 
HMMM bilayers with a variety of lipid compositions.190

HMMM has been used to study a wide variety of membrane proteins, including coagulation 
factor GLA domains,189 talin,182 and cytochrome P450.178 It has also been employed to 
study transmembrane domains183 and the insertion process of lipids into the membrane.180 

Use of HMMM has allowed for extensive sampling of lipid-protein interactions following 
spontaneous binding of proteins with a high degree of lipid specificity,189 something that 
would be difficult to sample with full lipids in either AA or CG simulations.

While HMMM was highly proficient in modeling of peripheral proteins, energetic 
differences between DCLE solvent and a natural membrane core region can result in 
deformations of complex, multi-helix transmembrane proteins.193 Interactions between 
protein sidechains and the solvent are overly favorable, resulting in intercalation of solvent 
molecules between protein structural elements.193 Vermaas et al, attempting to overcome 
this difficulty, developed in silico solvents for use in HMMM simulations. These molecules, 
which do not exist in physical reality, are custom-parameterized to mimic the membrane 
core while retaining liquid properties.193 The solvents were demonstrated to allow for 
improved simulation of transmembrane proteins in HMMM, although some problems still 
remain.193 Currently, HMMM still has limited ability to simulate transmembrane proteins 
with multiple transmembrane helices. Furthermore, HMMM cannot be used to accurately 
represent energetics and processes at the membrane core, as the properties of core solvents 
still differ significantly from those of the acyl chains in the lipid bilayer core. In addition, 
certain types of lipids, such as sphingolipids and sterols, have not been tested in HMMM to 
ensure it reproduces characteristics of full membranes composed of these lipids.
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2.5 Membrane Embedding Methods

Prior to simulating a protein-lipid system, proteins must be placed in or on the membrane. 
While the process of membrane binding and insertion can, in principle, be done by 
performing long MD simulations, especially for peripheral proteins, it is often too slow and 
has to be done in advance. Due to the heterogeneous nature of biological membranes, 
alternative approaches such as implicit solvent/membrane models are rather rudimentary, 
lacking crucial information such as water-protein and lipid-protein interactions.198 For 
explicit lipid membranes, complications such as membrane curvature and undulation, lipid 
entanglement and protein structural changes may simply be artifacts caused by poor 
placement of the protein, rendering the necessity to properly prepare the initial system. A 
variety of techniques have been developed to construct membrane-embedded protein 
complexes; some of them use MD as a method to refine the placement along the process.
199–203

2.5.1 Methods to Predict Protein Position in a Lipid Bilayer—As different 
proteins have different shapes, amino acid compositions, and membrane insertion depths, 
visual inspection alone may not be enough to correctly identify hydrophobic belts or protein 
sections exposed to the hydrophobic part of the membrane. Spatial arrangement of proteins 
in membranes can be predicted using available algorithms whose results agree well with 
experimentally determined tilt angles within a particular membrane thickness.204–207 PPM 
(Position of Proteins in Membrane)205 is one of the popular resources for rapid evaluation of 
the positions of transmembrane and monotopic proteins in a lipid bilayer and is also 
available through a web-based interface.204,208 In this method, a lipid bilayer is represented 
by a hydrophobic slab and its interfacial regions. PPM performs grid-based scanning to 
minimize the global transfer energy of a protein, treated as a rigid body, from water to the 
hydrophobic core of the bilayer. A very similar algorithm and a predecessor of PPM is 
IMPALA (Integral Membrane Protein and Lipid Association), which performs energetic 
optimization of protein’s position in a bilayer composed of lipid acyl chains.207,209

Other commonly used algorithms are MEMEMBED210 and LAMBADA.211 MEMEMBED 
uses direct search and genetic algorithms to align α-helical and β-barrel transmembrane 
proteins to a model membrane.210 LAMBADA performs grid-based scanning to search for 
energetically minimal protein positioning determined by hydrophobic scores,211 and 
provides an input for InflateGRO, an automatic membrane embedding tool (described 
below).

2.5.2 Methods to Assemble Proteins in a Lipid Bilayer—Once the position and 
orientation of the protein in the membrane are approximated, it can be translated into a 
membrane patch. An immediate problem is the collision between lipid molecules and the 
protein, which may not be resolved by simple energy minimization protocols.199 

Overlapping lipid molecules can be identified and deleted using commonly used molecular 
viewers, such as VMD,214 CHIMERA215 and PyMol (Figure 10A). Then, MD simulations 
can be performed to optimize lipid packing around the protein. Still, this simple procedure 
may result in large gaps in lipid packing as most proteins contain large degrees of 
asymmetry in their lateral surface area along the membrane normal.216
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Other MD-based protocols have been used for assembling a protein in a membrane. The tool 
g_membed201 applies a repulsive force to create a hole at a designated position of the 
membrane embedded protein, and then gradually grows the protein from its originally scaled 
down representation to its real dimension while pushing away overlapping lipid molecules 
(Figure 10B). Another method, named GRIFFIN (GRId-based Force Field INput),202 adds a 
repulsive field to the membrane section occupied by the protein to carve out an empty 
volume needed for optimal protein placement (Figure 10C). Besides the use of repulsive 
forces, the assembly process can be done through pressure-induced simulations. In an 
approach proposed by Javanainen,203 a simulation is carried out in vacuum, with positional 
restraints applied to the protein and normal restraints applied to maintain the geometry of the 
lipid molecules, under a high pressure (up to ~1,000 atm) to push the protein into the bilayer 
(Figure 10D). As many proteins interact with specific lipids, the assembly of a protein in a 
membrane constituted of multiple lipid types requires more attention as lipid binding affects 
the protein structure. A conventional approach to probe lipid binding sites is to flood the 
system with CG lipid molecules. MemProtMD212 is an automated pipeline, which performs 
a 1-μs flooding simulation of CG lipid molecules to assemble a CG protein-embedded 
membrane and then converts the generated complex to an AA model (Figure 10E). A major 
problem resulted from the conversion of low (CG) to high (AA) resolution models can be 
the potential entanglement between proteins and lipids (e.g., ring piercing between lipid acyl 
chains and aromatic amino acids), which can be solved by applying alchemical soft-core 
potentials to the affected molecules.217

Automatic and more systematic methods are being used in constructing a protein-embedded 
membrane complex. CHARMM-GUI213,218–220 is the most widely used automatic builder 
for assembling membrane proteins and complex membrane systems, including bacterial 
outer membranes.221 This builder aligns the protein in a membrane using coordinates 
retrieved from the OPM (Orientations of Proteins in Membranes) database204,208 or 
provided by users. Lipid molecules are then placed according to the cross-sectional areas of 
the protein and the lipid molecules. Following the protocols developed by Woolf and 
Roux72,79 (Figure 10F), the lipid assembly is done by first placing pseudo atoms (large vdW 
spheres) representing lipid molecules around the protein and then substituting those particles 
with the lipid molecules randomly selected from a library of lipid conformations collected 
from MD simulations.

Another automatic builder is InflateGRO,199 which is implemented in GROMACS and used 
in conjunction with LAMBADA211 (Figure 10G). Once the protein is aligned with a pre-
built membrane, lipid molecules within a defined lipid phosphorus-protein Cα distance 
cutoff are deleted. To completely remove clashes between lipid molecules and the protein, 
InflateGRO performs a series of lateral expansions of the membrane to allow the translation 
of the colliding lipid molecules. It then performs a series of compressions and energy 
minimizations to bring the membrane back to its original dimension to accommodate lipid 
packing.
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3 Functional Lipid-protein Interactions in Integral Membrane Proteins

Integral membrane proteins span the lipid bilayer with at least one transmembrane domain. 
They constitute an integral component of biological membranes and are involved in a wide 
range of important biochemical and physiological processes, such as energy transduction, 
neuronal communication and immune response, making them critical drug targets for a 
variety of diseases.222–225 Some major classes of integral membrane proteins include 
channels, transporters and receptors, whose structure and function are tightly associated with 
their lipid environments.

Channels and transporters facilitate the passage of chemical species, particularly polar and 
charged molecules, across the hydrophobic core of the membrane.226–231 Channels are 
modulated by various membrane-associated factors, including the membrane potential, 
ligand binding, and mechanical stress of a local membrane environment. Structural 
transitions are crucial for the activation (gating) of channels, upon which the open pore 
allows for rapid permeation of substrate molecules sometimes at rates close to the diffusion 
limit. For transporters, the turnover rate is much slower than channels, due to more 
pronounced conformational changes involved in their functional cycle. The transition 
between structural conformations typically involve large movements of transmembrane 
domains, which could be regulated directly by their interactions with the surrounding bilayer 
or specific lipids. Receptors are responsible for the recognition and transmission of chemical 
signals, and their activation upon extracellular ligand binding is key to numerous 
physiological pathways. Lipid-receptor interactions not only can affect the activation cycle 
but also the stability and oligomerization of receptors.

MD simulations over the past few decades have successfully characterized structural 
dynamics and functionally relevant mechanisms for integral membrane proteins of various 
sizes, shapes and originating organisms.232,233 Many structural and physicochemical aspects 
of lipid bilayers and specific lipids have been studied computationally, permitting the 
investigation of interactions between membrane/lipids and important integral proteins. In 
this section, we provide an overview of the application of MD simulations to the 
investigation of lipid-protein interactions and lipid-mediated effects on the integral proteins. 
Some of the most successful applications recently achieved by the combination of hybrid 
simulation methods or advanced computational techniques, such as free energy calculations 
or integration of experimentally derived restraints, will be highlighted and discussed in more 
details.

3.1 Membrane Channels

Membrane channels are transmembrane proteins that facilitate the permeation of various 
chemical species down their electrochemical gradients across the biological membranes.
222,234 Membrane channels are fundamentally important and play key roles in a wide range 
of cellular and physiological events, such as propagation of electrical signals, neuronal 
communication, muscle contractions, and apoptosis. Channel gating is regulated by various 
factors, such as transmembrane voltage, chemical stimuli, and membrane tension. Upon 
stimulation, channels undergo conformational changes from a closed state to an open state 
(gating), allowing substrates to flow down their electrochemical gradients. The structures of 
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a membrane-embedded channel and the conformational changes associated with its gating 
can be directly affected by the surrounding lipids in various ways.

Simulation studies exploring the protein surface hydrophobicity and protein/lipid interfaces 
have shed light on the importance of membrane structure and thickness on the function of 
membrane channels. In addition to bulk properties of the membrane, specific interactions 
with lipids can affect membrane channels. Lipid bilayers not only provide the environment 
necessary for channels to function properly, but also serve as the medium for small 
molecules to approach and interact with them. Here, we will review the lipid-protein 
interactions and lipid-modulated impacts on protein function that have been reported in 
computational studies of membrane channels. The channels discussed in this section (Figure 
11) will be classified into three major categories, based on their gating mechanisms: voltage-
gated channels, ligand-gated channels, and mechanosensitive channels. Computational 
studies on other types of channels such as outer membrane proteins, aquaporins, and 
phospholipid scramblases will be covered at the end of this section.

3.1.1 Voltage-gated Channels—Voltage-gated channels mediate the transmembrane 
movement of ions in response to the changes in the electrical membrane potential. These 
channels generally contain four homologous domains/subunits with an ion conduction pore 
formed along the 4-fold symmetry axis. Each of the four domains/subunits comprises six 
transmembrane α-helical segments, named S1-S6, with S1-S4 contributing to voltage 
sensing and S5-S6 forming the pore.235 Voltage-gated channels are generally ion-specific 
and are involved in the conduction of various cations and anions, such as K+, Na+, Ca2+, and 
Cl−, crucial for the propagation of electrical signals in excitable cells.222 Computational 
studies on voltage-gated ion channels have elucidated important aspects of protein dynamics 
modulated by membrane environments and/or specific lipids.

Voltage-gated K+ (Kv) channels are widely distributed and found in virtually all living 
organisms and most cell types, where they control a wide variety of cellular functions.234 

Several previous computational studies have investigated lipid interactions with the isolated 
pore domain or voltage sensor domain of Kv channels, providing valuable structural and 
functional information for more comprehensive studies at a later stage. The structure of 
bacterial KcsA, which serves as an archetypical pore domain of the Kv members, was used 
to explore the lipid-protein interactions in early simulations (on the order of tens of 
nanoseconds).236–238 These simulations revealed not only interactions between surface 
residues and boundary lipid headgroups, but also specific binding of anionic lipids at the 
interfacial binding sites between the adjacent subunits. Strong binding of PG lipids to the 
same sites was also captured in sub-millisecond CG simulations of KcsA in a PC/PG lipid 
mixture.239 In the KcsA-Kv1.3 chimera, a point-mutation at the corresponding nonannular 
lipid binding site led to the formation of a salt bridge between its adjacent subunits, which 
resulted in reduced binding of anionic lipids.239

One of the most exciting features of Kv channels, which attracted a large body of 
computational studies, is the mechanism of voltage gating. The opening and closing of the 
pore domain are coupled to the movement of the voltage sensor domain that contains the 
voltage-sensing basic residues in the S4 segment. Simulations of the Arg-containing short 
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peptides as well as the whole S4 helix within a PC bilayer exhibited a tilting motion relative 
to the membrane in response to the changes in the external electric field 241 Free energy 
calculations suggested that membrane insertion of S4 is thermodynamically favorable 
because the energy gain from shielding the S4 hydrophobic residues from water is larger 
than the free energy penalty for inserting the charged residues into the hydrophobic core of 
the membrane.242 The calculations also indicated that the free energy penalty of charge 
insertion was reduced by membrane deformation that enables the penetration of water 
molecules into the hydrophobic core to provide a polar micro-environment for the charged 
residues.242 Membrane thinning and local adaption of the lipid bilayer were also observed 
for simulations of the complete voltage sensor domain S1-S4 from KvAP, which allows 
water molecules to hydrate the charged residues and focus the transmembrane electric field 
243 Self-assembly CG simulations of various voltage sensor homologs revealed similar 
interactions with lipid phosphate groups as well as local distortions of the lipid bilayer, 
providing insight into the molecular basis underlying their stability within the membrane.244

More importantly, AA simulations of the eukaryotic Kv1.2 showed that the interactions 
between the lipid phosphate groups and the S4 basic residues not only stabilize the channel 
conformation,245,246 but also play a role in modulating the gating process during the S4 
transition under transmembrane potentials240,247 (Figure 12). Another study using a PIP2 

(phosphatidyl-4,5-bisphosphate; (PI(4,5)P2) containing PC bilayer demonstrated state-
dependent interactions between the anionic phospholipid in the inner leaflet and the basic 
residues of Kv1.2.248 Even though PIP2 exerts different effects on KCNQ channels 
compared to Kv1.2, state-dependent interactions between PIP2 and KCNQ channels were 
also observed in multiple simulations, suggesting a functional role of PIP2 in mediating 
effective coupling between the voltage sensor domain and the pore domain, and regulating 
the protein conformational transitions249–251 (Figure 13). CG simulations combined with 
patch-clamp measurements and site-directed mutagenesis also revealed the presence of a 
specific phosphatidyl-3,5-bisphosphate (PI(3,5)P2) binding pocket on the PI(3,5)P2-activated 
two-pore channel hTPC2, which is suggested to mediate coordinated movement during 
channel gating upon binding of the lipid.252 In addition to phosphoinositides, microsecond 
AA simulations also identified a putative binding site for a negatively charged 
polyunsaturated fatty acid (PUFA), an essential component of heart and neuronal cellular 
membranes, on the open state Shaker Kv channel, providing a structural framework for 
testing the modulatory role of PUFA on K+ channels.253

Voltage-gated Na+ (Nav) channels mediate the upstroke of the action potential in most 
excitable cells and are key targets for numerous anesthetic agents.254 Given significant 
degrees of structural similarity shared by members of the voltage-gated cation channel 
(VGCC) family, the gating mechanism of bacterial NavAb channel was investigated 
computationally taking advantage of the structural information from Kv1.2.255 Biased 
simulations driven by the template structural models of Kv1.2 provided adequate sampling 
of NavAb conformations along the activation pathway, and revealed the important role of 
lipid phosphate groups in coordinating the S4 basic residues during the conformational 
transitions.255 Moreover, multi-μs unbiased simulations led to the determination of distinct 
binding sites for lipophilic drug molecules benzocaine and phenytoin to NavAb via two 
drug-access pathways.256 The lipophilic pathway through the membrane-embedded 
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fenestration was shown to be a low free energy pathway compared to the alternative aqueous 
route.256 Equilibrium flooding simulations, where a high copy number (concentration) of the 
ligand is introduced into the simulation system but without applying external biases, also 
identified putative binding sites and access pathways for general anesthetics isofl and 
sevoflurane to another archetypical bacterial channel NaChBac, highlighting the importance 
of the fenestration pathway for drug access.257,258 In addition, AA simulations of six 
bacterial Nav channels showed that the lipid molecules protruding the fenestrations can 
displace the side chains of the bottleneck residues and influence the size of the fenestrations.
259

Transient receptor potential (TRP) channels are a diverse set of non-selective cation 
channels that respond to a plethora of physical and chemical stimuli.260 Their overall 
transmembrane architecture resembles that of the canonical Kv channels.261 AA simulations 
of the voltage-sensor-like domain of the heat-sensitive TRPV1 captured spontaneous binding 
of the lipophilic ligand capsaicin from the cytosolic aqueous phase to a membrane-
embedded site, implicating the role of the membrane in mediating the effect of the channel-
activating ligand.262 Simulations of another heat-sensitive member, TRPV4, showed that the 
hydrogen bond that secures the protein in a closed state can be counteracted by the 
interaction of the surrounding lipids, thus increasing the open probability of the channel.263 

In addition, an altered pattern of interaction with lipids was captured in simulations of a 
mutant of TRPV5 compared to the wildtype protein, which may contribute to the 
experimentally observed disruption of the ion transport in the mutant.264

3.1.2 Ligand-gated Channels—The Cys-loop superfamily of the pentameric ligand-
gated ion channels (pLGICs) are anesthetic-sensitive receptors that act in response to release 
of neurotransmitters from the presynaptic terminal. They are composed of five homologous 
subunits, with each consisting of a large extracellular domain and four transmembrane 
segments (M1-M4).265 Tens of nanosecond AA of simulations of the transmembrane 
domains of nicotinic acetylcholine receptor (nAChR), the prototypical cation channel of this 
superfamily, captured spontaneous membrane partitioning of the volatile anesthetic 
halothane from solution into a hydrophobic cavity near the M2-M3 loop, one of the 
experimentally reported sites for anesthetic binding.266 The binding of halothane was 
suggested to play a role in channel inhibition by altering the dynamics of the M2-M3 loop, 
which is implicated in transmitting the effect of the anesthetic to the channel gate.266 In 
addition, sub-μs AA simulations of intact nAChR and its prokaryotic homolog GLIC 
(Gloebacter violaceus ligand-gated ion channel) revealed membrane partitioning as well as 
binding of general anesthetic isoflurane to both the transmembrane and the extracellular 
domains, in a remarkably similar manner between the two proteins.267 Moreover, high 
concentrations of desflurane employed in the simulation systems led to the identification of 
a novel anesthetic binding site in GLIC, accessed via a membrane-embedded tunnel (Figure 
14).268,269 Ligand binding at this site inhibited the dissociation of anesthetic from a site 
previously known, resulting in conformational changes that produce a non-conductive state 
of the channel.268,269 In addition to serving as the medium for ligand binding, lipids were 
also observed to specifically interact with the pLGIC channels to potentially influence the 
allosteric modulation of GLIC270 and the resting state of nAChR.271
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Inward rectifying K+ (Kir) channels are regulated by the signaling anionic phospholipid 
PIP2.272,273 In addition to the similar tetrameric architecture observed in other K+ channels, 
Kir channels also contain a large cytoplasmic domain that not only extends the central ion 
pore but also plays a role in gating upon ligand binding.274 Early homology modeling and 
short simulations of mammalian Kir channels allowed for the exploration of general protein 
dynamics and contacts with the surrounding lipids,275 as well as the docking of PIP2 near 
the “slide helix” at the cytoplasmic surface of the membrane.276 Spontaneous binding of 
PIP2 to a similar site was observed in combined CG-AA simulations on three different Kir 
structures, obtained either from crystallography or by homology modeling.277 Moreover, 
combined CG-AA simulations starting with apo structures of the eukaryotic Kir2.2 
successfully reproduced the binding of PIP2 to the same cluster of basic residues as observed 
in the PIP2-bound crystal structure.278 The PIP2-bound structure of Kir2.2 was also used to 
build a homology model for sponge channel AqKir, a distant relative of the vertebrate 
members that interacts weakly with PIP2 due to the lack of two basic residues in the PIP2 

binding site.279 Evaluation of interaction energies showed that restoring the two positive 
charges by mutations greatly favors the interaction with PIP2 as compared to wildtype 
AqKir.279 Furthermore, free energy calculations of PIP2-Kir2.2 interactions indicated that 
neutralizing the binding site residue or PIP2 phosphate charges greatly weakened the 
interactions, highlighting the role of electrostatics in lipid-protein interactions280 (Figure 
15).

Beyond the binding of PIP2, simulations of the closed state Kir3.1 chimera revealed that the 
PIP2-driven conformational change of the cytoplasmic domain dilates the G-loop gate in the 
cytoplasmic pore and results in the formation of an intermediate state between the closed 
and open states.281 A follow-up study focusing on the cytoplasmic domain of Kir2 channels 
further identified a loop region involved in the PIP2-induced gating, whose increased 
flexibility by mutations directly affects its interactions with several important structural 
elements and thus regulates the gating kinetics of the channels.282 In addition to the 
cytoplasmic gate, AA simulations of Kir3.2 captured dynamic opening of the helix bundle 
crossing gate in the transmembrane pore upon a mutation at the PIP2 binding site, inducing 
tighter interactions with PIP2 compared to the wildtype structure.283 Besides PIP2, 
molecular docking and AA simulations identified putative binding sites for cholesterol on 
the transmembrane domain of Kir2.1, providing insight into the mechanism of channel 
inhibition by cholesterol.284

3.1.3 Mechanosensitive Channels—Mechanosensitive channels are ubiquitous 
across prokaryotes, archaea, and eukaryotes and implicated in a wide range of biological 
processes. They sense and gate in response to the mechanical stress of membrane to regulate 
the flow of solutes in a generally non-selective manner.285 The best studied member of this 
family is the bacterial mechanosensitive channel of large conductance (MscL), formed by 
five identical subunits around a central pore that can dilate up to 40 Å in diameter when the 
channel opens.286 Early multi-nanosecond AA simulations showed that the structure and 
dynamics of the bacterial Tb-MscL channel are directly affected by changes in lipid 
headgroups, with decreased number of protein-lipid hydrogen bonds upon the change of 
lipids from POPE to POPC.287,288 Using an analytical model developed for the bilayer 
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mechanics, a theoretical study on bilayer deformation revealed that the deformation free 
energy can be on the same order as the free energy differences between the conduction states 
of the MscL channel, suggesting the involvement of bilayer mechanics in regulating the 
function of the channel.289 Furthermore, free energy calculations performed using umbrella 
sampling indicated that tilting the Tb-MscL transmembrane helices results in channel 
expansion comparable to when an excess surface tension is applied to the membrane.290 

Channel opening in response to membrane tension was captured in other AA and CG 
simulations using either the Tb-MscL X-ray structure or the E. coli channel model, 
providing insight into the tension-sensing sites on the protein surface.291,292

In addition to the tension-induced gating, AA simulations of the E. coli MscL model 
structure in a stress-free curved bilayer showed that the asymmetrical addition of the single-
tailed lipids can change the bilayer geometry which in turn affects the channel structure 
within a few nanoseconds.293 Hydrophobic mismatch in a thinner membrane was also 
shown to widen the transmembrane domains of the E. coli channel.294

The mechanosensitive channel of small conductance (MscS), which is organized as a 
homoheptamer, acts as a safety valve in bacteria and prevents cell lysis under challenging 
osmotic conditions.296 Taking advantage of available experimental data, MD simulations 
with EPR-derived restraints permitted the modeling of MscS in a closed conformation, a key 
step in determining the molecular mechanism of MscS gating.297 After building side chains 
to this Cα-only model structure, a follow-up study on the closed state MscS predicted 
several tension-sensing residues based on interaction energies between the protein and 
lipids, which successfully guided the experimental identification of lipid-sensing residues 
near the membrane interface on the extracellular side.298 More importantly, combined CG-
AA simulations of the closed and open states of the E. coli MscS captured the migration of 
lipids into the membrane-exposed protein pockets formed by transmembrane helices, a 
process accompanied by strong local membrane curvature around the protein (Figure 16).295 

Lipids localized in the protein pockets were found to move dynamically in correlation with 
the conformations of the protein, suggesting a possible mechanism of membrane tension 
transmission by changes in lipid-protein interactions.

