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ABSTRACT

Accumulating evidence has underscored the important roles of long non-

coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in cancer 

initiation and progression. In this study, we used an integrative computational 

method to identify miRNA-mediated ceRNA crosstalk between lncRNAs and mRNAs, 

and constructed global and progression-related lncRNA-associated ceRNA networks 

(LCeNETs) in ovarian cancer (OvCa) based on “ceRNA hypothesis”. The constructed 

LCeNETs exhibited small world, modular architecture and high functional specificity 
for OvCa. Known OvCa-related genes tended to be hubs and occurred preferentially 

in the functional modules. Ten lncRNA ceRNAs were identified as potential candidates 
associated with stage progression in OvCa using ceRNA-network driven method. 

Finally, we developed a ten-lncRNA signature which classified patients into high- 
and low-risk subgroups with significantly different survival outcomes. Our study will 
provide novel insight for better understanding of ceRNA-mediated gene regulation 

in progression of OvCa and facilitate the identification of novel diagnostic and 
therapeutic lncRNA ceRNAs for OvCa.

INTRODUCTION

MicroRNAs (miRNAs) are a major class of short 

non-coding RNAs (ncRNAs) with ~20 nucleotides in 

length, and participate in a wide range of biological 

processes [1]. miRNAs can regulate gene expression at 

the post-transcriptional level through binding to miRNA 

response elements (MREs) on the 3’ untranslated region 

(3’UTR), coding sequence (CDS) and 5’UTR of target 

gene [2]. It has been shown that diverse RNA molecules 

harboring MREs can act as competing endogenous RNAs 

(ceRNAs) to communicate by competing for a common 

pool of miRNAs, leading to the ‘ceRNA hypothesis’ 

[3, 4]. CeRNA crosstalk represents an exciting novel 

layer of miRNA regulatory network and forms complex 

miRNA-mediated ceRNA networks (ceRNETs). There is 

increasing evidence shown that ceRNA crosstalk occurs 

widely in essential cellular processes and functions, and 

its perturbation will disrupt the balance of the ceRNETs 

leading to disease initiation and progression [4, 5].

Long non-coding RNAs (lncRNAs), a newly 

described subclass of ncRNAs, was arbitrarily defined 
as ncRNAs of larger than 200 nucleotides in length 

distinguished from short ncRNAs [6]. A growing body 

of evidence has shown that lncRNAs function as a 

crucial component of complex gene regulatory network 

by regulating gene expression at the transcriptional, 

post-transcriptional and epigenetic levels [7, 8]. Recent 

theoretical and experimental studies have demonstrated 

the ceRNA activity of lncRNAs as natural miRNA decoys 

in human development and pathophysiological conditions 

[9]. Systematic analysis of lncRNA-associated ceRNA 

network have been performed in breast cancer [10, 11], 

gastric cancer [12] and glioblastoma multiforme [13]. A 

more recent study reported lncRNA HOST2 as miRNA let-

7b sponge to inhibit let-7b functions, thereby contributing 

to ovarian cancer (OvCa) [14], revealing the functional 

significance of lncRNA-associated ceRNA network in 
OvCa for the first time. However, the complexity and 
behavior of lncRNA-associated ceRNA network remains 
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poorly characterized in the progression of OvCa.

Here, we used an integrative computational method 
to identify miRNA-mediated ceRNA crosstalk between 

lncRNAs and mRNAs, and reconstructed global and 

progression-related lncRNA-associated ceRNA networks 

(LCeNETs) with sample-matched miRNA, mRNA 

and lncRNA expression profiles of 401 OvCa patients 
with stage I, III and IV derived from TCGA based 

on “ceRNA hypothesis”. We identified key lncRNAs 
associated with distinct stages of OvCa progression 

using a ceRNA-network driven method, and developed a 

ten-lncRNA signature to predict the clinical outcome of 

OvCa. The methodology presented seems to be the first 
implementation of progression-related ceRNA network to 

identify candidate prognostic lncRNA biomarkers.