Besides the prokaryotic channels MscL and MscS, computational studies of the eukaryotic 
mechanosensitive channels TREK-1 and TREK-2 from the two-pore domain K+ (K2P) 
channel family also provided structural and functional insights into the mechanism of 
mechanosensitivity. Sub-μs AA simulations of the TREK-1 homology models captured the 
adsorption of the C-terminal domain onto the membrane surface, highlighting the role of this 
domain in coupling membrane tension to the gating of the channel.300 A recent extensive 
simulation study showed that TREK-2 can expand rapidly to switch between the two main 
conformational states in response to bilayer stretch, a structural transition involving state-
dependent changes in lipid-protein interactions (Figure 17).299 In contrast, stretch-induced 
conformational changes were absent in simulations of the non-mechanosensitive homolog 
TWIK-1 under the same conditions, suggesting the specificity of the dynamic behavior for 
mechanosensitive K2P channels. Even though TWIK-1 differs from the mechanosensitive 
K2Ps in functional and mechanistic terms, both TWIK-1 and TREK-2 simulations captured 
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the penetration of lipid tails into the side fenestrations, which in turn influences the 
dewetting of the inner pore for ion conduction.299,301

3.1.4 Outer Membrane Proteins—The outer membrane of Gram-negative bacteria is 
asymmetric with lipopolysaccharides (LPS) in the outer leaflet and phospholipids in the 
inner leaflet 302 The highly anionic nature of LPS deters the penetration of hydrophobic 
compounds and thus presents an effective barrier to many antibiotics. The outer membrane 
proteins (OMPs) are featured with a generic transmembrane β-barrel structure and are 
involved biological processes such as transmembrane transport and cell recognition.303 

Inclusion of LPS in the outer leaflet of the simulation systems revealed electrostatics 
interactions between LPS and the extracellular loop regions of several OMPs, which led to 
secondary structure variation and loop displacement compared to LPS-free bilayers.304–307 

Especially in the case of the trimeric porin OmpF, simulations observed interactions between 
the charged residues on the protein outer surface and the LPS core sugars, highlighting the 
importance of LPS in shielding OmpF surface epitopes from antibody recognition.306

In addition to LPS-containing systems, simulations of the OMP β-barrel domains in 
phospholipid bilayers of various tail lengths revealed hydrophobic mismatch induced lipid 
sorting or membrane disruption around the β-barrel structures.308,309 Moreover, the tilting 
motion of the β-barrel from the lipid A acylase PagP was found to facilitate the access of 
lipid acyl chains into the mouth of the central binding pocket.310 The two-domain homology 
model of PmOmpA is composed of a transmembrane β-barrel domain as well as a 
periplasmic α-helical domain.311 Simulations of this multi-domain OMP described 
structural dynamics of the periplasmic domain, revealing its interaction with the 
phospholipid headgroups on the periplasmic surface of the membrane.311 Partitioning of the 
periplasmic domain into the proximal membrane leaflet was also observed for BamA, 
providing conformations compatible with the binding of the other subunits of the BAM 
complex.312 This finding suggested the importance of the periplasmic domain in the 
mechanism of the BAM-facilitated insertion of OMPs.312

Apart from the outer membrane of Gram-negative bacteria, the outer mitochondrial 
membrane also contains OMPs, such as the voltage-dependent anion channel (VDAC) that 
allows the flow of ions and metabolites between the cytosol and the mitochondrial 
intermembrane space.313 Comparative modeling and MD simulations of VDAC in PC or PE 
bilayers suggested that persistent interactions between acidic residues and PE headgroups 
may be liable for the enhanced ion selectivity of VDAC observed in PE relative to PC.314 

Besides phospholipids, reproducible binding of cholesterol was also observed on multiple 
surface sites of VDAC, which was suggested to play a role in stabilizing the charged 
residues inside the channel and localizing the surrounding electrostatic potentials.315

3.1.5 Other Channels—Aquaporins (AQPs) are membrane channels specialized in 
rapid transport of water across biological membranes.316,317 They are arranged as 
homotetramers, with each monomer forming a functionally independent water-conducting 
pore.318,319 In contrast to the previously discussed membrane channels, highly specific lipid-
protein interactions were not captured in a set of 1-μs-long CG self-assembling simulations 
using all structurally known AQPs.320 Although water permeability of AQP4 is reported to 
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strongly depend on the cholesterol content of the enclosing lipid bilayer, both osmotic-
gradient experiments and MD simulations using cholesterol-free membrane showed that 
changes in permeability was caused by the cholesterol-induced changes in membrane 
thickness, rather than direct cholesterol-AQP4 interactions.321

Aside from the conventional role as water channels, several AQP members have been found 
to facilitate the conduction of small neutral gas molecules such as O2 and CO2 across the 
membrane. Although the physiological significance of AQPs in gas transport remains 
controversial, explicit gas diffusion simulation and implicit ligand sampling of AQP1 
showed that the hydrophobic central pore formed at the 4-fold symmetry axis of the tetramer 
can be used by either O2 or CO2 to cross the membrane.322 The role of the central pore in 
gas permeation was further confirmed by a study on AQP5, demonstrating that the pore-
occluding lipid resolved in the central pore may interfere with gas permeation but leaves the 
water permeation through the monomeric water pores intact.323 In addition to the central 
pore, simulations also identified other potential gas pathways that are energetically favorable 
according to the PMF calculation.322 One such pathway for AQP1 is located between the 
neighboring monomers near the protein-lipid interface.322

A recently emerging topic involving intimate lipid-protein interactions is the physiologically 
relevant phospholipid translocation mediated by the lipid scramblases, a family of passive 
transport proteins whose biochemical identity became known only recently. AA simulations 
of the fungal phospholipid scramblase nhTMEM16, which is also known to be a non-
selective ion channel, captured spontaneous diffusion of lipids between the two leaflets of 
the bilayer via a surface-exposed hydrophilic aqueduct provided by the protein.325–327 

Moreover, both MD simulations and continuum modeling demonstrated significant 
membrane deformation induced by the protein, which greatly decreases the effective 
membrane thickness near the lipid-conducting pathway and thus lowers the energy barrier 
against lipid translocation.325,326,328 In addition, the lipids lining the hydrophilic aqueduct 
on the surface of the scramblase also play a structural role in forming a ‘proteolipidic’ pore, 
which is likely to be also used by ions to cross the membrane326 (Figure 18).

Direct involvement of lipids in ion translocation was also observed in simulations of the 
human P2X3 receptor, a non-selective cation channel, showing that the increased hydration 
brought by the lipid headgroups lining the transmembrane fenestrations of the protein can 
constitute a hydrophilic pathway for ion conduction.329 Besides TMEM16, large-scale 
ensemble simulations of the class A GPCR opsin also revealed a hydrophilic pathway 
between two transmembrane helices for lipids translocation, illustrating the unique aspects 
of this GPCR structure and providing a molecular basis for its scramblase activity.330

3.2 Membrane Transporters

Another major class of membrane transport proteins are transporters. In contrast to channels, 
which allow simultaneous access of their substrates from both sides of the membrane when 
they are open, transporters undergo a series of conformational changes during each transport 
cycle to change the accessibility of the substrate binding site from one side of the membrane 
to the other.228 This “alternating-access mechanism” prevents the leak of the substrate while 
allowing the translocation of substrate against its concentration gradient.331 The resulting 
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active transport utilizes diverse sources of energy, including ATP produced in the cell for 
primary active transporters, or pre-established electrochemical gradients for secondary active 
transporters. The distinct conformations formed during the transport process are associated 
with different substrate-binding states that are important for the transporter function.

Both computational and experimental studies have revealed that membrane lipids are not 
merely forming a passive environment for membrane transporters. They are now recognized 
to play important roles in regulating membrane transporter function, often through specific 
interactions, including annular lipid contact or individual lipid binding. In this section, we 
will review computational studies on membrane transporters that have emphasized the role 
of membrane/lipid in the regulation of protein structure and function. Major transporters 
covered here (Figure 19) include the ATP-binding cassette (ABC) transporters, 
neurotransmitter sodium symporters (NSSs), and H+-coupled transporters. A number of 
related systems, including protein or adenine nucleotide translocating systems as well as 
outer membrane transporters are also included in this section.

3.2.1 ATP Binding Cassette Transporters—ATP-binding cassette (ABC) 
transporters are primary active transporters that harness the energy from ATP hydrolysis to 
actively transport a broad range of substrates across the membrane either in the import 
direction or export, depending on their architecture and fold.332 One of the most studied 
ABC transporters by far is the P-glycoprotein (Pgp), a multidrug exporter that plays a key 
role in the development of multidrug resistance in cancer cells.333 Pgp has also been 
proposed to transport lipids and lipid-like substrates from the inner leaflet of the membrane 
to the outer leaflet.334,335 Before the high-resolution structure of Pgp became available, 
simulations of the transmembrane domains of the bacterial homolog MsbA revealed marked 
deformation of the cytosolic leaflet of the membrane near the protein, a preliminary step 
priming lipid transport.336 Local bilayer deformation was also captured in CG simulations of 
the MsbA complete structures in its inward-facing, closed, and outward-facing 
conformations.337 Moreover, preference for anionic lipids in the first annular lipid shell was 
observed for both Pgp and a bacterial ABC transporter McjD, attributed to the positively 
charged residues near the headgroup region of the bilayer.338,339 This specific lipid 
organization in the proximity of the ABC transporters was proposed to be essential for their 
ATPase activity.

For human Pgp, AA simulations in its inward-facing state demonstrated partial entry of a 
POPE lipid into the transmembrane lumen, suggesting a novel putative pathway for direct 
drug recruitment from the membrane.340 A follow-up study using a refined crystal structure 
and longer simulations captured the entry of two full lipid molecules from the inner leaflet 
into the central chamber through the openings formed between transmembrane helices 
(Figure 20).269 Equilibrium simulation of the outward-facing Pgp model, constructed by a 
combination of structure-based sequence alignment and non-equilibrium simulations, 
revealed lipid occupancy at the extracellular opening of the transmembrane domain, which 
influences the dynamics and stability of the outward-facing state and may facilitate substrate 
exit into the upper leaflet (Figure 20).269 In another study, extensive sampling of lipid 
diffusion in CG simulations captured multiple simultaneous lipid uptake events for both PC 
and PE lipids to inward-facing Pgp during a 20-μs simulation.341 Moreover, using μs-long 
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AA simulations, a recent study of bacterial ABC exporter Sav1866 in different membrane 
environments showed that the outward-facing to inward-facing conformational changes of 
the transporter is lipid-dependent and only happens in the presence of PE lipids, providing 
insight into the influence of lipid environment on the alternating access mechanism of ABC 
exporters.342 In addition to the interaction with phospholipids, 10-μs CG simulations of the 
apo-Pgp homology model also revealed the binding of cholesterol to the surface crevices 
between the transmembrane helices, the strength of which was investigated further by 
calculating the potential of mean force via umbrella sampling.339 Interestingly, the presence 
of Pgp was found to increase the flip-flop rate of cholesterol.339

3.2.2 Neurotransmitter Sodium Symporters—Neurotransmitter sodium symporters 
(NSSs) mediate the re-uptake of neurotransmitters from the synaptic cleft using the 
electrochemical gradient of Na+ ions as a driving force.343,344 Their vital roles in 
neurological pathways make them important drug targets for psychiatric diseases. To gain a 
better understanding of structural dynamics and functional mechanisms of NSSs, several 
computational studies on bacterial and mammalian homologs have been conducted since the 
determination of the first crystal structure of the bacterial homolog, leucine transporter 
(LeuT) in 2005.345 Short AA simulations of LeuT in three different lipid bilayers revealed a 
better matching of the DMPC membrane with the hydrophobic transmembrane portion of 
the protein, compared to the thicker POPE or POPC membranes.346 To quantify membrane 
deformation around LeuT, driven by the hydrophobic mismatch, the hybrid continuum-
molecular dynamics (CTMD) approach was applied to calculate the associated energy cost 
at the continuum level.347 The study showed that the hydrophobic mismatch is different in 
distinct conformations (outward-open, occluded, inward-open) of LeuT, and that the 
differences are connected to the structural elements involved in the conformational 
transitions during the transport cycle.347,348

Beyond hydrophobic-hydrophilic contacts between the membrane and the embedded 
protein, specific lipids can regulate the dynamics and conformational transitions of the 
LeuT-fold NSSs upon direct interactions. Microsecond AA simulations of human dopamine 
transporter (hDAT) in a PIP2-enriched membrane revealed an inward opening of the 
transporter triggered by PIP2-mediated electrostatic association of specific structural motifs.
349 In addition, CG simulations of the homologous human serotonin transporter (hSERT) 
demonstrated strong binding of cholesterol to a conserved site, the occupation of which by 
cholesterol was suggested to modulate the conformational equilibrium of the transporter.350 

Besides LeuT-fold NSSs, computational modeling of a structurally distinct aspartate/sodium 
symporter Gltph showed that lipid or detergent insertion into the domain interface can 
facilitate the formation of the inward-facing unlocked state, which represents a configuration 
in the transport cycle that is uniquely suitable for ligand binding and release.351

3.2.3 Proton-coupled Transporters—Lactose permease (LacY), a paradigm for the 
major facilitator superfamily (MFS), catalyzes the translocation of galactopyranoside using 
the electrochemical gradient of H+.352 Several MFS transporters, including LacY and XylE, 
require PE lipids for proper function.353 Multi-nanosecond AA simulations on individual 
transmembrane helices of LacY showed that the helices need to tilt and/or bend in order to 
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match their hydrophobic surface with the hydrophobic thickness of the POPE bilayer.354 10-
ns AA simulations of the complete LacY structure revealed consistent formation of strong 
salt-bridges between the PE headgroup and functionally important basic residues, which is 
significantly weak in the presence of PC.355 The highly-conserved residues involved in 
lipid-protein interactions are crucial for the energy-coupling mechanism of LacY, implying 
the role of PE lipid in the H+ gradient-sensing mechanism.355 By varying the protonation 
state of a H+ acceptor residue in LacY, simulations demonstrated a protonation-coupled 
dynamical interplay between the salt-bridge formations and the global protein conformation 
when the protein was embedded in a PE membrane.356 The observed structural transition of 
LacY in the presence of PE was completely absent in a pure PC membrane, suggesting again 
a lipid-dependent H+-coupling mechanism. A recent study applying MD simulations 
combined with hydrogendeuterium exchange mass spectrometry (HDX-MS) experiments 
revealed that direct interactions between the PE headgroup and a conserved cytoplasmic 
network in XylE can modulate the conformational equilibrium between the OF and IF states.
357

In addition, the protonation states of key residues in the H+-coupled multidrug antiporter 
PfMATE are also associated with protein conformational changes essential for substrate 
translocation. Using QM/MM simulations combined with classical MD, the potential energy 
surfaces for H+ transfer reactions between a PC phosphate group and the H+-binding site 
were obtained, suggesting a role for lipid headgroups as a H+ conductor mediating fast H+ 

diffusion along the membrane surface (Figure 21).358 Taking advantage of the increased 
simulation efficiency and longer timescales, CG simulations allowed the observation of 
association of anionic lipids to the bacterial UraA H+-uracil symporter.359 The preferential 
interaction of cardiolipin (CDL) mediated by the positively charged residues is likely related 
to its potential role as a source of buffered protons in the vicinity of the H+-driven 
symporter.359 Besides the involvement of lipid headgroups, AA simulations with gel- or 
liquid-phase PC membranes indicated that the physical phase of the lipid bilayer can also 
alter the structural dynamics of glucose transporter GLUT1, which in turn may affect the 
substrate translocation pathways within the protein.360

3.2.4 Other Transporters—The translocation of proteins out of the bacterial cytoplasm 
requires two structurally and mechanistically different transporting systems, Sec and Tat.
361–363 The Sec translocon complex mediates the transmembrane secretion or insertion of 
nascent proteins, while the Tat translocase transports proteins in a fully folded form. AA 
simulations of the bacterial SecY translocon in different states revealed a strong correlation 
between the conformational transition of SecY and the intercalation of a PC lipid at the 
lateral gate.364 The pre-open state, which is stabilized by the intercalated lipid molecule, 
highlighted the importance of lipid-SecY interaction in the early steps of protein 
translocation through SecY.364 Another computational study showed that the intrusion of 
lipid acyl chains also affects the water occupancy and dipole alignment within the SecY 
pore, which may directly relate to the partitioning process of nascent transmembrane helices.
365 TatA oligomers constitute the protein-translocating element of the Tat system. Combined 
CG and AA simulations suggested that the short transmembrane domain of the oligomers 
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can lead to membrane thinning and distortion potentially facilitating the protein transport 
process.366

The exchange of ADP and ATP across the mitochondrial inner membrane is facilitated by 
the mitochondrial ADP/ATP carrier (AAC).367 The structure and function of AAC are both 
dependent on the mitochondrial signature phospholipid CDL.368 CG simulations followed 
by atomistic refinement identified three conserved CDL binding sites on AACs, 
characterized by stronger binding of CDL compared to the non-binding regions, along with 
clear selectivity for CDL over other mitochondrial lipids.369 CG simulations of a large 
membrane patch containing multiple copies of AAC further suggested a role of CDL in 
mediating the protein oligomerization process369 (see Section 5.2.4).

AA simulations of the outer membrane autotransporter Hia in an asymmetric membrane 
model that incorporated the outer membrane unique lipid lipopolysaccharides (LPS) 
captured the interactions of basic residues with the phosphate and sugar moieties of LPS, 
which help stabilize the protein within its native membrane environment.370 A study on 
FecA, an outer membrane transporter, in a LPS-containing membrane showed that extensive 
interactions between the inner core sugars of LPS and the extracellular residues of the 
protein significantly affect the dynamics of the loop regions crucial for the protein function.
371 Such strong protein-lipid interactions were not observed in the simulation of FecA in a 
POPC bilayer, highlighting the importance of realistic membrane models in exploring 
relevant conformational dynamics of membrane proteins.371

3.3 Membrane Receptors

Membrane receptors are proteins that detect chemical signals from outside and transmit 
them into the cell in the form of various chemical or mechanical signals.372 The action of 
receptors can be classified as: amplification, relay and integration of signals.373 

Amplification increases the effect of signals, while relay directs the onward propagation of 
signals, and integration allows for the incorporation of signals into other biochemical 
pathways.373 Some receptors also serve as major drug targets, e.g., G-protein coupled 
receptors (GPCRs),374 kinase-linked receptors,375 and integrins.376

While numerous receptors are found in the cell, each is linked to a specific biochemical 
pathway and will only bind to ligands with specific structures and properties. Agonist 
binding causes activation of the receptor-associated pathway, a process that requires protein 
conformational changes which can be influenced or even triggered by specific lipid-protein 
interactions.139,377

In this section, we will cover major classes of membrane receptors studied computationally 
with regard to protein-lipid interactions, with examples from GPCRs, integrins, and kinase-
linked receptors (Figure 22).

3.3.1 G Protein-coupled Receptors (GPCRs)—All GPCRs share a common 
architecture for their transmembrane domains: a seven-α-helical bundle with three 
extracellular and three intracellular loops, which are essential for the signal transduction 
across the cellular membrane.378 The largest phylogenetic class of GPCRs, known as class 
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A, contains only the transmembrane domain with varying lengths and sequence contents of 
carboxyl and amino termini.379,380 These receptors are able to detect a variety of molecules 
outside the cell and initiate a wide array of signaling pathways. GPCRs are among the most 
important targets for currently used drugs.381

GPCRs are known to be functionally regulated by their surrounding lipids.330,382–385 MD 
simulations have been extensively used to study the regulatory role of lipids. GPCRs known 
to be regulated by lipids, as captured by MD simulations include rhodopsin,386 β2 

adrenergic receptor (β2AR),387 adenosine A2A receptor (A2AR),388 μ-opiod receptor 
(MOR),389 serotonin 2A receptor (5-HT2AR),390 serotonin 1A receptor (5-HT1AR),391 

chemokine receptor (CXCR4),392 and human gonadotropin-releasing hormone receptor 
(GnRHR).393 MD simulations at various resolutions have been used to not only map the 
lipid binding sites on GPCRs, but also to explore the role of lipids in the activation, 
oligomerization, stability, and ligand binding of the receptors.

GPCRs activation dynamics have been studied by AA simulations of rhodopsin, a visual 
signal transduction protein, in different lipid bilayers, namely DPPC, POPC, DMPC and 
PLPC, suggesting that charged lipid headgroups, bilayer thickness, length and 
functionalization of acyl tails induce subtle but significant changes in the protein structure,
394 with implications in activation kinetics. Similarly, interaction of ω3 fatty acid 
docosahexaenoic acid (DHA) with rhodopsin was studied using free-energy calculations. 
The preferential interaction between rhodopsin and DHA was found to be entropically 
driven. It was observed that although all acyl chains pay the entropic penalty to interact with 
rhodopsin, the cost is significantly less for DHA than for other acyl chains.395 A follow-up 
simulation study highlighted that PE headgroups and DHA stabilized the inactive state of 
rhodopsin by partial structuring of its intracellular loops.396

AA simulations of β2AR in its active state revealed phospholipid movement to the binding 
site of the receptor which resulted in a prolonged residence time of the receptor in its active 
conformation (Figure 23B).387 Similarly, stochastic sidechain fluctuations in the GPCR 
opsin were shown to open a groove on the protein surface, facilitating rapid bidirectional 
lipid scrambling between the two leaflets.330 An independent AA simulation of agonist-
bound 5-HT2AR showed that protein conformational transition is correlated with associated 
cholesterol.390 Song et al. reported a CG study of A2AR in a complex membrane model 
illustrating its specific interactions with GM3, cholesterol and PIP2 as well as lipid 
stabilization effects on its conformations.397 These specific lipid interactions are believed to 
play an important role in A2AR activation.

GPCR oligomerization, which is known to be involved in their function and biogenesis,
398–400 is strongly modulated by the surrounding lipids, a phenomenon extensively 
characterized using AA and CG simulations.401 One of the earliest high-resolution crystal 
structures of human β2AR highlights how the co-crystallized cholesterol molecules at the 
crystal packing interface can mediate interactions between the receptors.374 Later, MD 
studies on β2AR characterized specific cholesterol binding sites at the interface of helices I-
IV and V,384,402 substantiating experimental results374 and providing direct microscopic 
mechanism for cholesterol-mediated GPCR dimerization.403,404
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Another μs-long CG study on MOR in the presence of an asymmetric lipid bilayer 
highlighted the role of cholesterol and sphingomyelin on the spatio-temporal organization of 
the receptor (Figure 23A). The sphingomyelin-rich region around MOR was proposed to 
induce long-range attractive force on the protomers.389 Similarly, MD simulations have 
shown that cholesterol can regulate dimerization of CXCR4392,405 and 5-HT1AR,391 with 
contributions from both direct binding and indirectly influencing bulk properties of the 
membrane. Furthermore, extensive (μs-long) MD simulations of CXCR4, CCR5, and CCR2 
highlighted diverse homo- and heterodimer configurations in a cholesterol rich lipid bilayer.
406 Finally, self-assembly simulations and dimerization free energy profiles of epithelial 
growth factor receptor (EGFR) confirm that along with the favorable protein-protein 
interactions, non-specific protein-lipid interactions contribute to the dimerization process.407

In addition to activation kinetics and oligomerization, lipids can also modulate the flexibility 
and stability of GPCRs. A 300-ns MD simulation of A2AR demonstrated higher flexibility 
and mobility of the protein in a POPC lipid bilayer than POPE. The differential flexibility 
was shown to stem from different hydrophobic thicknesses and distinct lipid headgroup 
interactions.388 Palmitoyl modifications at two specific cysteines of rhodopsin resulted in a 
considerably larger number of contacts with the transmembrane helices, thus stabilizing the 
protein structure.408 100-ns AA simulations of cannabinoid receptor (CB1) in POPC 
highlighted a water-mediated H-bond network, aromatic stacking interactions and receptor-
lipid interactions contributing to the receptor stability.409 Furthermore, a decrease in 
phospholipid tail length was found to result in a kink in the transmembrane helices of the 
receptor to avoid the hydrophobic mismatch. Go-like CG simulations have been employed to 
study the mechanical stability of the related protein, bacteriorhodopsin, (not a GPCR) in 
membranes.410 This study qualitatively reproduced the experimentally observed force-
extension curves for the mechanical unfolding of the membrane protein and illustrated the 
decisive role of specific lipids in determining the force patterns. In an other study, homology 
modeling combined with AA simulations of GnRHR not only revealed its refined structure 
but also highlighted that the interaction between PC headgroups and polar residues stabilizes 
the protein structure.393

Cholesterol is also known to alter the dynamics of GPCRs.411 Its binding has been shown to 
alter the conformational dynamics of β1AR412 and β2AR413 A μs-AA simulation showed 
that cholesterol binding at the helical interface limits the conformational variability of β2AR,
413 thus establishing an allosteric role for cholesterol in modulation of the protein. Similarly, 
a short MD simulation of a peptide representing one of the transmembrane helices of 5-
HT2AR demonstrated that the lipid bilayer with the help of a few water molecules can 
stabilize the helical elements, even in the presence of helix-disrupting prolines.414 In a 
simulation study of 5-HT1AR employing homology models constructed upon rhodopsin and 
β2AR415 in cholesterol-rich and cholesterol-free bilayers, cholesterol was shown to stabilize 
the receptor.415,416 In comparison, cholesterol binding to 5-HT2AR was shown to stabilize 
its fluctuations but to increase the overall conformational variability by disrupting H-bond 
networks.417

The lipid environment of GPCRs is also known to affect their ligand-binding properties. μs-
long AA simulations of cannabinoid sn-2-arachidonoylglycerol (2-AG), an endogenous 
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agonist to CB1 highlighted the mechanism of its entry into the receptor.418 The results 
suggested that 2-AG first partitions into the membrane before entering the binding pocket. 
This triggers the breaking of the ionic lock between TM helices, allowing a large influx of 
water. A comparative study of A2AR in different membranes (namely PC, mixed PC/PE, and 
cholesterol-rich) unambiguously showed that a specific caffeine-binding conformation is 
stabilized by cholesterol binding to the receptor.419 Furthermore, incorporation of agonists 
prevented cholesterol binding by disrupting the H-bond interactions on the protein surface. 
Similarly a 50- μs CG simulation showed that agonist binding to β2AR and A2AR alters their 
deep cholesterol binding pockets.420

3.3.2 Integrins—Integrins are transmembrane cell adhesion proteins that tie the 
extracellular matrix to the cell’s cytoskeleton. An integrin consists of non-covalently linked 
α and β subunits, each comprised of a cytoplasmic tail, a transmembrane helix, and a large 
ectodomain. Ligand activation of integrin initiates a cascade of signaling pathways and the 
recruitment of new receptors to the cell surface. Most integrins are expressed by default in 
their “off” state, which needs to be altered during the activation process to generate a high-
affinity ligand binding state (“on” state), thus making the process highly membrane 
dependent. Integrin activation can occur in response to cytoplasmic and extracellular signals, 
known as “inside-out” and “outside-in” activations respectively.421 Previous studies have 
identified talin, a cytoskeletal-associated protein, as a cytoplasmic activator for integrin.
376,422–424

MD simulations have highlighted the role of the lipid bilayer in regulating the specific inter-
helical interactions between α and β subunits of integrins.426 Leveraging the power of CG 
simulations, stability dynamics of αLβ2 and αIIβ integrins was studied in model 
membranes.426 Owing to the inter-helical hydrogen bonding interactions MD simulations 
predicted optimal packing and orientation for αLβ2.427

CG simulation have successfully captured integrin-lipid binding428 and integrin-talin 
complex formation429 in symmetric and asymmetric lipid bilayers respectively (Figure 24). 
The study suggested high residence time of PC lipids around integrins and the importance of 
PS lipids in stabilizing the F2 domain of talin. Multiscale MD simulations have also shown 
that binding of the talin head domain to integrin result in its activation.425,430

3.3.3 Other Receptors—MD simulations were used to study the role of lipids in 
modulating the structural dynamics and stability of kinase-linked receptors,375 growth factor 
receptors431 and cluster of differentiation 3 receptor (CD3).432 MD simulations of 
diacylglycerol kinase highlighted that the protein-lipid interactions ensure proper substrate 
loading and product release.375 A multiscale MD study of receptor tyrosine kinase (RTK) 
highlighted the importance of specific interactions between the juxtamembrane part of RTK 
and PIP2 lipids in modulating the receptor and its nanoscale organization in the cellular 
membrane.433

The role of charged mutation (valine to glutamate) on Neu receptor, a member of human 
EGFR family was studied in a PC bilayer by AA simulations. The native receptor was found 
to be more flexible and to exhibit a tilt to accommodate the membrane thickness,435 thus 
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weakening the TM dimer.436 MD simulations of EGFR and CD3ϵ cytoplasmic tail of T-cell 
receptor in different lipid bilayers showed TM bending of the EGFR to match the 
hydrophobic thickness of the bilayer,431 and preferential binding of CD3ϵ to negatively 
charged lipids in the membrane.432 Similarly, the preferential binding of anionic PS lipid to 
EGFR results in the autoinhibition of the receptor (Figure 25).434

CG simulations have captured the specific binding of fibronectic domain (FN2) of ephrin 
receptors to anionic PG lipid headgroups.437 In another study, dimerization of the 
transmembrane domain of the fibroblast growth factor receptor (FGFR) was found to be 
accompanied by the formation of multiple dimer interfaces whose relative propensities were 
influenced by the interaction of charged residues with the lipid headgroups.438 Similarly, the 
interaction of EGFR ectodomain with the membrane was shown to result in conformational 
changes in the dimer and to stabilize the receptor on the cell surface.439

3.4 Other Integral Membrane Proteins

Lipid interactions also play roles in the structure integrity and function of other integral 
membrane proteins besides the aforementioned membrane channels, transporters and 
receptors. Among those, are proteins involved in the aerobic respiration and photosynthesis. 
The aerobic respiration takes place in the inner mitochondrial membrane, involving a series 
of proton-coupled electron transfer reactions via enzyme complexes, such as the cytochrome 
bc1 (bc1) and the cytochrome c oxidase (CcO). As a major lipid of bioenergetic membranes, 
the interactions of CDL to these enzymes has been explored by MD simulations. 
Microsecond-long CG simulations along with PMF calculations characterized CDL binding 
sites that bridge contacts between the bc1 and the CcO, potentially facilitating the electron 
transfer process.440,441 A CG study of the CcO also observed CDL binding sites proximal to 
the proton entrances,442 while an AA study of the bc1 observed the occupation of CDLs near 
a catalytic site of its quinol/quinone substrates.443 These findings suggest that CDLs also 
take part in the proton uptake, a critical functional process of the bc1 and the CcO.

Photosynthesis is a process in plants and autotrophic bacteria involving proton and electron 
transfer reactions. Photosystem II (PSII), an enzyme complex located in the thylakoid 
membrane, which contains high percentages of PG and glycolipids,444 is a main component 
of the process. A microsecond-long CG simulation of a PSII dimer in a thylakoid-like 
membrane revealed the flexibility of the complex at the dimer interface.445 In contrast to the 
dimer, the monomer adopted a tilted orientation which led to membrane buckling.445 A 
follow-up MD study captured the open state of PSII in thylakoid membranes, which allows 
free diffusion of the lipids in and out of the membrane.446 AA simulations have been 
employed to investigate the homodimerization and localization of PufX, which mediates the 
interactions between protein complexes involved in photosynthetic electron transfer 
reactions. The presence of tyrosine and tryptophan residues preferentially at the lipid-water 
interface was shown to contribute to the anchoring of TM helices of PufX to the lipid 
headgroups.447

Lipid interactions have also been shown to play an important role in modulating the 
orientation and conformational dynamics of integral membrane proteins. AA simulations 
have been employed to compare the dynamics of PagP, a bacterial outer membrane protein, 
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in six different lipid bilayers.310 Analysis of lipid-PagP interactions revealed that the N-
terminus interacts preferentially with the lipid headgroups to lock the protein configuration 
in the lipid bilayer. In all tested lipid bilayers, PagP adopted a tilted orientation, facilitating 
access of lipid tails to the central binding pocket.310 Similarly, AA simulations showed that 
the orientational dynamics of PilA, an adhesion and mobility factor in bacteria, were 
dependent on specific H-bonds between protein sidechains and PE headgroups.448 

Microsecond-long MD simulations have captured the transmembrane motions of PglB, 
induced by lipid-linked oligosaccharides, which were found to be coupled with the 
conformational changes in the loops.449

The activation of integral enzymes and vesicle fusion proteins can also be affected by 
protein-lipid interactions. Sphingomyelin binding observed in AA simulations was shown to 
regulate the equilibrium between the active and inactive states of p23 and p24 proteins, 
which are involved in vesicle biosynthesis.377 In GlpG, a transmembrane protease, an AA 
study demonstrated that membrane thinning around the protein allows substrate access to the 
catalytic dyad.450

Sampling of important protein-lipid interactions key to the behabior of the transmembrane 
proteins may be enhanced by the simulations of individual model TM helices. AA umbrella 
sampling simulations for translating a TM helix with a protonated arginine across the lipid 
bilayer, for example, revealed the movement of water and lipid headgroups into the lipid 
bilayer to interact with the arginine residue.451

A number of MD studies have used experimental restraints, e.g., solid-state NMR chemical 
shift anisotropy, dipolar coupling and solution NMR residual dipolar coupling, to refine 
protein structures in explicit lipid bilayers.452 The refined structure of Pf1 coat protein 
revealed that the hydrophobic mismatch of the TM domain and the lipid bilayer contributes 
to the domain orientation. Specific protein-lipid interactions between the Pf1 polar residues 
and the lipid headgroups were shown to stabilize the orientation and the depth of protein 
insertion in the membrane.452

4 Lipid Dependence of Peripheral Membrane Proteins

Peripheral proteins engage primarily with the surface or interfacial region of one leaflet of 
the cellular membrane. While some peripheral proteins primarily associate with the 
membrane through interactions with integral membrane proteins, many others bind primarily 
through protein-lipid interactions.3 We will mainly focus on latter category, which includes 
structural proteins such as myelin basic protein, enzymes like cytochrome P450, and 
proteins involved in blood clotting.3,16,453 Many peripheral proteins are membrane binding 
domains of larger proteins. Some peripheral proteins are involved in pathophysiological 
conditions, such as viral membrane binding proteins and bacterial toxins.3

Peripheral proteins use two primary binding modes to associate with the membrane. The 
first mode requires some combination of strong electrostatic association of charged residues 
with lipid headgroups and insertion of hydrophobic residues into the membrane core. This 
association may be mediated through bound ions, as is the case with the binding domain of 
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coagulation factor X (Figure 26).373 In the second mode, the protein may interact only 
superficially with lipid headgroups but is tethered to the membrane by either an α-helix or a 
lipid-like anchor such as a covalently-linked farnesyl group (Figure 26).373 In some cases, 
protein binding to the membrane can be highly dependent on specific lipids. We will discuss 
such special lipids in Section 5.

For those interested in mechanistic studies of peripheral proteins, information on membrane 
penetration depth, orientation and interaction sites with the membrane provides invaluable 
insight. Obtaining this information though simulations may be impeded by the slow pace of 
lipid diffusion. This constraint can make simulation of spontaneous binding and insertion of 
peripheral proteins in AA simulations prohibitively difficult. A variety of methods have been 
used to address this difficulty; these have included initial CG simulations before conversion 
to AA models, using biases to pull proteins into the membrane, pre-insertion of the protein 
based on either experimental constraints or initial implicit membrane simulations, and use of 
specially designed membrane representations such as HMMM.

In this section, we will cover major classes of peripheral proteins for which simulation 
results have illuminated aspects of lipid-protein interactions. We will first discuss 
membrane-associated enzymes (Figure 27), an important class of peripheral proteins 
involved in metabolizing drug molecules, blood coagulation, and phospholipid hydrolysis. 
We will then turn our attention to proteins directly involved in cell signaling, e.g., Ras 
GTPases. Next, simulations of “disease-causing” proteins, including toxin proteins, viral 
proteins, and proteins involved in improper aggregation will be presented. Finally, we will 
discuss proteins directly involved in membrane curvature and fusion, particularly 
highlighting BAR domains.

4.1 Membrane-bound Enzymes

Several classes of important membrane-associated enzymes have been studied using MD 
simulations (Figure 27). These peripheral proteins help to catalyze a variety of 
biotransformation and biosynthetic reactions.453,454 Here, we will first discuss cytochrome 
P450, followed by phospholipases and lipases. We will then discuss binding domains 
required for activity of blood coagulation proteases. The concluding section will detail 
simulations of additional membrane-associated proteases and enzymes.

4.1.1 Cytochrome P450—Cytochrome P450 (CYP) enzymes are responsible for 
metabolizing 75% of drugs which undergo biotransformation in the body. Their catalytic 
domain is globular, and while tethered to the membrane by a transmembrane helix, its direct 
interaction with the membrane has been shown to arise independently of the tether.178 A 
number of simulation approaches have been used to characterize the membrane-bound state 
of CYP3A4, the most important CYP for drug metabolism, including AA,455,456 HMMM178 

(Figure 28), multiscale,+ and CG simulations.458 In addition to characterizing binding 
orientation and depth of the catalytic domain,178,457,458 these studies found that membrane 
binding affects the ingress and egress channels believed to allow hydrophobic and 
amphiphilic substrates to move between the catalytic site and the membrane.178,457 

Membrane binding was found in HMMM simulations to induce conformational changes in 
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the globular domain at the lipid-protein interface, and to induce opening of the putative 
ingress channels to the substrate.178 In a multiscale study comparing apo and warfarin-
bound catalytic domains, the number of open ingress channels in aqueous solution was 
found to be greater in apo form than the warfarin-bound state.457 In membrane-bound 
CYP3A4, however, the same number of open channels was found for both the warfarin-
bound and apo forms.457 Microsecond-long AA simulations reported that lipid composition 
affected the orientation of the catalytic domain and the position of ingress/egress channels 
relative to the bilayer, with significant differences in orientation between anionic and 
zwitterionic phospholipids.455

Similar to simulations of CYP3A4, results for other CYPs showed that membrane binding 
influenced opening and closing of putative substrate ingress/egress channels.459–462 It was 
reported, in some cases, that ingress channel position in simulations agreed with the height 
at which the substrate partitions in the bilayer.461,463 Membrane-binding for CYP2C9 was 
found to stabilize the open conformation of a gate which locks the substrate in the catalytic 
site.459 HMMM simulations of CYP2J2 demonstrated that mutating the hydrophobic 
residues that engage with the membrane led to more shallow membrane insertion.194 Some 
studies have also suggested that CYPs may interact preferentially with specific lipids. A 
study of CYP2B4, for example, found that membrane binding induced formation of a 
sphingomyelin (SM)-enriched domain.464 In addition, the orientation of CYP3A4 was found 
to change upon binding to neutral lipids as compared to negatively charged lipids.455

4.1.2 Phospholipases and Lipases—Lipases and phospholipases are enzymes that 
catalyze the hydrolysis of various lipid ligands such as triglycerides or phospholipids into 
fatty acids and other products. These water-soluble proteins feature a flexible lid, which 
protects the hydrophobic active site in an aqueous surroundings but opens in hydrophobic 
environments to provide access for lipid substrates. Simulation studies of lipases and 
phospholipases in the presence of lipid substrates provided insight into the conformational 
changes of the lid and its role in protein-substrate interactions. AA simulations of 
Thermomyces lanuginosa lipase revealed the high plasticity of the lid and its role in 
anchoring lipid aggregate, also suggesting that draining of water from the active site is 
required for the enzymatic activity after lipid adsorption.465 AA simulations of the cytosolic 
phospholipase A2 demonstrated selective binding of arachidonyl phospholipids due to the 
specific shape of the sn-2 tail, providing insight for future design of novel inhibitors of the 
enzyme.466 Moreover, sub-μs AA simulations of phospholipase A2 under different 
conditions captured a closed state in the presence of water and an open state upon 
association with the membrane.467

Simulation of other lipases have also shown conformational changes of the lid following 
membrane binding.468,469 Multiscale, μs-long simulations of M37 lipase in the presence of a 
lipid bilayer showed that triglyceride-protein interactions induced large-scale conformational 
changes, creating a putative substrate entry path.469 The lipase was also shown to bind to 
anionic phospholipids, in which case no conformational change in the lid was observed. AA 
simulations of monoacylglycerol lipase (MGL) for 10 ns found conformational changes 
upon interaction with the membrane as well, a finding consistent with results of mutagenesis 
and kinetic experiments presented in the same study.468
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A number of simulation studies have examined two important phopholipases, phospholipase 
A2 (PLA2) and C (PLC) (Figure 29). PLA2 breaks down components in dietary fat, 
releasing fatty acids from the second carbon group of glycerol. Three types of PLA2 

isoforms have been studied using MD simulations: Ca2+-independent phospholipase A2 

(iPLA2) and cytosolic (cPLA2), which both bind the cytosolic side of the membrane, and 
secretory (sPLA2) which binds the extracellular side of the membrane. Spontaneous 
association of pancreatic sPLA2 membrane-binding C2 domain to lipid bilayers was studied 
using CG and AA simulations, concluding that the protein bound preferentially to anionic 
lipids472,473 and to lipids with greater fl y (e.g., DOPC as compared to DOPE at the same 
temperature).473 Specific hydrophobic residues were shown to insert into the membrane 
core.472,473 AA simulations of the C2 domain of cPLA2, in which the protein was initially 
pre-embedded in the bilayer based on EPR data, identified residues interacting with PC 
headgroups.474 Short AA simulations (10 ns) of cPLA2 also suggested that specific binding 
of ceramide-1-phosphate to the C2 domain changes its tilt relative to the membrane.475 

Multiscale simulations of iPLA2 captured spontaneous membrane binding and identified a 
hydrophobic cleft near the membrane surface potentially involved in lipid extraction from 
the membrane470 (Figure 29A).

The membrane binding of phospholipase C (PLC), which hydrolyzes the phosphodiester 
bond, (Figure 29B) has also been captured using AA471,476,477 and CG simulations.478 It 
had been found experimentally that a PLC which specifically hydrolyzes PI bound 
transiently to PC membranes, hypothetically allowing PLC to enhance its residence on the 
membrane surface while searching for PI lipids.477 AA simulations confirmed superficial 
protein binding to the membrane, featuring interacting characteristic of cation-π bonds with 
tyrosine residues.477 Interactions with lipids were found to dynamically exchange over 100–
200 ns (during simulations with total lengths of 500-ns),477 substantiating transient 
interactions observed experimentally. Another AA simulation of a PLC also found structures 
characteristic of cation-π interactions between tyrosine residues and PC choline groups. 
Mutation of the tyrosine residues involved in these interactions was shown experimentally to 
affect the membrane binding affinity.471

In a CG study of a different PLC, PLCβ2, the effect of lipid composition on activation of the 
enzyme was studied.478 It had been found experimentally that PC inhibited activation while 
PE allowed for it, so CG simulations were performed of the PLCβ2 membrane binding 
domain in the presence of bilayers with varying PE contents.479 It was found that binding 
depth of the N-terminal residues was greater at higher PE contents; thus, PC headgroups 
appeared to interfere with deeper membrane penetration.478

4.1.3 Coagulation Proteins—Binding of coagulation proteases to the platelet surface is 
a highly lipid-regulated process, primarily triggered by increased exposure of anionic lipids 
to the outer leaflet of the plasma membrane.16 Simulations have been used to study lipid-
protein interactions of the membrane binding domains of these proteases and their cofactor 
proteins, which form complexes with coagulation proteins on the surface of the membrane. 
Of particular interest are membrane binding domains rich in γ-carboxyglutamate (GLA) 
residues, which allow for Ca2+-mediated membrane binding of coagulation factors to 
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anionic lipids such as PS, and discoidin domains (C1 and C2), which are involved in binding 
of several coagulation cofactor proteins.

Simulations have been used to examine PS binding sites of the prothrombin GLA domain 
(PT-GLA),480 demonstrating a dynamic binding of PS, and identifying more PS binding 
sites than originally suggested by crystallography.480 The GLA domain of coagulation factor 
VII (FVII-GLA) has also been studied using AA simulations, with SMD used to assess the 
rupture force of PS unbinding from wildtype and mutant FVII-GLA domains.481 Ohkubo et 
al. used SMD to simulate FVII-GLA binding to a 100% PS membrane,177 and later 
simulated spontaneous binding of the same domain to a PS-HMMM membrane.176 This 
allowed for demonstration of hydrophobic keel binding to the membrane core, importance of 
Ca2+ ions in association of FVII-GLA with anionic lipids, and identification of protein 
residues with significant lipid contacts.176,177 The resulting model allowed in a follow-up 
study for the fi simulation of full coagulation factor VII in complex with its cofactor, tissue 
factor, on the surface of the membrane.482 Using the HMMM methodology, Muller et al. 
were able to extensively sample spontaneous binding of the coagulation factor X GLA (FX-
GLA) domain to a 100% PS membrane in search of PS-specific binding sites. Analysis of 
PS binding during 27 independent 200 ns combined HMMM and full-membrane simulations 
allowed for characterization of putative PS-specific binding sites.189

For factors V (FV) and VIII (FVIII), membrane binding is mediated by two discoidin 
domains known as the C1 and C2 domains. Membrane binding of FVIII discoidin C1 and 
C2 domains186,483 has been studied using both HMMM186 and CG simulations,483 while 
membrane binding of FV C2 domain was investigated using AA simulations.484 All 
simulations consistently found that membrane binding was mediated by insertion of residues 
on hydrophobic “spikes” or loops. HMMM simulation of the FVIII C1 and C2 domains 
found that both bound through spike residues, but with different orientations.186 In addition, 
FVIII discoidin C1 and C2 domains were found to induce clustering of anionic lipids during 
CG simulations.483

4.1.4 Proteases and Other Enzymes—In coagulation proteins, discussed above, the 
serine protease domain is positioned far above the membrane. In other proteases, the 
catalytic domain can engage more closely with the membrane. This includes two neutrophil 
serine proteases involved in destruction of connective tissue in inflammatory diseases such 
as rheumatoid arthritis, which are shown experimentally to have differential affinity for 
POPC vesicles.485 These netoutrophil proteases have been studied in extensive AA 
simulations485,486 in conjunction with surface plasmon resonance experiments.485 The 
simulations found that the two proteases associated with the membrane using different 
mechanisms, with one binding by inserting bulky hydrophobic residues into the membrane 
core,486,487 while the other primarily interacted with the membrane through electrostatic 
interactions.485 AA simulations have also allowed for characterization of binding orientation 
and depth for a mitochondrial protease, using the first NMR solution structure of the protein 
as the starting structure.488 In addition, spontaneous insertion of a hepatitis C protease into 
PIP2-containing membranes was described using HMMM simulations,489 which allowed for 
characterization of three PIP2 binding sites.489
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AA simulations have also been used to study the membrane binding of two cyclooxygenase 
enzymes (COX-1 and COX-2),490–492 which are involved in synthesis of prostanoids 
mediating pain and inflammation. Residues interacting with the hydrophobic core were 
identified.490,492,493 In addition, membrane lipid order parameters were compared following 
monoamine oxidase B (MAO-B) dimer and COX-2 membrane binding,493 and it was found 
that COX-2 binding only affected order parameters for lipids in the cis leaflet while MAO-B 
binding affected both leaflets. Despite the short length of these simulations (between 1 ns490 

and 25 ns491–493)and thus limited sampling of the lipid-protein interactions, differences were 
observed in the membrane interaction of COX-1 and COX-2. Furthermore, homodimers of 
COX-1 and COX-2 were found to induce curvature in the trans membrane leaflet.492 More 
extensive CG simulations compared spontaneous membrane binding of 11 monotopic 
enzymes including COX-1, COX-2, and seven other oxidoreductases, FAAH (a hydrolase), 
an isomerase, and a transferase454 (Figure 27). The binding of a fatty acid to FAAH has also 
been examined with extensive AA simulations in the context of a lipid bilayer.494,495 

Considerable differences in membrane penetration were found for COX-1 and COX-2,454 

with the latter shown to cause deformation in the bilayer structure.454

CG, AA, and HMMM simulations of other membrane associated enzymes have 
characterized membrane partitioning,185,496–498 protein-induced perturbation in local 
membrane curvature,496 protein-induced anionic lipid enrichment,496,499,500 and lipid-
mediated dimer stabilization.501 AA simulations of cytotoxic demetallated copper-zinc 
superoxide dismutase 1 found that the protein was both able to adsorb onto PC bilayers, 
using its metal binding loops, and to complex with clumps of octanol in solution.502 Another 
example is PTEN, which hydrolyzes PIP3 to PIP2 and contains both a tyrosine phosphatase 
domain and a membrane binding C2 domain. PTEN interaction with the membrane has been 
studied using both CG and AA simulations.500,503–505 Charged reversal mutations of 
positive residues on the membrane binding surface were shown to reduce interactions of the 
phosphatase domain with lipids. In addition, the C2 domain induced clustering of anionic 
lipids500 and was found to bind PS tightly.503

4.2 Cell Signaling Proteins

A variety of peripheral proteins are intimately involved in signaling cascades. Ras proteins 
and other GTPases, for example, are involved in signaling pathways that promote cell 
growth, and a number of Ras mutations are known to promote cancer. Here, we will discuss 
simulation studies of Ras proteins as well as a number of other signaling proteins, such as 
talin and TIM proteins.

4.2.1 Ras Proteins—Ras (Rat sarcoma) oncoproteins regulate major signaling pathways 
and key responses to external stimuli in the cell. Ras proteins must associate with the 
membrane for their signaling activity, as the tight functional coordination of Ras and its 
effectors is mediated partly by the membrane. There are three isoforms of Ras: H-Ras, N-
Ras, and K-Ras, with K-Ras being the most abundant isoform of mutant Ras oncoproteins. 
The full-length protein is composed of a G-domain, a globular domain which binds and 
hydrolyzes GTP, and a highly flexible linker. While the G-domain of these isoforms is 
highly conserved both sequentially and structurally, the main difference between Ras 
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isoforms lies in the highly flexible linker, also called the hypervariable region (HVR). The 
HVR plays a crucial role in anchoring Ras into the cellular membrane in a lipid-dependent 
manner, after undergoing post-translational modifications, which include prenylation (e.g., 
farnesylation) and acylation (e.g., palmitoylation) involving covalent bonding between a 
fatty acid and a cysteine residue. The anchoring consequently may affect the orientation of 
the G-domain and its interaction with the membrane.

AA simulations of K-Ras characterized the association of the anchored farnesyl fatty acid 
with anionic lipids via lysine-PC salt bridges.506,507 K-Ras HVR contains a polylysine 
sequence which was found to modulate both the interaction of the HVR with the membrane 
as well as the orientation of the farnesyl fatty acid in the membrane.508 Microsecond-long 
AA simulations of the K-Ras HVR found evidence of multiple conformational states, which 
was also supported by free energy calculations using metadynamics.507 In silico 
mutagenesis of the HVR linker showed that mutating a lysine residue of the polylysine 
sequence to a glutamine significantly increased the population of ordered conformations.507 

Phosphorylation prevented the insertion of the farnesyl tail into the membrane.508 A later 
study with μs-long simulations found that phosphorylation of K-Ras changed its 
nanoclustering, resulting in a distinct signaling output and enhanced K-Ras binding affinity 
to the membrane.509 AA simulations also found that in addition to the G-domain orientation 
on the membrane, the HVR sequestration, farnesyl insertion and the exchange of GDP to 
GTP are required to switch between active and inactive forms of K-Ras.510

N-Ras undergoes farnesylation as well as palmitoylation, aiding in membrane anchoring. A 
detailed simulation analysis of lipidated versus non-lipidated anchors showed that lipidation 
is essential for N-Ras stability in the membrane. The anchor binding to the membrane was 
facilitated not only by acyl insertion, but also by interactions of hydrophobic residues of the 
peptide with the hydrophobic core of the membrane.511 Membrane curvature was found to 
affect binding; N-Ras preferentially bound DOPC when the bilayer is planar and POPC 
when curved.512 The structural and conformational flexibility of the N-Ras linker was 
studied and key residues interacting with the membrane were identified with replica 
exchange MD in combination with NMR experiments.513–515 CG simulations suggested N-
Ras slows the mixing of lipid domains by localizing at their interface.516

H-Ras anchors undergo two palmitoylation events, in addition to farnesylation. Membrane 
association of H-Ras was studied using AA simulation, which found that both of its 
palmitoylated cysteine residues contribute to the membrane affinity.511,517,518 Another AA 
study calculated the transfer free energy of H-Ras from bulk solution into the lipid 
membrane and found that the GTP-bound form inserted deeper into the membrane than the 
GDP-bound form.519

The G-domain association to the membrane was also reported in several studies in two 
distinct ways.511,517,521 AA simulations found differences in orientation of the K-Ras and 
H-Ras G-domains, potentially resulting in functional implications in terms of downstream 
effector interactions.522 PIP2 has been found to form long-lived salt bridges with the G-
domain, preventing the tumbling or turning motions on the membrane surface.191,523
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Formation of dimers and nanoclusters is believed to be necessary for signal activation of Ras 
proteins. MD simulations identified four sets of possible Ras dimers, whose stability on the 
membrane surface was evaluated with MM-PBSA.524 Studies of full length and H-Ras 
linkers revealed that a critical concentration was needed for nanoclustering.525 H-Ras linkers 
were found to cluster at the boundary of lipid domains because of the respective preference 
of palmitoyl and farnesyl fatty acids for ordered and disordered membrane domains.526 Key 
residues influencing signaling have been identified, providing an opportunity for novel drug 
targets to interfere with signal transduction in oncogenic Ras.527

Cholesterol was also found to enhance the stability of nanoclusters even though it did not 
appear to be required for their formation.525,528 H-Ras anchors formed reversible 
nanoclusters in membranes containing more flexible DLiPC lipids, in which the cluster 
formation depended on both cholesterol and protein concentrations.525,528 Results of sub-μs 
to μs simulations also suggested that the clusters underwent molecular exchange on the 
membrane.526 A CG study found a large aggregate of H-Ras molecules formed, independent 
of the initial orientation of the G-domain. The different orientations influenced the G-
domain dynamics during and after H-Ras aggregation, providing insight into the ability of 
H-Ras to bind downstream effectors520 (Figure 30).

The Ras-mediated signaling cascade is dependent on Ras association to its downstream 
effectors, one of which is Raf (rapidly accelerated fibrosarcoma), whose interactions with 
Ras have been explored by many AA simulation studies.522,529–531 Simulations of 
membrane-anchored Raf-1 cysteine rich domain (CRD) to a PS/PC bilayer provided a 
putative model of K-Ras/Raf-1 complex, in which docking was used to determine the initial 
configuration of Raf-1 relative to the membrane.529 AA as well as CG simulations in 
combination with experimental data, showed that the hydrophobic loops of the CRD 
associated with the membrane, affect the orientation of the Ras-Raf complex, as well as the 
dimerization of Ras monomers.530 AA simulations also suggested a competition between C-
Raf CRD and K-Ras membrane interactions, maintaining the protein complex at the 
membrane surface, enabling fast signaling.531

4.2.2 Other Signaling Proteins—In addition to Ras, simulation studies have examined 
lipid-protein interactions in a number of other signaling proteins. CG simulations of the 
Rab5 HVR showed persistent binding with PIP3, as well as slower diffusion upon 
enrichment of either cholesterol or PIP3.532 Another AA simulation study found the G-
domain of Rab5 to be oriented so that the switch regions of the GDP–bound state are 
partially buried between the protein and the lipid bilayer, while the switch regions of the 
GTP–bound state adopt an orientation in which they are fully solvent and effector 
accessible.533

Other simulations have examined lipid-protein interactions of peripheral proteins which 
interact with receptors. Multiscale simulations of the Dok-7 protein, which regulates 
activation of a tryosine kinase, identified PI–specific binding sites.534 Both AA and CG 
simulations have been used to examine membrane interactions of talin,182,535,536 a key 
regulator of cell transduction events through its role in activation of cell surface receptor 
integrin. Simulations studying protein-lipid interactions of integrin were discussed earlier 
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(see Section 3.3.2). Determination of orientation, as well as changes in conformation 
induced by membrane binding, provided key insight into how talin fulfills its role in 
activating integrin.182 Talin was found to bind using a hydrophobic anchor, which emerges 
from the core of the protein following a conformational rearrangement induced by 
membrane binding.182

Membrane interactions of TIM proteins, which are involved in stimulatory and co-
stimulatory signaling of T-cells, have also been studied using simulations. TIM proteins 
recognize PS specifically, and have been co-crystallized with PS bound to a Ca2+-containing 
binding site.537 A number of simulations have been used to study PS binding to both TIM1 
and TIM4. AA simulations were used to study PS recognition by TIM4. TIM4 was docked 
to the membrane surface using restraints from X-ray scattering data, and a PS docked into 
the known crystallographic binding pocket.537 In another AA study, four additional residues 
which could serve as binding sites for PS were identified.537 An HMMM membrane was 
used in a study of TIM1, also in conjunction with X-ray reflectivity analysis.538 Two 
different binding states were identified using HMMM, one likely representative of binding 
high–PS membranes and the other representative of binding to low–PS membranes.538

4.3 Membrane-bending Proteins

Peripheral proteins can induce and stabilize various degrees of membrane curvature. 
Membrane-bending effects have been observed for amphiphysin with experimental 
techniques such as fluorescence microscopy and negative staining electron microscopy.
539,540 However, a detailed mechanistic descriptions of how lipid-protein interactions lead to 
curved membranes are only possible with MD simulations. In this section, we will start with 
the most extensively studied membrane-bending peripheral protein, the BAR domains, and 
then continue with proteins containing amphipathic helix such as α synuclein and 
synaptotagmin, and conclude with other membrane-bending proteins.

4.3.1 BAR Domains—BAR (Bin/Amphiphysin/Rvs) domains are involved in global 
membrane remodeling process such as vesiculation and tubulation in the cell.541 All BAR 
domains exist as a crescent-shaped dimer, the formation of which is facilitated by a highly 
conserved three-helix motif. There are, however, significant sequence/structural variations 
among BAR domains, giving rise to three subtypes, termed N-BAR, F-BAR, and I-BAR.

As the first attempt to understand the molecular basis of membrane sculpting by the BAR 
domains, AA MD simulations showed that a single amphiphysin N-BAR domain, which 
consists of a BAR domain with an N-terminal amphipathic helix, can bind to the lipid 
bilayer with its positively charged concave surface and induce a positive local curvature with 
a radius of ~15–25 nm.543 This membrane behavior was validated by a more extensive 
computational study conducted at four different levels of resolution: AA, residue-based CG 
and shape-based CG simulations, and a continuum elastic membrane model, finding that 
different arrangements of N-BAR domains resulted in different membrane bending 
dynamics (Figure 31).542 It was further demonstrated with sub-millisecond CG simulations 
that various lattices of amphiphysin generated a wide range of membrane curvatures, with 
radii ranging from 15 to 100 nm.544 The dominating factor for membrane curvature induced 
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by the N-BAR was concluded to be the scaffolding effect of its concaved surface.545,546 On 
the other hand, the role of the short N-terminal amphipathic helix, which is believed to be 
inserted into the membrane headgroup region, has also been evaluated with MD simulations.
545,547 The consensus is that in the case of amphiphysin, strong membrane curvature is not 
generated by the insertion of the amphipathic helix per se. Rather, this amphipathic helix 
appears to be important for the close N-BAR domain association with the membrane and 
formation of an optimal lattice to bend the membrane globally.545

Endophilin, another N-BAR domain, has also been investigated extensively for its ability to 
remodel membranes.548–555 Similar to amphiphysin, endophilin needs to form an ordered 
lattice to cooperatively sculpt the membrane.550,551 Specifically, it was found that when 
endophilins occupied only 20% or less of the membrane surface, they interacted with each 
other and formed a linear aggregate.552 In contrast, at 50% or more occupancy, endophilins 
were found to transform a lipid vesicle into a 3D tubular network.551 In addition, while 
tensionless membranes promote endophilin association, increasing membrane tension was 
shown by CG simulations to inhibit their aggregation at the membrane surface and 
consequently reduce the induced membrane curvature.553

Other members from the BAR domain family that lack the amphipathic helix have also been 
studied by MD simulation. CG simulations have captured the dynamic process of membrane 
tubulation by a lattice of F-BAR domains.556 Compared to N-BAR, the F-BAR domains are 
less curved and induce a smaller membrane curvature individually. When arranged in a 
lattice, the generated positive membrane curvature was highly dependent on the F-BAR 
domain density. Lattices with lower protein densities achieved lower curvatures because of 
the weaker electrostatic interactions between the F-BAR domains and the lipids.556 In 
contrast, the I-BAR domain has been shown to induce a slight negative membrane curvature 
to increase the packing of negatively charged DOPS lipids near the positively charged I-
BAR surface.557

4.3.2 Amphipathic Helix-containing Proteins—Unlike BAR domains which sculpt 
the membrane mainly via scaffolding, certain proteins generate membrane curvature by 
inserting their amphipathic helices into one membrane leaflet.559–563 One representative 
case is α synuclein, a small neuronal protein regulating synaptic vesicle trafficking but most 
notable for its association with Parkinson’s disease. It has been hypothesized that α 
synuclein inhibits membrane fusion through stabilizing a curved structure of the membrane.
564 The mechanism by which α synuclein generates curvature with its conformationally 
flexible amphipathic helix has been studied extensively with MD simulations.558,561,565,566 

CG simulations revealed that the α synuclein-lipid complex had an intrinsic positive 
curvature dictated by the interactions between the protein and nearby lipids, water molecules 
and ions.561 A follow-up study demonstrated that radially arranged α synuclein proteins 
could induce budding in a planar membrane (Figure 32).558 Furthermore, CG simulations 
found that association of α synuclein with a small unilamellar vesicle increased the 
membrane undulation of the vesicle.565

The epsin N-terminal homology (ENTH) domain, which is involved in clathrin-mediated 
endocytosis, contains an amphipathic helix in its compact globular structure. AA simulations 
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revealed that the amphipathic helix of the ENTH domain can wedge into the lipid bilayer 
with favorable interactions between PIP2 and nearby positively charged protein residues, 
resulting in a displacement of lipid headgroups and a local membrane curvature.560 

Furthermore, CG simulations suggested that large-scale anisotropic membrane remodeling 
relied on sufficient packing of ENTH domain dimers on the membrane surface.560,567

Similarly, the C2B domain of synaptotagmin, a Ca2+ sensing protein involved in synaptic 
vesicle fusion, can interact with the membrane via its amphipathic helix. In one MD study, 
the membrane binding of the C2B domain of synaptotagmin was captured with HMMM.562 

After conversion to full membranes, AA simulations revealed how synaptotagmin C2B 
domain can cooperatively induce a positive membrane curvature by inserting its C-terminal 
helix into the proximal leaflet inducing a different lipid tail ordering and an imbalance of 
lateral pressure across the leaflet.562 The membrane insertion and binding orientation of the 
related C2A domain, which lacks the amphipathic helix, have also been examined with MD 
simulations.192,568

4.3.3 Other Membrane-bending Proteins—Simulations of annexins, a family of 
proteins participating in membrane organization and vesicle transport, found both that the 
convex Ca2+ binding side of annexin was the membrane-interacting site and that annexin can 
induce a negative membrane curvature in a Ca2+-dependent manner.569,570 In addition, the 
membrane binding segment of caveolin-1, which drives the formation of caveolae, was also 
shown by simulations to partition into the membrane and to modulate spontaneous 
membrane curvature.571,572

Certain peripheral proteins, e.g., Ras proteins (see Section 4.3), bind the membrane via 
covalently linked lipid moieties including isoprenyl tails, fatty acids, 
glycosylphosphatidylinositol, and diacylglycerol.573–576 Incorporation of these hydrophobic 
anchors and nearby protein residues into the lipid bilayer poses a significant perturbation to 
the membrane structure, potentially inducing membrane curvature. One prominent example 
is the HVR linkered H-Ras, which undergoes two palmitoylation and one farnesylation post-
translational modifications at its C-terminus. The bulky lipid anchor of H-Ras was shown by 
simulations to change the tail tilting angle of nearby lipids and modulate the membrane 
thickness.528,573 It has also been demonstrated by MD simulations that full H-Ras 
aggregates on the membrane and leads to major membrane remodeling, an effect primarily 
attributed to the area expansion of the proximal leaflet caused by the insertion of lipid 
anchors.577

4.4 Disease-causing Proteins

MD simulations have been used to characterize membrane-protein interactions critical to the 
effect of disease-causing proteins, including toxins, prions, and viral proteins. Although 
some toxins are classified as integral membrane proteins, as they ultimately span the 
membrane, their initial mode of interaction with host membranes is largely peripheral. We 
will therefore discuss their simulations here.

4.4.1 Membrane-binding Toxins—It has been suggested that the inhibition of ion 
channels by certain toxins can be mediated by their membrane binding. For instance, 
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GsMTx4, a cysteine-knot toxin isolated from tarantula venom, can effectively inhibit 
mechanosensitive ion channels in both enantiomer forms (L- and D-), which is incompatible 
with an inhibition mechanism involving stereochemistry-specific association with the 
channels.578 Later, a number of MD studies evaluated membrane binding properties of this 
group of gating-modifying toxins. Two different membrane insertion modes of GsMTx4 
were identified to be dictated by electrostatic interactions between cationic residues and the 
lipids. Furthermore, the deep insertion of GsMTx4 resulted in significant membrane 
thinning, which could explain its potentiation effects on mechanosensitive channels.579,580

In the case of VSTx1, another tarantula toxin targeting voltage-gated K+ (Kv) channels, it 
was first demonstrated with CG simulations that the toxin bound to the interfacial region of 
the membrane.583 Follow-up CG simulations used umbrella-sampling to quantitatively 
describe the preference of VSTx1 to partition in the interfacial headgroup region.584,585 

PMFs of both CG and AA simulations showed an energy well at the interfacial region and a 
barrier at the hydrophobic core.585 Furthermore, VSTx1 was simulated along with the 
archaeal Kv channel KvAP, first using a CG presentation to find the correct association pose 
and then using a converted AA model to refine the predicted VSTx1/channel interface 
(Figure 33).581 This multiscale study supported the membrane-mediated inhibition 
mechanism of gating-modifying toxins.

Other MD simulations confirmed similar membrane association modes for related toxins 
including SGTx1,586 HaTx1,587 and JZTx-III,588 and ProTx-II.582 For instance, it was 
proposed that ProTx-II binds the membrane via a patch of hydrophobic or positively charged 
residues, which increases the effective concentration of the toxin in the membrane and 
enhances the inhibition of Na+ channels (Figure 34). Another study found ProTx-I bound to 
a model bilayer while another toxin Hd1a did not, suggesting that the membrane interaction 
was not necessary for all gating-modifying toxins and had to be examined case by case.589

One of the most acute components of the snake venom is α-neurotoxin. It consists of 60–62 
amino acids forming a rather flat “three-finger” β sheet structure that selectively inhibits the 
acetylcholine receptor and results in flaccid paralysis.590 Similar to the smaller toxins 
discussed above, it was found that membrane binding of α-neurotoxin facilitates its delivery 
to the receptor, in a study combining NMR spectroscopy and MD simulation.591 In 
particular, specific interactions with the anionic DOPS lipids promoted a specific “standing” 
orientation of α-neurotoxin on the membrane suitable for receptor inhibition.591 

Interestingly, cardiotoxins are structurally homologous to neurotoxins but confer less 
toxicity and are believed to interact with intracellular components in addition to membrane 
targets. MD simulations have been used to explore membrane association modes and 
membrane penetration mechanisms for cobra cardiotoxin CTX A3.592–594

MD simulation has also been employed to study the diphtheria toxin translocation domain 
(T-domain). Following exposure to the acidic environment of the endosome, the T-domain 
undergoes a conformational transition which facilitates membrane insertion.595,596 CG 
simulation of 30 μs allowed for comparison of binding under acidic and neutral pH 
conditions as well as comparison of binding to bilayers of varying anionic character.596 Two 
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predominant membrane orientations were identified which in a later simulation study were 
converted to AA and further simulated for several hundred nanoseconds.595

Additionally, MD simulations have proven useful in study of peripheral bacterial toxins 
which target other bacteria. Simulations have been performed on a bacteriocidal protein 
produced by lactic acid bacteria, class II bacteriocins, and three immunity proteins, which 
confer immunity to the host bacteria from their own bacteriocin.597 A set of 30 ns AA 
simulations were performed, placing each in an environment consistent with NMR 
experiment, that is, the bacteriocin in the membrane core and the immunity protein in the 
interfacial region respectively.597 The immunity protein was found to interact with 
zwitterionic polar headgroups and the bacteriocin.597

4.4.2 Proteins Relevant to Improper Aggregation Diseases—Simulations of 
proteins involved in diseases of improper aggregation have allowed for identification of 
modes by which membrane interaction either inhibits or promotes disease. Prion diseases are 
associated with misfolding of the PrPC protein. When simulated in solution, PrPC showed a 
tendency to misfold during AA simulations of 10–50 ns. In contrast, when simulated at the 
surface of the membrane for ~40–80 ns, PrPC remained stable because it tilted toward the 
membrane surface, rendering the putative sites for misfolding and oligomerization 
inaccessible.598 Misfolding of Huntingtin protein is related to Huntington’s disease through 
pathways that likely involve interactions with the membrane. The poly-glutamine region of 
Huntingtin protein, with a variety of different flanking sequences was found to induce a 
variety of membrane effects.599 It was suggested that the N-terminus, a 17-residue sequence 
just before the poly-glutamine region, was important for the binding of Huntingtin protein to 
membranes. Indeed, the N-terminus peptide was shown to stably bind at the membrane/
water interface, forming both favorable hydrophobic interactions and salt bridges with the 
membrane.600 Apolipoprotein C-II is another known amyloidogenic peptide. Interestingly, 
the fibrillization of this peptide is rapid in solution but inhibited in the presence of lipids. 
MD simulations suggested that preferential binding of peptide aromatic residues with lipid 
hydrophobic tails reduced inter-peptide hydrophobic interactions.601

Amyloid β (Aβ ) peptides are involved in the formation of plaques in Alzheimer’s disease. 
Extensive simulations have been performed on the two most prevalent forms of Aβ peptides, 
namely Aβ1−42 and Aβ1−40.602–611 During the simulations, both peptides were shown to 
bind to lipid bilayers, which influenced their secondary structures603,604,606–608 and 
perturbed the integrity of the membrane, resulting in a thinner bilayer.606,608–610 It was also 
found that the N-terminus of Aβ interacted with the membrane at the lipid-water interface 
while its C-terminus remained mostly buried within the hydrophobic core of the membrane.
612

Influence of gangliosides613–617 and sugar molecules618 on Aβ peptides in the context of the 
membrane has been probed with simulations, and interactions with these moieties were 
found to induce conformational transitions616,617 and accelerated membrane insertion of the 
peptides.618 Cholesterol was also reported to affect the conformation of Aβ,619,620 reducing 
Aβ-induced membrane disruption.621,622 In addition, cholesterol can affect Aβ-membrane 
interactions through asymmetric distribution within the bilayer.623 Other simulations 
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studying shorter versions of the Aβ peptide624–627 also demonstrated drastic conformational 
change upon membrane binding625 and assessed lipid composition effects.626–629

To understand how Aβ peptides interact with each other in the context of the membrane, the 
most intuitive choice is to study the Aβ dimerization in different lipid bilayers. Free energy 
calculations found that an anionic DOPS bilayer strongly promoted protein-protein 
interactions and favored Aβ dimerization, while a DPPC bilayer promoted strong protein-
lipid interactions.630 Other simulation studies aimed at directly capturing the dimerization 
process in regular MD simulations.631,632 Interactions between Aβ tetramer and membrane 
has also been analyzed, and it was shown that the tetramer maintained its β sheet structure in 
a POPC bilayer and accelerated water permeation across the bilayer.633 On the other hand, 
the formation of Aβ tetramer was monitored with UA MD simulations, with the resultant 
tetramer subjected to simulations in the presence of different lipid bilayers. It was observed 
that the Aβ tetramer significantly perturbed the POPC membrane, but not an ordered-phase 
(raft) membrane (Figure 35).634

The interactions between a variety of protofi ar Aβ oligomers and the membrane have been 
studied with MD simulations.635–640 Though the protofibrillar oligomeric structures were 
perturbed to different degrees across the different monomers upon binding to the membrane, 
the β-sheet content was well preserved during the simulations,635–639 which ranged from 
150 ns to 500 ns. The main driving force for membrane binding was found to be the 
interactions between the N-terminal charged residues of Aβ and the lipid headgroups,
635,636,638 and the membrane association was found to be stronger with anionic lipids.
637,638 The binding of oligomeric protofibrillar Aβ caused thinning of the membrane, most 
notably at the interacting leaflet. 636 The free energy of embedding the protofibrillar Aβ 
trimers into a DPPC bilayer was determined to be around −70 kcal/mol, clearly indicating 
the favorable interactions (electrostatic and hydrophobic) between the Aβ peptides and the 
lipid bilayer.641

MD simulations found that oligomers of hIAPP (human islet amyloid polypeptide) 
fragments could disrupt the membrane, an effect which was alleviated by cholesterol.643,644 

In contrast, its full-length monomer had little effect on the membrane integrity.645–647 

Interestingly, changing the protonation state of a histidine residue modulated the membrane 
interaction strength as well as the conformational flexibility of the C-terminal portion of hI-
APP.196 Transition from membrane-bound α-helical hIAPP to β-strand containing oligomers 
was captured in a later study, with the self-assembly process requiring a neutral histidine at 
position 18.197

The ion channel form648 as well as the protofibrillar oligomers649 of hIAPP were also 
studied using molecular modeling and MD simulations. To probe interactions between 
different amyloid peptides, CG simulations were used to study the cross-seeding of Aβ and 
hIAPP on various membranes.650 A specific orientation was preferred by the Aβ-hIAPP 
cross-seeding assembly and was associated strongly with lipid bilayers composed of either 
PC or PC/PG, through the N-terminus of Aβ.650 This explained the observation that pure 
hIAPP fibrils and hybrid Aβ-hIAPP fibrils are morphologically similar. 650
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Simulations of α-synuclein discussed earlier (see Section 4.4) have examined its curvature 
effects.558,561,565,566 The aggregation of α-synuclein is believed to be highly dependent on 
its membrane interactions. MD simulation suggested that α-synuclein changed conformation 
upon binding to membrane and can readily penetrate the membrane.651 Interactions between 
different portions of α-synuclein and the membrane were also studied computationally.
652,653 CG simulations were used to model interactions of α-synuclein in bilayers of mixed 
zwitterionic and anionic lipids,642 finding that anionic lipids draw α-synuclein into the lipid-
disordered phase.642 Remarkably, α-synuclein also showed a preference for PUFA 
(polyunsaturated fatty acid) chains (Figure 36).642 AA simulations comparing dynamics and 
lipid-protein interactions of α-synuclein with micelles and bicelles654 suggested the protein 
was less dynamic in bicelles.654 Using twenty independent simulations, it was shown that α-
synuclein can have a highly variable insertion depth into the bilayer at equilibrium. 184

4.4.3 Viral Proteins—Viruses hijack the normal function of cells and cause a range of 
diseases from the common cold to AIDS. Remarkably, they accomplish the invasion with 
only a handful of viral proteins, a large fraction of which are known to function by 
interacting with membranes.

To enter the cell, many viruses need to fuse their envelope with the host membrane, a 
process usually facilitated by surface viral proteins. One of the most prominent cases is the 
hairpin-like N-terminal fusion peptide of hemagglutinin from the influenza virus. Early AA 
simulations captured insertion of the fusion peptide into a PC bilayer, resulting in membrane 
thinning near the peptide.655,656 Later simulations revealed consistent peptideinduced 
membrane perturbation and provided further details of pH-dependence of its membrane 
association, 657 aggregation behavior,658 conformational dynamics,659,660 and mutation 
effect.661,662 Notably, HMMM simulations captured its spontaneous membrane insertion179 

and CG simulations demonstrated how a bundle of hemagglutinin fusion peptides could 
stabilize a hypothetical pre-fusion structure. 663

Another notable viral protein related to viral entry is the glycoprotein 41 (gp41) of HIV. The 
N-terminal part of gp41 was found in UA simulations to penetrate into the membrane 
regardless of its initial orientation, which affected both structure and dynamics of the nearby 
lipids.664 The membrane-spanning domain of gp41, on the other hand, assumed a tilted α-
helical conformation with its central arginine residue “snorkeling” to either side of the 
membrane.665,666 Additionally, the membrane-proximal external region of gp41 induced 
phospholipid protrusion in the cholesterol-enriched rigid envelope during AA simulations.
667 Interestingly, synthetic peptides mimicking the C-terminal portion of gp41 that were 
used in clinical trials as HIV inhibitor candidates, were found to interact weaker with 
cholesterol-containing ordered lipid domains.668,669

Other simulated fusogenic viral proteins include glycoprotein gH of the herpes simplex 
virus,670 envelope protein of the Dengue virus,671 fusogenic protein F of the parainfluenza 
virus,672 as well as lytic peptide C from the non-enveloped flock house virus.673 They were 
all found to insert into the membrane and cause disordering in the nearby lipids during 
simulations, consistent with their fusogenic role. Notably, fusion protein Gc from Rift Valley 
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fever virus was shown in MD simulations to bind to membranes by accommodating the 
headgroup of a PC lipid, which initiates the membrane reorganization process.674

In addition to viral entry, proteins are required to mediate the exit of replicated viruses from 
the cell. VP40 is a membrane-associated protein thought to be necessary for viral budding in 
Ebola and Marburg viruses. Multiple studies have employed MD simulation to study VP40 
membrane association. 675–679 Particularly, CG simulations showed how Ebola VP40 
hexamer induced negative curvature and promoted clustering of PIP2 lipids.676 Another 
VP40 simulation showed that its dimer would not bind the membrane in the absence of 
anionic lipids.678 In accordance with this conclusion, AA simulations of the Marburg VP40 
dimer revealed favorable interactions between a lysine residue and anionic lipid headgroups 
(Figure 37).675,679

Some viral proteins interact with membranes during secretion and endocytosis. HIV Tat 
protein, a regulatory protein that enhances viral transcription, is known to interact with the 
endosomal membrane. Strikingly, a small region of Tat protein can translocate cargoes of 
different molecular sizes across the membrane independent of ATP and has received much 
attention from the biophysical community.680–684 Pore nucleation was demonstrated to be 
caused by the insertion of charged side chains of Tat,680 and AA simulations suggested that 
Tat binding induced both membrane curvature 681 and bilayer thinning.682 Other simulations 
found that Tat inserted into the hydrophobic core more readily in mixed PC:PE bilayers than 
in pure PC bilayers.683 Cholesterol was shown to hinder pore formation while anionic lipids 
were found to reduce the free energy barrier across the membrane for Tat peptide.684

4.5 Lipid Transfer Systems

Lipoproteins are complex lipid-protein particles involved in transport of fat molecules, such 
as cholesteryl ester (CE) and triacylglycerol (TG) in blood or extracellular fluid .685–687 The 
computationally most studied lipoproteins are HDL (high density lipoprotein) and LDL (low 
density lipoprotein), which differ in the fat/protein ratio of the particles. HDL helps the 
removal of excess cholesterol from plasma, while LDL has been implicated in the 
development of atherosclerosis.685,686

Due to the heterogeneity of shape and size, the details of how lipoproteins form and the 
structure they assume in the lipid-associated states are difficult to characterize 
experimentally. CG simulations starting from disordered protein-lipid complexes revealed 
the assembly of discoidal HDL structures on the μs timescale.688 The final structure 
included a lipid bilayer of 160 DPPC lipids wrapped by two apoA-I scaffold proteins, which 
is in great agreement with the double-belt discoidal model deduced from experimental data 
(Figure 38).688 CG simulations also showed that truncation of the bilayer section in the 
discoidal structure led to various HDL configurations, providing insight on the early steps 
involved in the formation of HDL.689 Moreover, replacing an adequate number of 
phospholipids in the discoidal HDL with a cluster of CE resulted in structural transition of 
HDL into prolate ellipsoidal shapes, with CE shielded inside the particles.690

CG simulations with a lipid composition matching the human plasma HDL revealed that the 
interfacial region of the spheroidal HDL is largely composed of phospholipids, lysolipids 
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and cholesterols, while CE and TG are mainly confined to the core of the particles.691 The 
simulations also showed that apoA-I proteins interact strongest with cholesterol, which may 
be relevant to the cholesterol transport processes of HDL.691 LDL is larger and less dense 
compared to HDL, consisting of an apoB-100 protein wrapping around a lipid droplet of 
3000 to 6000 lipids.692 Multi-μs CG simulations of formation of LDL demonstrated loose 
packing of lipids on the surface of the large lipid-protein complex, revealing a feature likely 
to foster the transfer of lipid between lipoproteins.693

In plasma, the transfer of CE from HDL to LDL and VLDL (very low density lipoprotein) is 
catalyzed by cholesteryl ester transfer protein (CETP).694 Sub-μs AA simulations of CETP-
HDL interactions revealed upright penetration of CETP into the HDL surface, and the 
migration of CE from the core of HDL into the opening of CETP.695 AA and CG 
simulations also showed that CETP binding to the HDL-like lipid droplet induces formation 
of a small hydrophobic patch on the surface of the droplet, opening a route for the core CEs 
to access the binding pocket in CETP.696 Microsecond-long AA simulations of the CE-
bound CETP showed that the structural flexibility of CETP affects the conformations of the 
two bound CEs and results in a continuous tunnel traversing the protein.697 While retaining 
both CEs inside the CETP core tunnel, the binding of two charged phospholipids in AA 
simulations was shown to maintain the protein conformation upholding a wide tunnel, which 
may facilitate the transfer of CEs between the lipoproteins.698 To speed up CE transfer, 
which happens approximately on a second timescale, SMD simulations were applied to 
drive CE through the entire 60– Å –long central tunnel of CETP.699 The predicted transfer 
rate estimated from the simulations was comparable with those deduced from physiological 
measurements.699

In addition to CETP, structural details of sterol transport proteins, Osh4 and Niemann-Pick 
(NP) proteins, and their interactions with sterol ligands have been characterized 
computationally, providing atomistic information on the binding and releasing mechanism of 
cholesterol700,701 as well as sterol ligand specificity.702 Cholesterol transport between 
Niemann-Pick protein C2 (NPC2) and Niemann-Pick protein C1 (NPC1) has been studied 
by MM/GBSA (molecular mechanics/generalized born surface area) calculations 703 and 
QM/MM (quantum mechanical/molecular mechanical).704 The MM/GBSA study identified 
key protein residues for cholesterol binding,703 while the QM/MM study illustrated 
cholesterol conformational changes during the transport process.704

Fatty acid binding proteins (FABPs) are intracellular carriers that transfer free fatty acids and 
other detergent-like compounds between cellular compartments. AA simulations revealed 
that the association of FABPs onto anionic membranes is driven mainly by electrostatic 
interactions, which determine not only the preferred binding orientation, but also the 
conformational changes of the proteins.705,706 In addition, simulations in the absence of 
lipid bilayer suggested that the surface of an FABP can sequester free palmitate from 
solution, a step priming the migration of the ligand into a more specific binding site.707 

FABP was also shown to form a stable complex with palmitate mini-micelle, implying its 
high efficiency in clearing fatty acid from the cytoplasmic matrix.708 Besides this study of 
an FABP, palmitate penetration into another fatty acid carrier β-lactoglobulin was found to 
be driven mainly by hydrophobic interactions, according to the free energy calculation and 
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decomposition analysis.709 Using distance restraints from NMR, AA simulations of a plant 
lipid transfer protein captured two stable binding modes of palmitate inside an internal 
cavity, characterized by specific hydrogen-bonding patterns with the protein.710

Another class of proteins that mediate lipid exchange are the phosphatidylinositol-transfer 
proteins (PITPs), which transfer PI (phosphatidylinositol) and PC (phosphatidylcholine) 
between different cellular membranes.711 Microsecond-long AA simulations of a 
mammalian PITP captured not only spontaneous association of the protein with the 
membrane but also partial loading of a single PC lipid into the binding pocket.712 Moreover, 
umbrella sampling simulations showed that the free energy of desorption of PI or PC from 
membrane is dramatically reduced in the presence of PITP, emphasizing the remarkable role 
of PITP in facilitating lipid loading and unloading processes.712

4.6 Other Peripheral Proteins

Some peripheral proteins interact with the membrane and form essential cellular structures. 
One case studied with MD simulations is myelin basic protein (MBP), a crucial component 
of the myelin sheath wrapped around the neuronal axons in the central nervous system. AA 
simulations used to characterize the membrane binding of a conserved central segment of 
MBP found that phosphorylation changed the orientation and reduced the penetration depth 
of MBP into the membrane.713 A follow-up simulation study showed that phosphorylation 
reduced the α-helical content of the central segment, which could inhibit the MBP-
membrane association. 714

Another example of a structural peripheral protein is lung surfactant proteins, an important 
part of lung surfactant located at the air-water interface of the lung alveoli. Lung surfactant 
is a complex mixture of lipid monolayer and protein components; it can reduce the surface 
tension of the air-water interface during the breathing cycle by rapid exchange of the lipids 
with other lipid reservoirs. CG simulations of a mammalian lung surfactant with the 
surfactant protein C (SP-C) revealed a reversible transformation between the monolayer and 
the associated bilayer reservoirs under membrane compression and expansion. 715 

Simulations also showed that surfactant protein B (SP-B) can mediate the association of the 
bilayer reservoirs with the protein-free monolayer and induce lipid flow in between under 
surface tension.716 In addition to the monolayer-bilayer association, μs-scale CG simulations 
showed that SP-B monomer can also trigger vesicle fusion by facilitating the formation of a 
hemifusion intermediate.717 Vesicle fusion was not observed in the absence of SP-B in either 
unbiased simulations or upon application of a restraining potential to keep the vesicles in 
close proximity.717 Moveover, AA simulations also identified specific LPS binding sites on 
lung surfactant protein A (SP-A), which may play additional roles in pathogen recognition 
and host defense.718 Besides known surfactant proteins, AA simulations of two putative 
surfactant proteins with both DPPC monolayer and bilayer captured strong lipid-protein 
interactions, supporting their potential role as surfactant proteins.719

Certain well-known “soluble” proteins can also bind biological membranes. For instance 
tubulin, a major component in eukaryotic microtubules, is found to be bound with the 
mitochondrial outer membrane. MD simulations of tubulin with mimetic mitochondrial 
membranes suggested that its amphipathic helix can bind to the membrane, preferably to the 
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less bulky PE lipids compared to PC.720 Microtubule-associated protein light chain 3 (LC3) 
can be reversibly conjugated with a PE lipid, which is important for its association with the 
autophagosome membrane. CG simulations of PE-anchored LC3 found multiple 
conformational rearrangements during its recruitment and insertion into membranes.721

CD1 (cluster of differentiation 1) is a family of glycoproteins expressed on the surface of 
various human antigen-presenting cells. They are involved in the presentation of lipid 
antigens for the recognition by T cell receptors. Although this lipid presentation does not 
occur in the context of membranes, it involves many relevant protein-lipid interactions 
which have been studied with MD simulations. Using a position-specific homology 
modeling protocol that utilizes the structural information available from other CD1 isoforms, 
an atomic structure model of CD1c was constructed and used in the characterization of 
specific features of the binding domain.722 A follow-up study on five human CD1 isoforms 
in the lipid-bound and lipid-free states showed that the hydrophobic binding grooves of 
CD1b-e, but not CD1a, collapse irreversibly in the absence of a lipid antigen, suggesting 
dependence on helper proteins such as lipid transfer proteins for lipid reloading.723 

Endothelial protein C receptor (EPCR), a CD1 homolog, is important in regulating protein C 
functions upon its binding to the protein C GLA domain. Compared to the PE bound 
simulation, the unbound EPCR structure presented a reduced interaction surface for the 
GLA domain, confirming the role of PE in establishing the proper EPCR conformation for 
interaction with its partner protein.724

5 Special Lipids

Structural and functional modulation of proteins by lipids can be highly specific, requiring 
particular species of lipids.16,17 This section discusses the simulation results that either 
demonstrate specificity to a particular kind of lipid, or, shed light on the mechanism of such 
interactions. While specific binding to zwitterionic glycerophospholipids like 
phosphatidylcholine (PC) and phosphatidylethanolamine (PE) with functional ramifications 
can occur,674 these lipids are generally used in MD simulations to represent the bulk of the 
lipid bilayer. In fact, the majority of the MD simulations of membrane proteins in the past 
have used single-lipid membranes of PC or PE, to represent mammalian or bacterial 
membranes, respectively. We have therefore discussed studies demonstrating specific 
binding sites for these zwitterionic glycerophospholipids in earlier sections. In this section, 
we focus on key lipids for which a regulatory role has been well established. We also discuss 
simulations with sphingomyelin (SM) and lipopolysaccharides (LPSs), which have been 
parameterized more recently.

We will begin with cholesterol, a unique steroid lipid which can regulate protein function 
through both specific binding interactions and cholesterol-induced effects on bulk properties 
of the membrane (Figure 39).725 Simulations have been widely used to identify cholesterol 
binding sites and capture direct modulation of such binding to protein structure and 
dynamics. The membrane thickening and ordering effects observed in cholesterol-rich 
bilayer simulations also provide insight into the influence of lipid micro-environment on 
protein function.
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Anionic lipids will be discussed next (Figure 39). Asymmetric distribution of anionic lipids 
between the inner and outer leaflets is actively maintained by active transporters,6 keeping a 
higher concentration of anionic lipids in the inner leaflet. Anionic lipid expression on the 
outer leaflet can occur during cell signaling events and in a number of pathological 
conditions. 16,726,727 PIP lipids, in particular, have important signaling properties, and we 
will detail simulations studying PIP-specific binding domains. We will discuss charge-driven 
interaction as well as interactions specific to particular species of phospholipids. We will 
also review simulations studying specific interactions of cardiolipin (CDL) with proteins, a 
lipid with a particularly important role in mitochondria.

Finally, we will discuss simulations probing specific interactions with SM and LPS, lipids 
which have been parameterized relatively recently. The composition of lipids exposed to the 
extracellular environment of mammalian and bacterial cells is drastically different. For 
mammalian cells, the outer leaflet is primarily composed of PC, along with small 
concentrations of PE and SM. The relatively small concentration of SM, which is critical in 
the formation of lipid microdomains by tightly intercalating cholesterol molecules and plays 
a critical role in membrane trafficking (Figure 39).728,729 On the other hand, Gram-negative 
bacteria have a double-membrane envelope that enables them to survive harsh environmental 
conditions and prevents the entry of large polar and small hydrophobic molecules into the 
cell. A major component of the bacterial outer cell membrane is LPS, a glycolipid with a 
number of sugar moieties and multiple fatty acyl chains.

5.1 Cholesterol

Cholesterol, an abundant component in mammalian plasma membranes, plays an essential 
role in regulating membrane proteins.730 Cholesterol concentration significantly alters 
membrane thickness, fluidity, and curvature, and induces the formation of lipid domains or 
cholesterol-enriched regions with saturated phospholipids and sphingolipids.731–733 Such 
membrane alteration has been attributed to the indirect cholesterol modulation of protein 
structure and dynamics. With recent advancements in structural biology, putative cholesterol 
binding sites have been identified in crystal and cryo-EM structures, indicating the 
possibility of direct cholesterol modulation.725,734 Based on protein sequence analysis and 
structural studies, several cholesterol binding motifs have been proposed, including two 
sequence-based motifs, CRAC (Cholesterol Recognition Amino acid Consensus) and CARC 
(reversed CRAC), and a structure-based motif in the GPCR family, CCM (Cholesterol 
Consensus Motif).735,736 In all these motifs, basic residues (R/K), aromatic residues 
(F/Y/W) and aliphatic residues (V/L/I) are suggested to form direct interactions with the 
cholesterol hydroxyl group, fused rings, and the hydrocarbon tail, respectively. To 
characterize and validate these cholesterol consensus motifs, AA and CG simulations have 
been extensively performed to sample protein surface and identify sites with high cholesterol 
occupancy. In this section, we will focus on MD simulations studying specific cholesterol 
interactions as well as its direct and indirect effects on membrane protein function.

GPCRs are a major protein family functionally regulated by cholesterol, and thus the most 
studied systems with regard to cholesterol-protein interaction.737 Lipid interactions with 
GPCRs have been discussed at length earlier in this review (see Section 3.3.1). Here, we will 

Muller et al. Page 50

Chem Rev. Author manuscript; available in PMC 2020 May 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



focus on the use of MD simulations to characterize the effects of cholesterol on GPCR 
structure and dynamics.

One of the earliest AA simulations showed that the stabilizing effect of cholesterol on the 
native state of rhodopsin was independent from direct cholesterol binding to the protein.386 

A later study further supported that cholesterol affected the structural stability of rhodopsin 
via membrane-mediated modulation rather than direct specific interaction.738 Direct 
modulating effects of cholesterol packing had not been observed in detail until μs-long 
simulations revealed specific cholesterol binding and its dynamic perturbation to the 
rhodopsin structure. 411 The study was subsequently followed up by a CG study to further 
validate the predicted cholesterol binding sites with higher statistical certainty, owing to the 
longer timescale achievable by CG simulations.739 Altogether, these studies of rhodopsin 
determined common cholesterol-GPCR interactions and cholesterol modulation effects at 
various spatial resolutions and timescales.

Experimentally, cholesterol has been frequently used in crystallography to stabilize GPCR 
structures, e.g., the human β2AR structure with co-crystallized cholesterol molecules 
resolved at the crystal packing interface.374 The first establishment of a specific cholesterol 
binding site, namely the CCM site, was reported in a later structural study of class A GPCR 
β2AR.740 Following these structural studies, cholesterol binding sites were identified in 
class A GPCRs including β1AR,402 β2AR,384,402,403,420,741 A2AR,420,742–744 5-HT1AR,
415,745 and a class F GPCR Smoothened746 by AA and CG simulations as well as a recent 
study based on alchemical free energy perturbation. 741

Particularly, in a systematic mapping of cholesterol binding sites on β2AR using μs AA 
simulations (Figure 40A), a cholesterol binding site was found at the same location as the 
co-crystallized cholesterol at the crystal packing interface, suggesting the role of cholesterol 
in mediating GPCR dimerization.403 Cholesterol occupancy was then demonstrated in a CG 
simulation study to restrict certain β2AR dimer formation and thus alter the distribution of 
dimer interfaces (Figure 40B).404 Using extensive CG simulations, the diverse roles of 
cholesterol in regulating GPCR oligomerization have also been illustrated in other class A 
GPCRs, e.g., 5-HT1AR,391 chemokine receptors (CXCR4, CCR5, CCR2),392,406 and MOR,
389 showing the importance of both direct, binding-induced and indirect, membrane-
mediated effects.

Cholesterol binding has been shown by AA simulations to affect ligand binding in GPCRs, 
especially in A2AR.419,747,748 A μs simulation captured the disruption of cholesterol binding 
at the A2AR CCM site due to changes of protein side-chain dynamics triggered by agonist 
binding.747 Interestingly, another study reported a stabilizing effect of cholesterol on 
caffeine binding via inducing conformational rearrangement of protein side chains.419 In a 
later study, a pathway for cholesterol access to the A2AR ligand binding pocket was 
discovered, indicating a distinct mechanism of cholesterol action by directly modulating the 
orthosteric ligand binding site.748 Apart from AA simulations, two CG simulations have 
elucidated how cholesterol molecules may facilitate ligand binding in 5-HT1AR415 and how 
agonists affect cholesterol binding to β2AR and A2AR.420
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Additionally, long-timescale AA simulations have shown the influence of cholesterol on the 
conformational dynamics of several GPCRs, including β1AR,412 β2AR,413 5-HT1AR416 and 
5-HT2AR.390,417 As an example, μs simulations unveiled reduced conformational variability 
of β2AR caused by cholesterol binding (Figure 40C), suggesting an allosteric modulation of 
β2AR.413 Long-timescale simulations have also characterized a special modulatory effect of 
cholesterol on stabilizing the secondary structure of an amphipathic juxtamembrane helix in 
CB1,749 a class A GPCR, and mGluR2,750 a class C GPCR. The observed stabilization was 
attributed either to a cooperation of cholesterol binding near the CCM site and 
palmitoylation of a cysteine residue,749 or to a combination of direct interaction and indirect 
membrane thickening effects of cholesterol.750

Besides GPCRs, MD simulations have identified specific cholesterol binding sites in other 
integral membrane proteins, some of which contain CRAC or CARC motifs.350,751–756 A 
variety of cholesterol binding sites and modes have been characterized in ion channels 
including Kir,757,758 BK751 and VDACs.315 In pentameric ligand-gated ion channels such as 
nAChR752,759,760 and GABAAR,761 cholesterol molecules have been found to bind 
preferentially to the non-annular sites located at the inter-subunit interfaces. Similar non-
annular cholesterol sites have been confirmed by various simulation techniques as well as 
free energy calculations in ABC transporters, including Pgp339,762 and ABCG1.753 

Likewise, conserved cholesterol interaction sites have been uncovered in neurotransmitter 
sodium symporters (NSSs).350,754,755 In all proteins mentioned above, as well as in several 
other integral membrane proteins, including opioid peptide dynorphin A,763 aquaporin,764 

and integrin,429 specific hydrogen-bonding, π-stacking or hydrophobic interactions have 
been characterized as key components for cholesterol association.

Cholesterol interactions have been indicated in simulations to directly stabilize 
transmembrane helices and thus modulate integral membrane protein conformations. In one 
of the NSSs, serotonin transporter, cholesterol binding has been shown to affect ion 
coordination and transporter activity.754 Meanwhile, evidence from MD simulations has 
illustrated a common regulatory mechanism among NSSs that involves cholesterol-induced 
stabilization of the transporter in a particular state, thereby inhibiting its transport cycle.
350,755 Modulation of protein conformational dynamics by direct cholesterol contact has 
been also found in phospholamban,765 MHC-II protein,756 tetraspanin CD81766 and the C-
terminal transmembrane helix of phospholipid scramblase 1.767 One special case for such 
cholesterol modulation was manifested in the helix-helix dimer formation of an epidermal 
growth factor receptor, ErbB2.768 In contrast, indirect cholesterol regulation has been 
described for Ca2+-ATPase,769 NavAb channel770 and endoplasmic reticulum stress sensor 
Ire1,771 suggesting an alternative effect of cholesterol by enhancing lipid packing instead of 
specific, direct association.

For peripheral membrane proteins, MD simulations have shed light on both direct and 
indirect effects of cholesterol on their membrane association. One such system of particular 
interest comprises of amyloidogenic proteins implicated in Alzheimer’s disease, including 
amyloid beta (Aβ) and amyloid precursor proteins (APPs).772,773 Since lipid modulation of 
Aβ peptides has been discussed in detail earlier (see Section 4.5.2), we will only highlight 
key modulatory mechanisms of cholesterol here. Multiple cholesterol interaction sites were 
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characterized in the APP C99 domain,774 where the protonation states of two negatively 
charged residues were identified as critical in direct cholesterol interactions from constant 
pH simulations.775 Meanwhile, cholesterol-induced membrane effects, rather than direct 
binding, were shown in another CG simulation to result in the inhibition of APP C99 domain 
dimerization.776 Such dual effects of cholesterol have also been illustrated in Aβ membrane 
association, 622,623,627,777 conformational transition,619,778,779 as well as oligomerization 
and pore formation. 780,781 Moreover, the interplay between cholesterol and ganglioside 
GM1, another lipid associated with membrane effects, has been found to enhance the 
membrane assembly of Aβ peptides. 617,629 A variety of cholesterol-triggered effects have 
been observed in other peripheral protein systems, including α-synuclein,652 leukotoxin,782 

stromal interaction molecule 1,783 caveolin-1,571,784 cytochrome P450,785 viral proteins,
665–667,670,674,786 H-Ras,520,525,526,528 Niemann-Pick type C2 protein,787 and the complex 
of thrombospondin-1 and calreticulin. 788

5.2 Anionic Phospholipids

While constituting a minor component of the cell membrane (around 30% of the total 
phospholipids present) anionic phospholipids have a considerable impact on function and 
regulation of the cell and of membrane proteins.3,6,16,789 The outer leaflet of mammalian 
plasma membranes is primarily composed of neutral lipids such as PC and SM along with a 
small fraction of PE. The inner leaflet, in comparison, contains the majority of PE in the cell 
and a variety of anionic phospholipids including phosphatidylserine (PS), 
phosphatidylglcerol (PG), phosphatidic acid (PA), and phosphoinositides (PIs).3,7 Bilayer 
asymmetry is both actively maintained and dissipated by membrane proteins,6–8 and we 
have discussed simulations of proteins, such as scramblases, involved in the dissipation of 
asymmetry (see Section 3.1.5). Asymmetry is lost and large numbers of anionic lipids are 
flipped to the surface of the membrane during normal initiation of blood coagulation and 
apoptosis.16,726,727 A number of pathological conditions, including cancer, also result in 
heightened concentrations of negatively charged lipids on the surface of cells.727,790 Some 
anionic phospholipids regulate membrane protein functions in a highly specific way. PS and 
PA bind specifically to a number of different proteins, often as elements of complex 
signaling pathways.17 Cardiolipin (CDL), found in bacterial and mitochondrial membranes, 
is required for optimal function of mitochondrial respiratory and bioengergetic enzymes. In 
plant membranes, PG has been shown to bind tightly in photosynthetic complexes.

Here we discuss use of simulations in characterizing protein interactions with anionic lipids. 
We will first discuss simulations where anionic lipids are demonstrated either to be required 
for protein binding or to form clusters around the protein after binding. We will then detail 
simulations in which binding of anionic lipids has been shown to induce changes in 
conformation or orientation of membrane binding proteins. Further, we will discuss 
simulations in which differential protein-lipid interactions are characterized, first detailing 
simulations of PS, PG and PA. Additional sections will be dedicated to simulations of CDL 
and PI specific interactions.

5.2.1 Preferential Interactions with Anionic Lipids—Simulations of bilayers 
containing both PS and PG have been used to demonstrate specifity to anionic membranes. 
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While many of the systems highlighted here are peripheral proteins, given the prevalence 
and involvement of anionic lipids in drawing peripheral proteins to the membrane, many 
simulations have also been performed with PG or PS in the membrane for 
channels15,295,306,307,310,330,347,355,375,387,452,791–802 and receptors.387,437,803 Preference of 
proteins to bind anionic membranes has been frequently shown by demonstrating clustering 
of anionic lipids around a protein using both CG483,496,676,804,805 and AA simulations.
499,506,675 Proteins with positive residues interacting at the interfacial region have been 
shown to generate clusters of PG or PS,246,338,359,437,469,483,506,535,803,804 and simulation of 
a bacterial monoglucosyldiacylglycerol synthase (Figure 41) demonstrated local enrichment 
of CDL and PG in the immediate area of the protein.496 A study of the tumor-suppressor 
protein PTEN demonstrated anionic lipid clustering, along with loss of the clustering effect 
upon charge reversal mutations of positively charged residues.500 Lipid clustering 
demonstrated in these studies may be driven purely by electrostatics. Simulations of proteins 
binding to a membrane containing multiple anionic lipids and inducing clustering of a single 
species, such as simulations of Ebola VP40 clustering PIP2676 and Marburg VP40 clustering 
PS,675 however, suggest involvement of more specific lipid-protein interactions.

An alternate method of demonstrating anionic lipid preference for peripheral proteins is to 
compare spontaneous binding to neutral and anionic membranes. Simulation studies of 
Ebola VP40,677 and the Aβ-hIAPP assembly650 showed spontaneous binding to both neutral 
and anionic membranes, but more protein-lipid contacts and thus stronger binding to the 
anionic membranes were found in both studies. 650,677 In an integrated experimental/
simulation study of the bovine α-lactalbumin oleic acid complex, which is cytotoxic to 
tumor cells, CG simulations demonstrated that the complex bound in a sustained fashion to a 
PG-containing but only intermittently to a PC-only membrane.806 Similarly, CG simulations 
of M37 lipase,469 the auxiliary subunits of voltage-gated Ca2+ channels,807 and diptheria 
toxin T-domain, 596 as well as AA simulations of Osh4808,809 and a bile acid-binding 
protein,706 found only transient interactions between the protein and zwitterionic 
membranes, but stable binding to anionic membranes.469,596,706,807,808

5.2.2 Conformational Changes Induced by Anionic Lipids—Proteins have been 
demonstrated to undergo conformational transitions or adopt differential orientations upon 
binding to anionic membranes. In comparative simulations of a β-amyloid dimer binding to 
PS/PC and PC membranes, it was found that the protein bound to a PS-containing 
membrane was more folded, aggregated, and more tilted on the surface of the bilayer.810 

Protein kinase C1 binding to a PS membrane resulted in its conformation changes, and a 
change in the PS distribution in the immediate area of its binding.499 In PTEN, it was 
demonstrated that anionic lipids changed positioning of the anionic C-terminal tail, which in 
solution obstructed the membrane-binding interface.503 An HMMM study of α-synuclein 
showed binding to anionic lipids changed conformational state of the protein,184 with PS 
interactions promoting a transition from a bent conformation to a more extended one.180 

CD3ϵ receptor secondary structure was also found to be affected by PG in CG simulations, 
with the protein adopting stretches of α-helices when bound to DOPG and DOPC, but not in 
the presence of DPPC.432 Anionic-lipid interactions were also found to be important for 
stabilizing the structure of the epidermal growth factor receptor dimer.434 In talin, a large 
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interdomain conformational change allowing for F3 subdomain interaction with the 
membrane surface has been shown to result from binding to anionic lipids.182

In some cases, a drastic conformational change is not observed but the orientation and/or 
depth of binding are affected by the presence of anionic lipids. Orientation of the diptheria 
toxin T2 domain was found to stabilize with an increase of the anionic lipid content, with a 
larger number of protein-lipid contacts at higher PG contents observed at both pH levels 
studied. 595,596 A simulation study of cytochrome P450 found that the enzyme bound at a 
more tilted orientation and at a greater depth to membranes containing PG or PS.455

HMMM simulation allowed atomic-level differences in binding of RecA to be captured for 
membranes containing three different anionic lipids, namely PS, PG, and CDL.195 

Fluorescence experiments had previously shown that the protein behaved differently when 
bound to liposomes containing PG and CDL. Binding to PG and CDL was similar, with 
insertion of key motifs being different in CDL than in either PS or PG.195 In addition, PS 
appeared to drive a different binding mode than the two other anionic lipids.195

5.2.3 Characterization of Anionic Lipid Binding Sites—Simulations have also 
been used to characterize specific binding sites for anionic lipids on membrane proteins 
affected by these lipids. In the simplest cases, a single anionic lipid was either docked to a 
protein or adopted from an x-ray structure, whose binding stability was assessed by MD 
simulations.481,811 PG binding sites have been characterized for receptors as well as 
channels. Using biased and unbiased simulations, it was demonstrated that PG preferentially 
binds to the CD3ϵ receptor tail.432 These simulations demonstrated a reduced membrane 
association in PC and that it was less difficult to detach the tail from a PC membrane as 
opposed to a PG-containing membrane.432 Extensive (0.25 ms) CG simulations 
demonstrated that anionic lipids entered the empty G-protein binding site of β2AR.387 The 
lipid-protein interaction stabilized the active state, preventing ionic interactions required for 
the inactive state to form.387 AA simulations as short as 10 ns performed on bacterial K+ 

channel KcsA in a mixed bilayer were able to capture the binding of PG lipids at an 
interfacial site between the neighboring subunits, 237,238 where they appeared to stabilize the 
dimer. Sub-ms CG simulations allowed the evaluation of PG binding lifetime at these 
functionally important binding sites.239

A large data set produced using HMMM simulations was used to characterize putative PS 
specific binding sites in the coagulation factor X GLA domain. Detailed analysis identified 
where each PS functional group bound during each of the 27 independent 100-ns replicates, 
allowing for identification of sites most likely to be highly PS–specific (Figure 42).189 A PG 
binding site on talin was found in simulations to be key to protein regulation, with mutations 
at these residues leading to talin binding with a perturbed orientation, likely changing the 
binding interface with integrin.535 These residues had previously been mutated 
experimentally and determined crucial for talin-membrane association. 535 HMMM 
simulations of spontaneous talin binding to a PS-bilayer confirmed the importance of these 
same basic residues in the association of talin to the membrane.182 While one PS binding 
site was identified using x-ray crystallography for Tim4, AA simulations identified four 
additional basic residues which could serve as binding sites for PS.812
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PA has been identified as an important signaling lipid, but thus far few simulations have 
been performed assessing PA binding to proteins. 31P NMR and MD simulation were used 
in conjunction to study PA interactions with charged residues. Basic amino acids were found 
to increase the charge of PA by forming hydrogen bonds with the phosphate group, thereby 
stabilizing protein-lipid interactions.813 The results showed that this electrostatic/hydrogen 
bond switch was the basis for preferential interaction of LYS and ARG residues with PA.813

Simulations of entire proteins interacting with PA have included Dvl2 DEP814 and MIT 
domain,815 both of which used 100% PA membranes. MD simulations, in conjunction with 
NMR, were used to study binding of Dvl2 DEP to PA,814 allowing for identification of 
specific ARG and LYS residues on a basic helix important for binding to PA.814 Simulations 
of the MIT domain compared binding to pure PA and pure PC membranes.815 The domain 
was found be absorbed with higher affinity onto the PA membranes through interactions of 
its basic residues, and a particular helix was identified as a potential PA binding hotspot.815

5.2.4 Cardiolipin—Cardiolipin (CDL), an anionic phospholipid containing four acyl 
chains and two phosphate groups, is the signature phospholipid of the inner bacterial 
membrane and the inner mitochondrial membrane in eukaryotic cells. Its presence is 
important not only for maintaining structure, but also for proper functioning of various 
proteins, many of which play diverse roles ranging from energy metabolism to apoptosis. 
Co-crystallized structures of protein-CDL complexes together with molecular docking have 
provided insight into structural implications of CDL binding.816 In this section, a collection 
of representative CDL-interacting proteins investigated using simulation approaches is 
presented.

In the mitochondrial inner membrane, CDL plays an important role in the function and 
supramolecular organization of the respiratory chain complexes, which largely contribute to 
the biosynthesis of ATP. Sub-μs CG simulations of cytochrome c oxidase (CcO), the 
terminal oxidase of the aerobic respiratory chain, in a mitochondrial membrane mimetic 
have successfully identified high-affinity binding sites of CDL.442 AA and CG simulations 
of cytochrome bc1 (bc1), which transfers electrons to CcO, also captured spontaneous 
binding of CDL to preferential interacting sites (Figure 43).440,443 In the self-assembly CG 
simulations of bc1 and CcO, CDL was shown to play a structural role in bridging the 
respiratory chain complexes into supercomplexes (Figure 44).440,441 Free energy 
calculations demonstrated that CDLs have a stronger binding affinity compared to other 
mitochondrial lipids, providing a key example of lipid-mediated protein-protein interactions.
441 The formation of the supercomplex could facilitate rapid electron transfer between 
proteins, thereby maintaining efficient energy transduction.

The mitochondrial adenine nucleotide translocase, also known as the ADP/ATP carrier 
(AAC), is one of the best characterized members of the mitochondrial carrier family, the 
optimal activity of which relies on the presence of CDL. High-affinity CDL binding sites 
identified using CG and AA simulations on the bovine and yeast AACs were shown to agree 
well with those inferred from crystal structures and NMR measurements.369,817 Free energy 
calculation showed that CDL not only is selectively favored over zwitterionic lipids at the 
binding sites, but also binds tighter compared to the non-binding regions of the protein 
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(Figure 45).280,369 Moreover, CG simulations of a large membrane patch containing 
multiple copies of AAC showed that CDL binding promotes the AAC oligomerization.369

In contrast to the stable association of CDLs on the surface grooves of bc1, CcO, and AAC, 
the binding of CDL to the convex surface of the Fo domain of FoF1-ATP synthase was 
shown to be highly specific, although transient.818 Since the Fo domain is involved in proton 
translocation, its transient but repeated contacts with CDL suggest a role of CDL in 
stabilizing and “lubricating” the rotation of the domain, or aiding in proton transfer through 
this protein complex.

In addition to mitochondrial membrane proteins, computational studies also captured the 
interactions of CDL with plasma membrane proteins. For example, lipid organization in the 
proximity of the ABC transporter McjD demonstrated the preferential association of anionic 
lipids CDL and PG over zwitterionic lipid PE during the simulations, which is essential for 
the protein function. 338 Self-assembly simulations of lipids around the bacterial UraA H+-
uracil symporter revealed several potential binding sites of CDL, which were further 
validated by in silico mutations that abolished the binding.359 Since CDL may act as a 
proton reservoir, its interaction with UraA implies a role of CDL in the H+-driven transport 
function. Beyond that, CDL was also found to bind at the dimer interface of LeuT and NhaA 
transporters, suggesting a role in their oligomerization.802

Another functionally important aspect of CDL that has been characterized computationally 
is its role in modulating the association of peripheral proteins with membranes. Using 
distinct membrane models, simulations have elucidated the enhancement of membrane 
anchoring by the electrostatic interactions between the CDL headgroups and proteins.
195,496,819–821 In one example, CDL was found to promote the association of the membrane-
bound soluble receptor domain of Tim50 to the transmembrane channel Tim23, highlighting 
the importance of CDL in the mechanism of the mitochondrial transport complex. 820 

Another example is cytochrome c, a soluble protein located in the mitochondrial inter-
membrane space, in which binding to CDL-rich membranes was found to result in the 
clustering of CDL lipids, thereby inducing a negative membrane curvature.821

5.2.5 Phosphoinositides—Phosphoinositides or phosphatidylinositol phosphate (PIP) 
molecules constitute a special class of phospholipids responsible for mediating signaling 
processes and membrane dynamics.822–824 PIP-protein interactions are essential in the 
membrane association of many proteins including phosphatases and kinases that control PIP 
concentrations,825,826 as well as PIP transfer proteins that regulate PIP cellullar localization.
827,828 The increase of the PIP level enhances the recruitment of peripheral PIP effector 
proteins to membrane and further triggers the activation of their downstream pathways.
826,829 Multiple PIP binding domains have been structurally characterized in these PIP 
binding proteins, showing various PIP specificities in terms of their different 
phosphorylation at the inositol ring.9,830 PIP lipids also act as regulators of transmembrane 
proteins, in particular ion channels.831,832 Together with free energy methods, AA and CG 
simulations have illuminated diverse binding modes in PIP binding targets. Here, we will 
review simulation studies on specific PIP-protein interactions, with some emphasis on 
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phosphatidylinositol 4,5-bisphosphate (PIP2), one of the most abundant and well-studied 
signaling PIP lipids.

Pleckstrin homology (PH) domain is among the most representative PIP binding domains 
commonly found in cellular signaling proteins.830,833 Despite similar folds, PH domains 
exhibit various binding specifi for PIP lipids and their soluble headgroups, inositol 
phosphates (IPs).9,830 Driven by the determination of PH domain structures with co-
crystalized PIP/IPs, AA simulation studies have provided atomistic details on how PIP/IP 
binding affinities are determined by the structural characteristics of PH domain from 
multiple proteins, including enzymes such as phospholipase C δ1,834 protein kinase B,835 

and Bruton’s tyrosine kinase,836 and cell adhesion protein kindlin-1.837 Several simulation 
techniques, including nonequilibrium MD and Brownian dynamics simulations, have been 
used to capture spontaneous binding of the general receptor for phosphoinositides isoform 1 
(GRP1) PH domain to membranes containing phosphatidylinositol 3,4,5-trisphosphate 
(PIP3).838–840 CG simulations have also proven powerful in sampling PH domain membrane 
targeting as well as exploring various PH domain membrane binding modes in nucleotide 
exchange factor Brag2,841 exocyst protein Sec3,842,843 and adaptor proteins Dok7534 and 
DAPP1.844,845 Particularly, in a modified version of CG MARTINI protein model with 
improved sampling of protein side-chain dynamics, the translational and orientational 
motions of the PLCδ1 PH domain were greatly enhanced compared to AA simulations 
during the association to PIP2-containing membranes.846

Free energy methods, including metadynamics and umbrella sampling, have been recently 
utilized to quantitatively study lipid specificities in PIP-PH domain interaction.847–849 

Notably, two different PIP2 binding pockets were identified at the PH domain of 
ACAP1BAR−PH protein with extensive AA and umbrella sampling simulations (Figure 46A).
850 Different binding modes were also characterized in two other studies adopting a 
systematic multiscale approach, which brought together detailed PIP-PH domain interaction 
resolved in crystal structures and thermodynamic information derived from simulations 
(Figure 46B).851,852 Altogether, these simulations have depicted a well-rounded view of 
PIP-PH domain interactions.

In addition to simulations of the PH domain, MD simulations have been widely used to 
study PIP interactions with other proteins containing PIP binding domains. For instance, AA 
simulations of protein kinase Cα C2 domain have provided insights into PIP2/PIP3 specifity,
853 PIP2 stoichiometry,854,855 C2 domain docking geometry,854,855 and the weakening effect 
of membrane diacylglycerol on PIP2-C2 domain interaction.855 The critical role of Ca2+ has 
also been illustrated in promoting PIP2 binding at the C2 domain of enzyme phospholipase 
D856 and exocytosis-associated protein double C2 domain protein B.857 Likewise, MD 
simulations have elucidated how PIP2 influences membrane dynamics by its interaction with 
the FERM domain of cell adhesion proteins including talin,858 moesin859,860 and focal 
adhesion kinases.861–863 Combining CG with AA simulations, PIP interactions with PTEN 
domains and PTEN-like domain have been investigated in phosphatase PTEN proteins500,504 

and endocytosis-associated protein auxilin-1,864 suggesting a synergy between specific and 
non-specific protein-lipid interactions in the membrane targeting process. Such a synergy 
has also been described in the association of two phosphatidylinositol 3-phosphate (PI3P) 
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specific binding domains, FYVE and PX domains, with PI3P-containing membranes.865,866 

Besides, specific PIP interactions have been revealed for other PIP binding domains such as 
the TH domain in the tumor necrosis factor-α-induced protein 8-like (TIPE) family867 and 
the PROPPIN domain in β-propellers.868

Similar to other anionic lipids, PIP interactions with peripheral proteins are often 
accompanied with PIP lipid clustering, as observed in the MD studies of viral 
proteins675,676,678,805 and curvature-inducing domains including amphiphysin N-BAR 
domain,869 AP180 ANTH domain869 and epsin ENTH domain.560,869 Futhermore, PIP-
containing membrane association and specific PIP interactions have been characterized in 
simulations of peripheral proteins without specific PIP binding domains, including Osh4,808 

HCV protein,489 Rab5,532 K-Ras,191,523 fibroblast growth factor 2,870 MARKCS-ED 
peptide,190 gelsolin,871 cofilin, 859 L-selectin,860 syntaxin,872,873 and other fusion-associated 
proteins.842,843

Upon its association with integral membrane proteins, PIP2 has been found in MD 
simulations to cluster around proteins due to its highly negatively charged nature.874–877 

Moreover, PIP2 can regulate integral membrane proteins in a unique way because of its 
larger head-group compared to other anionic phospholipids, in that it is able to interact with 
proteins at both their transmembrane (TM) domain and their cytosolic linker/domain or 
juxtamembrane (JM) domain. For example, conserved PIP2 binding sites have been 
identified at the TM subunit interfaces in Kir channels.276,277,280 In addition, basic residues 
at the cytosolic C-terminal linker/tether and loops of Kir channels have also been 
characterized as PIP2 binding targets.278,279,281–283 Similarly, direct PIP2 interactions with 
cytosolic linkers have been illustrated to be involved in gating of Kv channels248–251 and the 
human two-pore channel 2.252 In several other channels and transporters, e.g., the TRPV4 
channel,878 the glutamate transporter,879 and the dopamine transporter,349 PIP2 modulation 
has been observed at their cytoplasmic N-terminal or C-terminal region. Another typical 
case of interest is PIP2-JM domain association in receptors such as receptor tyrosine 
kinases433 and the epidermal growth factor receptor.880,881 Multiscale approaches, umbrella 
sampling, and large-scale CG simulations have shed light on conserved PIP2 binding sites,
433 free energy landscapes governing PIP2-JM domain interaction,880 and the interplay 
between protein organization and PIP2 clustering in complex plasma membranes,881 

respectively. A recent CG study also demonstrated a dual role of PIP2 in inducing the 
activation of GPCR A2AR by stabilizing a TM helix and associating A2AR with an 
engineered G protein.397

5.3 Sphingomyelin and LPS

Recent advancements in force field parametrization882 and computational modeling883 have 
made it feasible to perform biomolecular simulations with more realistic and complex 
membrane compositions. In this section we will focus on the MD simulations which have 
lever-aged these recent force field advancements to study the behavior of sphingomyelin 
(SM) and lipopolysaccharide (LPS).
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5.3.1 Sphingolipids—SM is a sphingolipid ubiquitously found in plants, fungi, animals 
and prokaryotic membranes. It consists of phosphoethanolamine and ceramide or 
phosphocholine head group, thus classified as sphingophospholipids. 884 In mammals, SM 
forms 85% of all sphingophospholipids, majority of which is located in the outer leaflet of 
the plasma membrane885 and indispensable for the viability of mammalian cells.886 Along 
with cholesterol and other phospholipids, SM is implicated in the formation of 
microdomains in biological membranes.728,729 These microdomains work as a platform for 
cellular processes such as signal transduction, protein sorting and membrane trafficking.
887,888 Many signaling proteins, such as kinases, GPCRs, growth factor receptors, and PKC, 
are primarily found to localize in the cholesterol and sphingomyelin rich domains, where 
sphingomyelin allows for tight intercalation of cholesterol.888 Thus, sphingolipids play an 
important role in cell growth, death, migration, adhesion and inflammation. 889 Abnormally 
high levels of SM in Neimann-Pick diseases are believed to modulate the cellular behavior. 
Binding of Niemann-Pick protein C2 (NPC2) to endosomal/lysosomal membrane was 
studied using MD simulations,787 capturing two competitively favorable membrane binding 
modes with a low energy barrier for their interconversion. The first mode was shown to be 
disrupted by the incorporation of SM while the second binding mode was invariant to SM 
concentration. Apart from modulating the cell behavior, SM was found to play an important 
role in the activation of GPCRs890 and orientational dynamics of CD2 ectodomain.891

Besides transmembrane proteins, GPI-anchored proteins, in which a glycolipid is attached to 
the C-terminus of a protein, show a strong affinity to the highly ordered lipid bilayers rich in 
cholesterol and SM.892 A combination of biophysical experiments and MD simulations 
highlighted SM binding sites on CYP2B4.464 The stability of the protein was enhanced by 
the formation of SM-rich domains, which drastically altered the binding of a hydrophilic 
ligand. SM and ganglioside (GM-1), another sphingolipid, were shown to promote structural 
changes and peptide aggregation in Aβ,617,619 aquaporin (AQP1),893 WALP23,893 pore-
forming toxins894 and cholera toxin.895,896 The oligosaccharide group on GM1 was found to 
act as a scaffold for Aβ binding. Starting from an α-helical structure, the bound Aβ 
monomer formed a β-hairpin motif, and the β structure was further enhanced due to peptide-
peptide interaction in the dimer state.

5.3.2 Lipopolysaccharides—The outer membrane (OM) of Gram-negative bacteria is 
a highly asymmetric lipid bilayer. The inner leaflet is exclusively composed of PE, PG, and 
CDL, while the outer leaflet is composed of only LPS. An LPS molecule consists of a 
hydrophobic lipid A moiety embedded in the OM, a hydrophilic core of oligosaccharides 
and repeating chains of O-antigen polysaccharide. Lipid A, which consists of a 
phylogenetically conserved core and highly variable O- and N-acylated β-(1→6)-linked, 
forms the basis for serogroup determination in bacteria. Given its highly charged nature, 
LPS makes the bacterial surface strongly polar thereby preventing the diffusion of 
hydrophobic drugs, dyes and antibodies. LPS is also known to modulate the structural 
dynamics of the outer membrane porins.

As compared to a pure phospholipid bilayer, simulation studies of the bacterial outer 
membrane porins such as BAM,312 FecA,371 OprH,305 OmpF306 and OprF304 in LPS-
containing bilayers have revealed differential dynamics in their extracellular loops. The loop 
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dynamics were shown to be dependent on LPS composition and were greatly reduced by the 
incorporation of O-antigen subunits (Figure 47). As it is difficult to obtain a defined 
orientation of the loops from solution NMR, the advancements in LPS modeling may 
provide an opportunity to refine the structure of outer membrane proteins in their natural 
environment. In addition to the loop dynamics, conformational flexibility of lipid A 
modulates the dimerization and activation of myeloid differentiation factor which is involved 
in the control of bacterial infections.897 MD simulations have highlighted the critical binding 
features of surfactant protein A (SP-A), involved in DPPC and lipid A binding.718 Along 
with the three-walled tyrosine cage on SP-A, which was shown to form cation-π interactions 
with the lipid headgroups, a positively charged cluster on the protein surface was also shown 
to be critical for lipid A binding. Furthermore, steered MD simulations have suggested that 
SP-A binds lipid A more tighly than DPPC.

6 Protein-lipid Interactions and Membrane Structure

The biological membrane structure undergoes drastic remodeling during cell division, 
vesicle trafficking, viral entry, and other membrane-mediated cellular events.898–901 Being a 
liquid crystalline mesophase, the biological membrane structure is a unique combination of 
solid crystals and conventional liquids.902 Correspondingly, it can be studied from two 
complementary perspectives: mechanically, as a thin elastic solid sheet with specific moduli 
of bending and compressing, 903 or, dynamically, as a 2D array of freely diffusing lipids.904 

Experimental results have provided phenomenological evidence of proteins modulating 
membrane structure from both perspectives. On one hand, high-resolution structures of 
membrane-associated protein assemblies suggest their ability to sculpt membranes, e.g., the 
cage-shaped structure of clathrin-coated vesicles during endocytosis,905 and the V-shaped 
ATP synthase dimer from yeast mitochondria.906 On the other hand, NMR and EPR 
measurements of isotope or nitroxide radical labelled lipids show evident perturbation in 
lipid dynamics when integral proteins are added to membranes.907

Microscopically, most membrane proteins introduce local perturbations to lipid bilayers via 
hydrophobic mismatches and electrostatic interactions. These effects can translate into a 
larger-scale global membrane curvature under certain scenarios which include, but are not 
limited to, helix insertion into one leaflet incorporation of an irregularly-shaped integral 
membrane protein, or scaffolding by a peripheral membrane protein.908 Although these 
mechanisms are difficult to be quantitatively described experimentally, they can be 
elucidated by MD simulations which capture molecular events with both high temporal and 
spatial precisions. This part of the review focuses on simulation studies on how proteins 
modulate the mechanical and dynamical properties of the lipid bilayers. It also covers a 
related subject that proteins change conformation or redistribute along the lipid bilayer upon 
sensing the membrane structure.

6.1 Membrane Mechanical Properties

Each defined membrane structure has a specific set of mechanical properties,909–911 which 
dictate its response to forces resulting from the binding of peripheral proteins or the 
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incorporation of integral membrane proteins, exerting distinct stresses to the membrane and 
eliciting different membrane effects.912

Asymmetrically bound peripheral proteins are well-suited to produce a curved membrane 
because they can accommodate divergent stresses experienced by the two leaflet stretching 
for one leaflet and compression for the other. Examples of membrane-bending peripheral 
proteins that have been computationally well-characterized include BAR domains which 
scaffold the membrane mainly with their curved faces,542,543,548,556 and synaptotagmin C2B 
domain which achieves membrane bending via insertion of its amphiphatic helix into the 
membrane.562 These membrane-bending peripheral proteins have been discussed in Section 
4.4.

Integral membrane proteins can also result in membrane curvature. In AA simulations of 
three different protein assemblies from the chromatophore of purple bacteria, it was 
observed that the light harvesting complex II (LHII) bent the membrane patch within 10 ns.
793,794 This effect was attributed to a combination of the intrinsic shape of LHII and the 
electrostatic interactions between conserved charged residues and nearby lipids on the 
cytoplasmic side. CG simulations of the ATP synthase dimer from mitochondria also 
revealed an anisotropic membrane curvature induced by the dimer.906 Furthermore, when 
multiple dimers were arranged side by side, they generated a highly curved membrane ridge 
reminiscent of the boundary of mitochondria cristae.906

In most cases, integral membrane proteins cause only local deformations in membrane 
thickness and curvature. Nevertheless, these membrane perturbation profiles can reflect 
specific modulations by proteins, and have recently been proposed in a CG simulation study 
to serve as the fingerprints of membrane proteins.913 In this series of simulations, four 
copies of each protein from ten classes were placed in the same lipid bilayers to sample their 
membrane perturbation profiles, which turned out to be intriguingly complex yet distinct 
across these studied membrane protein categories (Figure 48).913

The membrane perturbations caused by integral membrane proteins have been also 
extensively studied with AA simulations, which can yield more details than CG simulations. 
It was shown that the sensing domain of archaeal K+ channel KvAP induced a significant 
membrane deformation along its S4 helix; such deformation was mostly observed around the 
positively charged half-helix, with a much weaker effect around the other hydrophobic half-
helix.792,914 Intra-membrane protease GlpG, which has a non-cylindrical shape and a short 
hydrophobic thickness, rearranged the nearby lipids and caused non-uniform thinning of 
membrane around the protein.450 With a combination of AA simulations and elastic 
membrane model, it has been demonstrated that helical transmembrane proteins such as 
rhodopsin915 and LeuT347 induce local membrane deformations to establish optimal 
hydrophobic-polar interactions between the lipids and the protein. Similarly, AA simulations 
have captured membrane thinning in the vicinity of β-barrel proteins including BamA and 
the outer membrane phospholipase A (OmpLA).307,312 Furthermore, by analyzing 
membrane thickness, area per lipid, and lipid tilt angle, AA simulations showed that the 
influence of integral proteins on the membrane structure extended up to 3 nm away from the 
protein boundary, much farther beyond the first shell of lipids.801,916
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In addition, the lipid bilayer itself has been found to undergo thermal fluctuations that are 
inversely correlated to the membrane stiffness, and the association of densely packed 
membrane receptors was shown to reduce such membrane fluctuations, rendering the 
membrane deformation more dispersed and with a smaller amplitude.876 In a follow-up 
study, it was demonstrated that integral proteins altered the bending rigidity of the 
membrane in a protein-concentration and lipid-composition dependent manner, while 
peripheral proteins had little effect on membrane stiffness.799

Furthermore, dynamics and structural changes of integral proteins can result in changes in 
mechanical properties of the membrane, and/or be affected by them. For example, the 
function of membrane transporters usually call for major conformational changes, which are 
accommodated by the surrounding membrane and result in different stresses to the 
membrane. Two different conformations of Ca2+ translocating ATPase SERCA embedded in 
lipid bilayers, for example, caused different local deformation profiles of the membrane, due 
to differntial sidechain conformations and helix tilts.917

6.2 Membrane Dynamical Properties

Membrane structure is far from homogeneous and static.918,919 Different membrane phases/
domains form, migrate, and disintegrate as individual lipid molecules continuously diffuse 
within the membrane. Aside from their intrinsic properties,920 lipid motions, including 
translation and rotation, are heavily influenced by membrane proteins.

A single transmembrane helix was shown to significantly reduce diffusion of lipids in its 
vicinity; in particular, the positively charged lysine and arginine residues trapped the 
negatively charged POPS lipids by electrostatic interactions.921 Later CG simulations also 
found a reduced diffusion of phospholipids around larger transmembrane proteins up to 3 
nm from the protein boundary.796 An asymmetry of lipid diffusion within the inner and outer 
leaflet was observed in the OmpF porin system (Figure 49) and attributed to the asymmetry 
in charged protein residues interacting with lipid headgroups.796,801 Moreover, it was found 
that clusters of influenza hemagglutinin tuned the diffusion of nearby lipids differently, 
leading to enrichment of ordered lipids within the protein cluster.922 In extreme cases, lipid 
diffusion is reduced by proteins to such a degree that they appear to be bound in a fixed 
pose. For instance, annular lipids were resolved in 2D crystals of aquaporin-0.923 

Intriguingly, when the aquaporin-0 tetramer was simulated in a DMPC bilayer, certain lipids 
were found to be trapped near the protein surface, adopting similar conformations to the 
ones observed in the crystal structure. 924 Later, it was demonstrated with MD simulations 
that localization of these annular lipids was more critically dependent on the mobility of 
protein surface residues than the mobility of lipids themselves.925

In sharp contrast to lateral lipid diffusion, spontaneous lipid flip-flop across leaflets occurs 
more rarely due to the high energy cost associated with embedding the lipid headgroups into 
the hydrophobic interior of the membrane.926 In the cell, translayer diffusion of lipids is 
usually facilitated by scramblases or ATP-dependent flippases/floppases, and sometimes by 
certain lipid components such as ceramide. 927 In an umbrella sampling study based on AA 
simulations, the free energy barrier for PE and PG flip-flop was shown to be decreased by a 
few kJ/mol when a model transmembrane peptide was present in the membrane, while the 
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barrier for PC flipping was not affected.928 However, the molecular basis for protein-
facilitated lipid scrambling was not revealed until recent computational studies on 
scramblase,325–327 where simulations unequivocally captured events of lipid translayer 
diffusion explicitly (see Section 3.1.5).

6.3 Membrane Structure Sensing

Interactions between lipids and proteins are reciprocal. While proteins influence the 
membrane structure, they can also sense the surrounding membrane structure and change 
their physical behaviors correspondingly. These responses include diffusion/distribution 
within the membrane, oligomerization, and structural rearrangement. Though membrane 
structure sensing is discussed throughout this review, we believe presenting a consolidated 
selection of representative cases studied with MD simulations is useful.

Firstly, protein diffusion can be affected by membrane curvature. A fraction of ENTH 
domains have been shown to diff faster than the lipids, indicating that the free energy 
gradient generated by the membrane curvature field is sensed by the proteins.567 Secondly, 
distribution of proteins on/in the bilayer can be affected by the membrane structure. With 
CG simulations, it has been shown that the transmembrane helical model peptide WALP23 
accumulates in curved membranes, regardless of the lipid composition.929 Similarly, the 
amphipathic helix of the influenza virus M2 channel binds predominately to the positively 
curved surface of a buckled membrane.930 Protein partitioning is also altered by the 
membrane phase. For instance, glycophorin A dimer favored the lipid-disordered phase over 
the lipid-ordered one.931 Thirdly, protein oligomerization can be modulated by the 
membrane thickness.932 Among four different lipid bilayers simulated, rhodopsin self-
assembly was more prominent in thinner bilayers due to a greater hydrophobic mismatch.932 

Lastly, proteins may change their tertiary structure in response to the membrane curvature.
933 For instance, it has been shown for the N-terminal helix of endophilin that lipid packing 
defects of a convex membrane promoted helical folding by several kcal/mol while flat and 
concave membrane surfaces inhibited folding.933

MD simulation is indispensable and widely adopted to provide insight into molecular 
mechanisms for the crosstalk between protein and membrane structure with high spatial and 
temporal precisions. It should be noted that another class of computational methods can also 
evaluate the bilayer deformation and membrane curvature caused by protein-lipid 
interactions.328 These methods supplement the Helfrich’s elastic membrane model934 with 
either boundary condition from the transmembrane protein structure or Hamiltonian terms 
describing protein-membrane interactions.935–944 Many authors found their results from the 
elastic model to agree well with those from AA or CG simulations.944–947 Elastic membrane 
models are computationally less expensive, at the cost of losing the molecular detail and 
temporal relevance, but have the potential to qualitatively capture slow membrane 
remodeling events.

7 Future Directions and Concluding Remarks

The importance of lipids in membrane protein function is now well established, both through 
a large body of experimental studies employing a variety of biochemical and biophysical 
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techniques, and also by numerous simulation studies, as reviewed in this article, offering 
complementary high spatial and temporal resolutions and thus providing a more detailed 
picture of the underlying molecular phenomena. Lipids exert their effects either through 
modulating bulk properties of the membrane which in turn can impact conformational 
dynamics and equilibria of membrane proteins, or via specific, direct interactions with 
membrane proteins. Specific lipid types have been shown to be directly involved in key 
signaling pathways, and the cell often relies on modulating their concentration and/or 
localization within the membrane to activate or shut down such pathways. Biological 
membranes and their lipid constituents, therefore, can no longer be viewed as passive 
hydrophobic barriers, merely forming boundaries around the cell and its inner 
compartments. We have only begun to discover the many ways by which the dynamically 
controlled heterogeneity of lipid bilayers in biological membranes can modulate the function 
of membrane proteins. With the emergence of more powerful hardware and advanced 
simulation techniques and algorithms, we can expect an even larger impact of simulations on 
our understanding of biological membranes and the role of lipids.

A major aspect in recent simulation studies of biological membranes has been the 
introduction of increasingly more realistic lipid compositions, a feature that has experienced 
substantial improvement over the last decade. Recent development of various AA371,948 and 
CG949,950 models have greatly expanded our ability to model increasingly complex 
membranes, such as the bacterial outer membrane (OM), an asymmetric membrane 
composed exclusively of lipopolysaccharides (LPS) in the outer leaflet and of a mixture of 
lipids including anionic ones in the inner leaflet (in E. coli : 90% PE, 5% PG, and 5% CDL).
951 With these advancements we can now start to ask questions about, e.g., mechanical 
properties of the bacterial OM, and how the LPS composition of the outer leaflet may 
interfere with OM proteins. The library of lipids and their derivatives available for 
simulation studies will continue to expand as more information becomes available on the 
lipid composition of membranes in various cells and organelles and as novel roles of lipids 
are discovered experimentally.

Similar to other areas of biomolecular simulation, computational studies of membranes will 
continue to benefit from more accurate descriptions offered by better treatments of the 
interactions. Hybrid QM/MM simulations, which have been widely used in studies of 
proteins and enzymes, are expected to play a more visible role in simulation studies of lipids 
and membranes. As an example, one can easily imagine that the interaction between the ring 
system of cholesterol704 and the protein environment is affected by electronic processes such 
as charge delocalization and transfer, which cannot be handled sufficiently accurate with 
classical force fields. Other examples include cation-π interactions, which can easily arise in 
interactions between positively charged moieties of lipids and aromatic sidechains of the 
embedded protein. Yet another example regards a challenging aspect in setting up MD 
studies of lipids related to the prediction of the titration states of protonatable moieties, a 
feature that can be dynamically changed not only by mixing of lipids within the bilayer, but 
also by binding of peptides and proteins to the membrane. “Constant pH” MD simulations, 
though still classical, offer reasonably affordable methods with good accuracy to take into 
account such effects. Protein binding to anionic lipids such as PA is a good example in this 
context. While PA in its isolated form carries a charge of −1, the pKa of the second 
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protonation is close to physiological pH, and PA binding to some proteins is known to be pH 
dependent.814 Such effects could also be relevant to PIP lipids. Either QM or constant pH 
simulations could credibly be used to investigate these phenomena. Polarizable force fields, 
as their computational cost decreases, will also allow for greater accuracy in modeling 
proteins and their interaction with lipid phases, and thus enable researchers to more 
accurately characterize membrane-associated systems and processes by MD simulation. In 
addition, changes in charge distribution could be of interest in systems where protein-lipid 
interactions are particular to a specific lipid species, potentially giving insight into the source 
of the specificity.

Description of protein-lipid interactions will continue to improve with the advanced 
enhanced sampling techniques and free energy methods. While a number of studies have 
employed these techniques in simulation studies of membranes and membrane proteins, the 
main objective of these studies has been largely on aspects other than lipid-protein 
interactions, e.g., conformational landscape of membrane transporters, or accelerated mixing 
simulations of pure lipid bilayers. Given the slow diff of lipids, achieving converged free 
energies of lipid-protein interactions continues to be among the more challenging tasks, but 
we have already started to explore such processes at a more quantitative level with advanced 
simulation techniques.

Finally, we should expect more simulation studies in the future where realistic non-planar 
geometries of membranes as relevant to many cellular structures and processes, e.g., vesicle 
formation and curved membranes of organelles, will be included in the simulation system. 
One such example is the SNARE-mediated membrane fusion,952 which is modulated by SM 
(Sec1/Munc18-like) proteins, complexins, and synaptotagmins. Such mechanical aspects are 
known to be coupled to lipid distribution and protein localization. To bridge the gap between 
simulation and physiology, future membrane simulations need to incorporate richer 
biological contexts. In addition, to capture larger and slower membrane remodeling events 
by proteins with molecular accuracy, new approaches that can leverage the precision of AA 
as well as the efficiency of CG needs to be developed. Equally importantly, there is a need 
for methodology allowing to construct such large, cell-scale systems, which can easily add 
up to many billions of atoms/particles, with reasonable ease and efficiency.

The future of simulation studies of membranes and membrane proteins is very promising. 
The field can expect to see more examples in which molecular simulations of increasing 
accuracy, realism, and quantification will provide novel insight into the molecular 
mechanisms underlying biological observables. Combined with novel experimental 
techniques and studies unraveling new biological roles for lipids, MD simulations will allow 
us to understand why lipids were selected by evolution to play such well-tuned regulatory 
roles in membrane biology and protein function.
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Figure 1. 
Proteins engage with lipids in diverse modes, many of which have functional significance. 
(A) Peripheral binding with a hydrophobic anchor, which can be lipid-specific, in this case 
to PS; (B) integral receptor involved in transmembrane signaling; (C) protein that induces 
vesicle fusion; (D) integral protein that induces local curvature through hydrophobic 
mismatch; (E) peripheral protein tethered to a membrane lipid, while its globular domain 
interacts with the interfacial region without embedding in the membrane core; (F) channel 
embedded in the membrane controlling ion transport across the membrane, while interacting 
with cholesterol; (G) transport of lipids across a membrane by a phospholipid scramblase.
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Figure 2. 
Experimental techniques that yield information on protein-lipid interactions. (A) Electron 
crystallography showing lipid-mediated crystal packing of aquaporin-0. Reprinted with 
permission from ref 25. Copyright 2011 Elsevier. (B) X-ray crystallography revealing 
phospholipid arrangement around a Ca2+-ATPase. Adapted with permission from ref 26. 
Copyright 2017 Springer Nature. (C) Cryo-EM revealing PIP bound in TRPv1 calcium 
channel. Adapted with permission from ref 27. Copyright 2016 Springer Nature. (D) NMR 
spectroscopy determining the tilt angle of transmembrane helices in lipid bilayer. Reprinted 
with permission from ref 28. Copyright 2017 Yamamoto et al. Licensed under a Creative 
Commons Attribution 4.0 International License. (E) Continuous-wave EPR discovering 
different conformations of the C2 domain of protein kinase C with respect to the membrane 
in the absence or the presence of PIP2 lipid. Adapted with permission from ref 29. Copyright 
2008 American Chemical Society. (F) Time-resolved IR spectroscopy monitoring 
simultaneously the conformation of lipid and protein. Adapted with permission from ref 30. 
Published by National Academy of Sciences. (G) Single-molecule imaging distinguishing 
between transient and stable lipid-protein binding events. Reprinted with permission from 
ref 31. Copyright 2016 American Chemical Society. (H) Biochemical assays describing how 
the binding of a GLA domain to a PS-containing membrane affects blood coagulation 
kinetics. Adapted with permission from ref 32. Copyright 2011 American Society for 
Biochemistry and Molecular Biology. (I) Negative-staining electron microscopy capturing 

Muller et al. Page 116

Chem Rev. Author manuscript; available in PMC 2020 May 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



the interaction between M1 protein and lipid bilayer at the influenza virus A budding neck. 
Adapted with permission from ref 33. Copyright 2016 John Wiley and Sons.
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Figure 3. 
Representative structures of membrane proteins (blue) resolved experimentally with various 
types of lipids (carbon: yellow, oxygen: red, nitrogen: blue): bacteriorhodopsin (BR) with 
diphytanylglycerol (DPG) (PDB:2BRD), oxysterol-binding homology protein 6 (Osh6) with 
phosphatidylserine (PS) (PDB:4B2Z), human phospholipase D (NAPE-PLD) with 
phosphatidylethanolamine (PE) (PDB:4QN9), trimeric intracellular cation (TRIC) channel 
with phosphatidylinositol bisphosphate (PIP2) (PDB:5EGI), betaine transporter (BetP) with 
phosphatidylglycerol (PG) (PDB:4C7R), aquaporin-0 (AQP) with phosphatidylcholine (PC) 
(PDB:2B6O), cytochrome c oxidase (CcO) with cardiolipin (CDL) (PDB:5XDX), 
alternative complex III (ACIII) with triacylated cysteine (TAC) (PDB:6BTM), ATP-binding 
cassette (ABC) transporter MRP1 with cholesterol (CHL) (PDB:6BHU).
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Figure 4. 
Examples of common resolutions/representations used in the investigation of lipid-protein 
interactions. The upper panels illustrate different representations for a membrane-embedded 
ClC channel (PDB:1OTS). The lower panels illustrate each of the representations using a 
single phosphatidylserine (PS) lipid and a short alpha helix (ClC channel, PDB:1OTS). All-
atom (AA) simulations use one interaction-site per atom. In coarse-grained (CG) 
simulations, several atoms are grouped into one interaction site. Multiscale simulations use a 
combination of resolutions either in the same simulation or in sequence. The HMMM 
(highly mobile membrane mimetic) model uses truncated lipids and a membrane core of 
inorganic solvent to increase lateral diffusion of membrane lipids.
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Figure 5. 
Scope of methods in describing the dynamics of chemical and biological processes. 
Effective length and time scales of all-atom (AA) MD, quantum/molecular mechanics 
(QM/MM) and reduced representation/multiscale simulations (e.g., CG) are in the shaded 
boxes, while those of experimental techniques (nuclear magnetic resonance (NMR), electron 
paramagnetic resonance (EPR), Förster resonance energy transfer (FRET), fluorescence 
recovery after photobleaching (FRAP), atomic force microscopy (AFM), and magnetic and 
optical tweezers) are in the dashed boxes. The structure of heme highlights electronic state 
and chemical bond vibration. Different molecular systems are chosen to exemplify the scope 
of simulation and computational studies. Permeation of water and glycerol molecules 
through the E. coli glycerol facilitator protein (structure taken from PDB:1FX8) involves 
intermolecular contacts (e.g., H-bonds) and side chain motions of amino acids lining the 
pore. ABC transporters undergo large-scale protein domain motions during the transport 
cycle. The structure of a mitochondrial aerobic respiratory super-complex67 (PDB:5J4Z) 
illustrates the slow process of formation of multiprotein complexes. Fusion of membranes of 
two cellular compartments illustrates structural changes of a cell or an organelle, 
representing one of the slowest processes targeted by computational studies of membrane 
systems.
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Figure 6. 
Early simulations of lipid bilayers. (A) Snapshot of a united-atom (UA), unsolvated model 
bilayer system (top and bottom leaflets), simulated for 80 ps. Manipulation of Lennard-
Jones parameters and use of harmonic restraints on the “headgroup” interaction sites allowed 
the model lipids to reproduce behavior of a decanoate-decanol-water system. Only the upper 
leaflet is shown for clarity.69 Reprinted with permission from ref 69. Copyright 1982 AIP 
Publishing. (B) Fully atomistic bilayer simulation of 200 phospholipids, 120 ps in length, 
fully solvated and ionized.71 Lipid tails shown in grey, headgroups in yellow, and water 
molecules in orange and red. Reprinted with permission from ref 71. Copyright 1993 
American Chemical Society. (C) Fully atomistic, solvated simulation of gramicidin A 
channel in a bilayer of 16 lipids, 500 ps in length. Protein in green, lipids in silver, water in 
blue.72 Adapted with permission from ref 72. Copyright 1994 National Academy of 
Sciences. (D) CG simulations showing spontaneous bilayer formation for the first CG model 
of a phospholipid bilayer.73 Adapted with permission from ref 73. Copyright 2001 American 
Chemical Society.
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Figure 7. 
Illustration of a key improvement to simulations of lipid bilayers resulting from changes to 
the CHARMM36 force field as compared to CHARMM27r. In CHARMM27r, the bilayer 
phase transitioned inappropriately to gel phase, while CHARMM36 maintains liquid-
crystalline phase.98 Reprinted with permission from ref 98. Copyright 2011 American 
Chemical Society.

Muller et al. Page 122

Chem Rev. Author manuscript; available in PMC 2020 May 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 8. 
(A) CG representations of common lipids in MARTINI,148 overlaid on the corresponding 
AA topologies (hydrogen atoms are omitted for clarity). The CG beads are shown as 
transparent vdW spheres. Each bead represents about four heavy atoms with the associated 
hydrogen atoms. (B) Schematic illustration of the rugged and complex energy landscape of 
an AA model (left) compared to the smooth surface in a CG model (right). The smoothening 
of the CG energy landscape helps to avoid trapping in the local energy minima while 
searching for the global minimum. Adapted with permission from ref 149. Copyright 2016 
American Chemical Society.
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Figure 9. 
Spontaneous binding and insertion of the factor VII GLA domain to anionic membranes 
captured by HMMM. (A) The binding of GLA domains (purple trace) to PS headgroups is 
mediated by bound Ca2+ ions (purple spheres) and basic sidechains (green licorice). 
Reprinted Cover Image with permission from ref 176. Copyright 2012 Elsevier. (B) 
Diffusion of lipid phosphorus atoms in a 10-ns simulation of a full DOPS lipid bilayer (left) 
with a 1-ns simulation of an HMMM PS lipid bilayer (right). Despite an order-of-magnitude 
shorter simulation, the HMMM model captures much larger lateral diffusion and mixing of 
lipids. Reprinted with permission from ref 176. Copyright 2012 Elsevier.
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Figure 10. 
Methods for assembling proteins in membranes. Proteins, lipid head groups and lipid tails 
are represented by gray rectangles, orange circles and brown lines respectively. Black-solid 
boxes represent the original dimension of a simulated system, whereas dashed boxes 
represent changes during the optimization process. (A) The simplest way to optimize lipid 
packing is to delete lipid molecules colliding the protein and then perform an MD simulation 
until the system reaches optimal dimensions. (B) g_membed applies a repulsive force to 
gradually grow the protein to its targeted dimension.201 (C) GRIFFIN applies a repulsive 
field to carve out lipid molecules inside the protein grid.202 (D) A simulation, in which a 
high pressure is applied to laterally swallow the protein in the bilayer.203 (E) Flooding 
simulations can be used to probe lipid binding sites at a CG level first and then transform the 
assembled complex into an AA model.212 (F) One approach is to first place pseudo atoms or 
beads of targeted lipid types in a bilayer encompassing the protein according to their cross-
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sectional areas and then replace the beads with lipid conformations selected from previous 
MD simulations.72,79,213 (G) Another approach is to perform a series of expansion and 
compression simulations of the membrane and scaling of lipid size.199
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Figure 11. 
Representative membrane channels covered in Section 3.1. The channels shown from left to 
right are the voltage-gated potassium channel (Kv, PDB:3LUT) that opens and closes in 
response to changes in membrane potential; the nicotinic acetylcholine receptor (nAChR, 
PDB:4BOI), a pentameric ligand-gated ion channel; the mechanosensitive channel of small 
conductance (MscS, PDB:2VV5) that functions as a pressure relief valve and regulated by 
membrane tension; the bacterial outer-membrane porin (OmpF, PDB:2OMF) that aids the 
diffusion of small hydrophilic molecules across the outer membrane of Gram-negative 
bacteria; and, the fungal phospholipid scramblase (PDB:4WIS) that facilitates the 
transmembrane movement of phospholipids in an ATP-independent manner.
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Figure 12. 
Representative conformations (α, β, γ, δ, and ε) of the Kv1.2 voltage sensor domain 
revealed during the unbiased and subsequent biased-MD simulations. (A) Molecular views 
of the five key conformations highlighting the positions of the S4 basic residues (blue sticks) 

and their binding sites (acidic residues: red sticks, lipid PO
4

−: yellow vdW) during the gating 

transition. (B) The closest interacting partner with each of the S4 basic residues in the five 

conformations. Lipid PO
4

− groups were involved in providing counter-charges for the S4 

basic residues during the gating process. (C) Positions of the S4 basic residues R1 (black) 
through R6 (orange) with respect to the membrane midplane (z=0) for each intermediate 
conformation. Adapted with permission from ref 240. Copyright 2011 Delemonte et al.
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Figure 13. 
PIP2 molecules access different regions of the KCNQ2 channel depending on protein 
conformations. (Top) Trajectories of PIP2 illustrating the preferential binding of the lipid 
molecules to the S4-S5 linker of the open channel (left) and the S2-S3 loop of the closed 
channel (right), respectively. Reprinted with permission from ref 250. Published by National 
Academy of Sciences. (Bottom) The schematic model proposed based on the simulations 
shows that in the closed state, PIP2 is anchored at the S2-S3 loop (right); upon channel 
activation, PIP2 interacts with the S4-S5 linker and is involved in channel gating (left). 
Adapted with permission from ref 251. Copyright 2015 Chen et al. Licensed under a 
Creative Commons Attribution 4.0 International License.
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Figure 14. 
Membrane partitioning and the facilitated binding of anesthetics to the modulation sites of 
GLIC during the flooding simulations. (A) Time series demonstrating the membrane 
partitioning of desflurane during the flooding simulations, in which a high copy number of 
drug molecules were initially placed randomly in solution. (B) Spontaneous binding of 
desflurane to the membrane domains of GLIC, following its rapid partitioning into the 
membrane. The desflurane molecule forms several non-specific contacts within the binding 
site (top inset), which is located near the same region within the membrane where desflurane 
partitions (bottom inset). Reprinted with permission from ref 269. Copyright 2016 Elsevier.
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Figure 15. 
Free energy landscape of PIP2-Kir2.2 interaction. (A) Replica exchange umbrella sampling 
along a collective variable defined by the distance between the PIP2 headgroup and the 
center of mass of the interacting Kir subunit. Representative snapshots of the initial 
configurations in the PIP2-bound and unbound conditions are shown (PIP2: red, Kir2.2 
interacting subunit: blue). (B) Two independent sets of simulations, initiated either from the 
PIP2 bound (blue) or unbound (orange) states, provided convergent results for both the 
wildtype protein and the R186A mutant (inset) with reduced PIP2-binding affinity. Adapted 
with permission from ref 280. Copyright 2017 American Chemical Society.
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Figure 16. 
Lipid exchange between the membrane-exposed pockets of MscS and the bilayer upon 
gating. (A) Cut away slices showing the packing of lipids in the pockets during the 
simulations of MscS in the closed (left) and open (right) states. Lipid molecules in the lower 
pocket reach the pore-sealing residues in the open state, but they are blocked in the closed 
state (insets). (B) A schematic model derived from the simulations showing that as pressure 
is applied, the increased lateral tension induces lipid repartitioning (blue arrows, left panel) 
from the protein pockets to the bilayer, destabilizing the closed state and facilitating the 
formation of the open state (orange arrow, left panel). Lipid molecules inside the pockets are 
highlighted with a green headgroup. Adapted with permission from ref 295. Copyright 2015 
Springer Nature.

Muller et al. Page 132

Chem Rev. Author manuscript; available in PMC 2020 May 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 17. 
Bilayer stretch induced TREK-2 conformational change between the two major states. (A) A 
pressure jump of −80 mbar results in fully reversible currents through the reconstituted 
TREK-2 channel as recorded at +80 mV. (B) Simulation of membrane stretch by expanding 
the xy plane of the bilayer (red arrows) induces a protein conformational transition and 
mechanogating of K2P channels. (C) State-dependent binding of lipids near the protein 
fenestration. Without stretch, the fenestration is open and lipids (Fen lipids) are bound 
within the groove between M2 and M4 helices. When the membrane is stretched, the 
fenestration closes and lipids no longer bind. Adapted with permission from ref 299. 
Copyright 2017 Elsevier.
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Figure 18. 
Direct involvement of phospholipids in ion translocation across the membrane, mediated by 
intimate lipid-protein interactions. Representative snapshots from MD simulations 
demonstrating: (left) the egress of Na+ through the lateral cytoplasmic fenestrations of the 
human P2X3 trimer lined by lipid headgroups; (right) the lipids lining the hydrophilic 
aqueduct on the surface of the nhTMEM16 scramblase play a structural role in forming a 
‘proteolipidic’ pore for ion conduction. The lipid headgroups interacting closely with the 
protein and coordinating the permeating ions are shown in red with the tails drawn in yellow. 
Reprinted with permission from ref 324. Copyright 2018 Elsevier.
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Figure 19. 
Representative membrane transporters covered in Section 3.2. The transporters shown from 
left to right are the ATP-dependent multidrug transporter P-glycoprotein (Pgp, PDB:5KPI), a 
member of the ATP-binding cassette (ABC) transporter family; the bacterial leucine 
transporter (LeuT, PDB:3MPN), which transports amino acids across the membrane utilizing 
the electrochemical gradient of Na+; the lactose permease (LacY, PDB:2Y5Y) of the major 
facilitator superfamily, which catalyzes the translocation of galactopyranoside using the pH 
gradient; the SecY translocon (PDB:3BO0), which mediates the transmembrane secretion or 
insertion of nascent proteins; and the β-barrel transporter FecA (PDB:1KMO), which 
transports ferric citrate across the outer membrane of E. coli.

Muller et al. Page 135

Chem Rev. Author manuscript; available in PMC 2020 May 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 20. 
Lipid entry into the lumen of Pgp in its inward-facing and outward-facing states. (Top) 
Representative simulation snapshots showing the penetration of lipids into the probable drug 
entry portals from the inner (left) and outer (right) leaflets of the membrane. The location of 
the protruding lipid suggests a putative pathway for direct drug recruitment from the 
membrane. The initial and final conformations of the lipid molecules are in white and yellow 
sticks, respectively. (Bottom) Schematic representation of the inward-facing and outward-
facing conformations of Pgp. The half-inserted and fully-inserted lipid molecules are shown 
in broken and solid yellow lines, respectively. Adapted with permission from ref 269. 
Copyright 2016 Elsevier.
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Figure 21. 
The role of lipids in the H+ transfer reactions of the H+-coupled MATE multidrug 
transporter. (A) A POPC lipid intruded MATE during the simulation, approaching the H+-
binding site D41 with its headgroup. (B) The potential energy surface of H+ transfer from 
the intruding lipid headgroup to D41 by QM/MM calculations using selected MD snapshots. 
(C) The optimized structures corresponding to the two local minima in H+ transfer: 
protonated phosphate group (I) and protonated D41 (II). Adapted with permission from ref 
358. Copyright 2016 Elsevier.
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Figure 22. 
Representative integral membrane receptors covered in Section 3.3. The receptors shown 
from left to right are β2 adrenergic receptor (PDB:2RH1), a G-protein coupled receptor; the 
epidermal growth factor receptor (EGFR), (assembled using the transmembrane domain 
from PDB:5LV6, and the kinase domain from PDB:2JIT), which is associated with diseases 
such as Alzheimer’s; bovine rhodopsin (PDB:1U19), a photoreceptor required for vision; 
and the integrin (PDB:2K9J) involved in the key signal transduction pathways in the cell.
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Figure 23. 
Lipid-modulated structural dynamics of membrane receptors. (A) Normalized probability 
distribution of cholesterol around inactive (upper panel) and active (lower panel) μ-opioid 
receptor (MOR) captured in μs-long CG simulations. The colored circles indicate the center 
of mass of transmembrane (TM) helices: TM1 through 7 are colored in blue, red, grey, 
orange, yellow, green, and pink, respectively. Inactive and active structures of MOR with 
residues colored by their probability of being in contact with cholesterol (low to high 
probability indicates white to blue to green). Reprinted with permission from ref 389. 
Copyright 2016 Marino et al. Licensed under a Creative Commons Attribution 4.0 
International License. (B) Zwitterionic lipid binding to the arginine component of the ionic 
lock of active, lipid-bound state (upper panel) and inactive, lipid-unbound state (lower panel) 
of β2AR. Adapted with permission from ref 387. Copyright 2015 Elsevier.
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Figure 24. 
Proposed mechanism of integrin inside-out activation by talin. The figure illustrates the 
proposed a scissor-like motion of integrin α (red) and β (blue) TM helices that occurs upon 
the binding of talin (cyan and yellow). Positively charged surface of talin and negatively 
charged phosphate plane of lipid bilayer are highlighted. Reprinted with permission from ref 
425. Copyright 2011 Kalli et al.

Muller et al. Page 140

Chem Rev. Author manuscript; available in PMC 2020 May 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 25. 
Binding of EGFR kinase to the anionic membrane. (A) Electrostatic potential surface of the 
kinase domain (KD) when in contact with the membrane. The electrostatic potential is from 
−5 to 5 kB T/e (red to blue). (B) KD interactions with the lipid bilayer and the aggregation of 
anionic lipids (PS in red) captured from μs-long MD simulations. The KD is attached to the 
membrane, and the active sites (shown in orange) are sequestered by the membrane except 
in the active dimer. Reprinted with permission from ref 434. Copyright 2013 Elsevier.
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Figure 26. 
Representative peripheral proteins discussed in Section 4. Ras proteins are key regulators in 
cell signaling (globular domain (PDB:4OBE), linker was modeled using Rosetta). PH 
domain (PDB:1UNQ), a PIP binding domain found in signaling proteins. Coagulation factor 
X GLA domain (PBD:1IOD) is a Ca2+-coordinating domain used by coagulation proteins to 
bind anionic membranes. Cytochrome P450 enzymes are crucial to metabolism and 
biosynthesis (globular domain (PDB:1TQN), the transmembrane helix was modeled using 
Modeller).
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Figure 27. 
Results of spontaneous bilayer formation and protein-membrane association from CG 
simulations of nine monotopic membrane-associated enzymes, and comparison of their 
binding mode and depth. From right to left, and top column to bottom, these enzymes are: 
COX-1 (cyclooxygenase 1); ACO (apocarotenoid cleavage oxygenase); fatty acid amide 
hydrolase (FAAH); COX-2 (cyclooxygenase 1); P450 (cytochrome P450); 11-β-HSD (11-β-
hydroxysteroid dehydrogenase); OSC (oxidosqualene cyclase); SHC (squalene hopene 
cyclase); CrAT (carnitine acyltransferase). Reprinted with permission from ref 454. 
Copyright 2009 American Chemical Society.
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Figure 28. 
Spontaneous membrane binding of CYP3A4. (Top) Snapshots taken at different time points 
in the simulation. (Bottom right) Close-up view of the membrane-bound form of CYP3A4, 
highlighting residues inserting directly into and interacting with the membrane. (Bottom 
left) Time evolution of average height of the center of mass for individual membrane 
anchoring helices (A, F’, G’) in five independent simulations (listed as Mem-1 through 
Mem-5). The average positions of the phosphorus (PO4) and the nitrogen (choline) atoms of 
the lipid headgroups are shown as gray and brown dotted lines, respectively.178 Reprinted 
with permission from ref 178. Copyright 2013 American Chemical Society.
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Figure 29. 
Membrane bound conformation of phospholipases, and the critical reactions they catalyze. 
Membrane binding of (A) phospholipase A2 (PLA2). Important membrane-binding residues 
shown in blue, red, and green. Reprinted with permission from ref 470. Copyright 2013 
Bucher et al. Licensed under a Creative Commons Attribution 4.0 International License. The 
PLA2 reaction is provided underneath the figure. (B) Phospholipase C (PLC) bound to 
membrane bilayer, higlighting cation-π interactions with PLC anchor residues. Reprinted 
with permission from ref 471. Copyright 2013 American Chemical Society. The PLC 
reaction is provided underneath the figure.
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Figure 30. 
Binding modes of (A) GDP-bound and (B) GTP-bound G-domain of H-Ras observed by CG 
simulations. The GDP-bound G-domain bound in an approximately perpendicular 
orientation to the plane of the membrane, while the GTP-bound G-domain bound in a semi-
parallel orientation. These distinct orientations can be observed from the positions of α-helix 
4 (α4) and α-helix 5 (α5) with respect to the membrane. Reprinted with permission from ref 
520. Copyright 2013 Li et al. Licensed under a Creative Commons Attribution 4.0 
International License.

Muller et al. Page 146

Chem Rev. Author manuscript; available in PMC 2020 May 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 31. 
MD simulations revealing membrane curvatures induced by the N-BAR domain. (A) 
Snapshots from AA simulation of a single amphiphysin N-BAR domain. (B) Snapshots from 
residue-based CG simulation (RBCG) of a single amphiphysin N-BAR domain. (C) 
Snapshots from shape-based CG simulation (SBCG) of a single amphiphysin N-BAR 
domain. (D) Six amphiphysin N-BAR domains in the nonstaggered arrangement. (E) Six 
amphiphysin N-BAR domains in the staggered arrangement. Upper and middle panels in 
panels D and E show side- and top-views of the initial setup. Lower panels are snapshots 
after 20 or 50 ns. The nonstaggered arrangement of BAR domains induces a ripple-shaped 
membrane while the staggered arrangement results in a uniform curvature. Adapted with 
permission from ref 542. Copyright 2008 Elsevier.
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Figure 32. 
Membrane budding caused by α synuclein. (A) Top-down view of the spoke starting 
configuration. The system includes 48 α synuclein proteins (yellow) and a pure POPG lipid 
bilayer (blue). The N-terminus of each protein is marked with a black dot. (B) Snapshot at 
300 ns simulation time. The budding tubule extends 25 nm above the bulk lipid bilayer. 
Reprinted with permission from ref 558. Copyright 2014 American Chemical Society.
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Figure 33. 
Example of a refined voltage sensor (VS)/VsTX1 complex structure, showing a t = 20 ns 
snapshot from an AA simulation. (A) Complex in a bilayer showing the VS in beige (with 
the S3b and S4a helices in green and blue, respectively), VsTx1 in red, and the phosphorus 
atoms of the lipids in purple. (B) View of the complex with the consensus interaction side 
chains of S4a (consensus between simulation and experiment) in pale blue in a space-filling 
representation. 581 Reprinted with permission from ref 581. Copyright 2010 Elsevier.
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Figure 34. 
Model of membrane-mediated binding of ProTx-II to Na+ channels. (A) ProTx-II surface 
representation, with residues important for binding to the membrane (green) and important 
for binding to the channel (blue). (B) Putative location of ProTx-II within the lipidic 
membrane and in the presence of the channel: 1, membrane-binding patch anchors the toxin 
to the membrane; 2, increased toxin concentration in vicinity of the channel and the toxin 
orientation facilitate binding to the voltage-sensing domain (VSD) of the channel. Reprinted 
with permission from ref 582. Copyright 2016 American Society for Biochemistry and 
Molecular Biology.
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Figure 35. 
Representative conformations of Aβ tetramer and tetramer-membrane interactions. The 
images represent the central structure of the largest cluster from the last 250 ns of each 
simulation, with percentages representing the cluster size (percentage of frames belonging to 
the cluster). Aβ tetramer binding significantly perturbed POPC membranes, whereas the 
cholesterol-rich membrane remained relatively unperturbed. Reprinted with permission from 
ref 634. Copyright 2016 Elsevier.
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Figure 36. 
(A) Distribution of lipid-protein distances between lipids with polyunsaturated fatty acid 
(PUFA) and all-saturated lipids. The black plot shows the distances between the PUFA chain 
and the protein. The red plot shows the distances between the saturated chain and the 
protein. This data was sampled using 0.1 nm radial bins and averaged over the last 500 ns of 
a 10.5 μs CG simulation. (B) Snapshot of a single asymmetric lipid near the α-synuclein 
helix which is perpendicular to the page. Reprinted with permission from ref 642. Copyright 
2017 Elsevier.
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Figure 37. 
Marburg VP40 undergoing substantial conformational rearrangements upon binding to the 
membrane. (A-C) Snapshots of the VP40 dimer association with the plasma membrane at 
different time points. (D) Various lipid types interacting with the basic loop 1 and basic loop 
2 residues at 300 ns. The lipids are colored as: POPS-cyan, POPI-green, POPC-gray, POPE-
purple. Adapted with permission from ref 675. Copyright 2017 The Royal Society of 
Chemistry.
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Figure 38. 
Snapshots from a 4 μs CG simulation of the assembly of an HDL particle with lipids initially 
randomly scattered. At the end of 4 μs, the simulation captured a discoidal particle with 
beltlike arrangement of the scaffold proteins. The two scaffold proteins (backbone only), are 
shown in blue and red, and the DPPC lipids are shown in dark and light tan. Reprinted with 
permission from ref 688. Copyright 2007 Elsevier.
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Figure 39. 
Special lipids modulating protein structure and function. Sphingomyelin, 
phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylglycerol (PG), cholesterol, 
phosphatidic acid (PA), lipopolysaccharides (LPS), phosphatidylserine (PS), and cardiolipin.
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Figure 40. 
Cholesterol modulation of human β2AR characterized by MD simulations. (A) Cholesterol 
binding sites are shown in orange, and POPC binding sites shown in blue for comparison. 
Reprinted with permission from ref 403. Copyright 2013 American Chemical Society. (B) 
β2AR dimer interface formed by helices IV/V and I/II at 0% and 50% cholesterol (Chol) 
concentration, respectively. Adapted with permission from ref 404. Copyright 2014 Elsevier. 
(C) β2AR conformational dynamics restricted by cholesterol binding. LL and LG denote the 
distances between the Cα atoms of D113-S207 at the extracellular ligand-binding site and 
R131-E268 at the intracellular G-protein interface, respectively. Reprinted with permission 
from ref 413. Copyright 2016 Manna et al. Licensed under a Creative Commons Attribution 
4.0 International License.
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Figure 41. 
Lipid headgroup density profiles around the protein for (A) all phospholipids, (B) PE, (C) 
PG, and (D) cardiolipin (CL in figure). (C) and (D) show the density profiles of the three 
simulations for PG and cardiolipin, respectively. The values in the color chart show the 
relative lipid enrichment around the protein, defined as the ratio between the local lipid 
density (δlocal) and the average lipid density (δrandom). The yellow line indicates the protein 
footprint, and the yellow arrow connects the N and the C domains, indicating the orientation 
of the protein. The protein is not shown for clarity. Some protein residues interacting directly 
with the membrane are shown as colored symbols: aromatic residues in green, hydrophobic 
residues in red and positively charged residues in blue, as detailed in (A). (E and F) 
Monoglucosyldiacylglycerol synthase bound to the membrane (E), and 
monoglucosyldiacylglycerol synthase outside of the membrane with potential membrane 
binding segments (marked S) highlighted in color (F). Adapted with permission from ref 
496. Copyright 2014 John Wiley and Sons.
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Figure 42. 
Putative PS binding sites for coagulation factor X GLA domain (FX-GLA). Ca2+ ions are 
shown in green, and specialized GLA residues (marked as γ) are shown in gold. The GLA 
domain membrane binding loop is shown in magenta, hydrophobic residues which insert 
into the core of the membrane are shown in cyan, and the rest of the protein is shown in 
silver. Lipids are shown with carbon atoms in light pink, nitrogen in blue, and oxygen in red. 
(A) Spontaneous binding of FX-GLA domain to an HMMM bilayer. 189 (B-C) Putative PS–
specific binding sites. Sites identified as most likely to be PS specific because all three 
charged groups of the PS lipid interact with the protein simultaneously. 189 Adapted with 
permission from ref 189. Copyright 2017 John Wiley and Sons.
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Figure 43. 
CG simulations describe the diffusion of CDL in a mixed POPC/CDL bilayer and enable the 
detection of stable binding sites of CDL on the surface of the cytochrome bc1 complex. The 
CDL binding sites shown in yellow volume are mapped at an isovalue corresponding to at 
least 5 times the average bulk density. Reprinted with permission from ref 440. Copyright 
2013 American Chemical Society.
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Figure 44. 
CDL mediated formation of respiratory supercomplexes. (A) View of the CDL-containing 
system after 20 μs self-assembly CG simulation. CDL and POPC are shown in green and 
grey, respectively. Cytochrome bc1 (complex III, CIII) and Cytochrome CcO (complex IV, 
CIV) are colored as in (B). (B) A snapshot at the end of the simulation showing the lipid 
content at the bc1/CcO interface. (C) Schematic model of CDL implication in the formation 
of the supercomplexes. The presence of CDL (green dots) increases the contacts between 
bc1 and CcO. Two copies of NADH dehydrogenase (complex I, CI) are shown to illustrate 
its possible integration to the bc1/CcO supercomplexes formed during the simulations. 
Adapted with permission from ref 441. Copyright 2016 The Royal Society of Chemistry.
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Figure 45. 
CDL interaction with the mitochondrial ADP/ATP carrier (AAC). (A) The time-averaged 
probability density surface of the CDL binding sites (magenta) revealed by CG simulations. 
Inset illustrates CDL binding sites observed in the X-ray structure (PDB: 1OKC). (B) The 
arrangement of the conserved motifs (grey) around the bound CDL (magenta) after 
refinement with AA simulations. (C) Potential of mean force profiles for the interaction of 
various lipids (CDL, PC and PS) at the X-ray observed CDL binding site (left) and a control 
non-CDL binding region (right). At the X-ray binding site, CDL binds more favorably than 
PS and PC. Adapted with permission from ref 369. Copyright 2016 American Chemical 
Society.
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Figure 46. 
PIP-PH domain interaction examined by free energy and multiscale methods. (A) Free 
energy profiles of PIP2/POPS binding to two different pockets (1&2) in a PH domain 
calculated from umbrella sampling. Reprinted with permission from ref 850. Copyright 2017 
American Chemical Society. (B) A multiscale approach combining crystallographic data and 
MD simulations to characterize PH domain binding to a PIP-containing membrane. 
Reprinted with permission from ref 852. Copyright 2018 Elsevier.
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Figure 47. 
Computational modeling of OprH in an LPS bilayer. Chemical structures of lipid A, LPS 
core sequences and O-antigen of outer membrane (OMs) with the corresponding simulation 
box are shown in (A-F). The color representations are as follows: pink spheres, lipid A; 
orange sticks, O10-antigen polysaccharides; gray sticks, core sugars; blue spheres, PPPE; 
orange spheres, PVPG; magenta spheres, PVCL2; small cyan spheres, Ca2+ ions; small 
magenta spheres, K+ ions; small green spheres, Cl ions. 305 Reprinted with permission from 
ref 305. Copyright 2017 Elsevier.
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Figure 48. 
Membrane thickness profiles near ten different membrane proteins from CG simulations. 
For each of the simulation systems, membrane thickness is shown as 2D maps, averaged 
over the simulations from 25 to 30 μs. Overall thickness, the distance calculated between the 
upper and lower surfaces, is shown color-coded according to a 3.5–4.7 nm scale. The 
thickness for the upper leaflet (as distance between the upper and the middle plane) and for 
the lower leaflet (as distance between the lower and the middle plane) is shown on a 
different color scale, ranging from 1.6 to 2.2 nm. The position of the four protein copies in 
each simulation box is indicated by drawing the proteins in yellow ribbons. The studied 
membrane proteins are aquaporin AQP1, cyclooxyge-nase COX1, dopamine transporter 
DAT, epidermal growth factor receptor EGFR, AMPA receptor GluA2, glucose transporter 
GLUT1, K+ channel Kv1.2, Na+-K+ pump Na,K-ATPase, opioid receptor δ-OPR, and P-
glycoprotein P-gp. Reproduced with permission from ref 913. Copyright 2018 American 
Chemical Society.
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Figure 49. 
Leaflet asymmetry of lipid mobility near NanC and OmpF. Ratio of diffusion coefficients 
between inner and outer leaflet for (A) NanC and (B) OmpF as a function of distance from 
the protein at different times. Error bars are the standard errors from 6 sub-trajectories. 
Asymmetry can be seen in the OmpF simulations for distances from the protein of less than 
20 Å. (C,D) The corresponding proteins colored based on time averaged number of contacts 
(cutoff 7 Å) to lipid phosphates on a blue (0%) to red (100%) scale. Reprinted with 
permission from ref 796. Copyright 2013 Goose, Sansom. Licensed under a Creative 
Commons Attribution 4.0 International License.
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