RESULTS

Global properties and functional characterization 

of OvCa-specific LCeNET

We integrated matched expression profiles of 
401 OvCa patients from TCGA and experimentally 

validated interaction network among miRNAs, mRNAs 

and lncRNAs to identify functional miRNA-mediated 

LMceCTs. As described in the Methods section, a total 

of 1270 miRNA-mediated ceRNA crosstalk between 

lncRNAs and mRNAs (LMceCTs) were identified 
(Supplementary File 1). Then these functional LMceCTs 

were integrated to build a global OvCa-specific LCeNET. 
The constructed LCeNET contained 1045 nodes 

(including 97 miRNAs, 150 lncRNAs and 798 mRNAs) 

and 2516 edges (Figure 1A). To explore the architecture 

and features of OvCa-specific LCeNET, network analysis 
was performed and the results were summarized in 

Table 1. As observed, the degree distribution of nodes in 

the LCeNET closely followed a power law distribution 

with R2=0.9196(Figure 1B). Most nodes had relatively 

few interactions with others and only a small portion of 

nodes had a large number of interactions. The topology 

analysis suggested that the LCeNET had a small-world 

organization with high small-world index of 7.779 and 

high clustering coefficient of 0.745 (empirical p < 0.001) 

(Figure 1C) compared with random networks. However, it 
is interesting to observe that the characteristic path length 

is slightly larger than random networks which may be due 

to the lack of extremely long-range connections (Figure 

1D).

To further validate potential functional implication 

of LCeNET in OvCa, we performed functional enrichment 

analysis of mRNAs in the LCeNET based on Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways, and found that these mRNAs 

were significantly enriched in 211 GO terms (p < 0.05 and 

Fold Enrichment > 1.5) mainly involved in six functional 

clusters including RNA splicing, biosynthetic process, 

cell death and apoptosis, cell cycle, morphogenesis and 

development and mRNA catabolic process (Figure 1E), 

and 20 KEGG pathways including pathways in cancer, 

ribosome pathway and several signaling pathways (Figure 

1F) (Supplementary File 2). All the enriched signaling 

pathways, including mTOR signaling pathway, TGF-

beta signaling pathway, Insulin signaling pathway, VEGF 

signaling pathway and p53 signaling pathway, are well 

known to contribute to the pathogenesis of OvCa [15-18]. 

These results suggested that lncRNA-associated ceRNA 

regulation in the LCeNET participated in broad biological 

functions associated with OvCa.

Hub nodes in the LCeNET play critical roles in 

OvCa

We mapped known OvCa-related genes to the 

LCeNET, and found that known OvCa-related genes 

were significantly enriched in the LCeNET (p < 0.001, 

Hypergeometric test). Further network analysis revealed 
significantly different topological characteristics between 

Table 1: Network characteristics of OvCa-specific and progression-related LCeNETs
OvCa-specific 
LCeNET

Stage II-related 
LCeNET

Stage III-related 
LCeNET

Stage IV-related 
LCeNET

Number of nodes 1045 1114 1180 839

Number of edges 2516 2391 2837 2046

Clustering coefficient 0.745 0.768 0.748 0.735

Characteristic path length 4.144 4.418 4.038 4.074

Small world property 7.779 11.829 7.332 8.076

Average number of neighbors 4.815 4.293 4.842 4.877

Connected components 7 7 3 6

Network diameter 10 10 8 9

Network radius 1 1 1 1

Network density 0.005 0.004 0.004 0.006

Network Heterogeneity 1.877 1.853 2.018 1.730
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known OvCa-related nodes and other nodes in the 

LCeNET. The OvCa-related nodes have significantly 
higher degrees, betweenness centrality and closeness 

centrality than other nodes in the LCeNET (avg. 13.831 

vs. 4.158 for degrees, p = 3.413e-11, Figure 2A; avg. 

0.018 vs. 0.003 for betweenness centrality, p = 8.176e-11, 

Figure 2B; avg. 0.296 vs. 0.256 for closeness centrality, 

p = 0.006, Figure 2C; Wilcoxon rank sum test), implying 

that hub nodes in the LCeNET were far more important 

than non-hub nodes, and were more likely associated with 

OvCa.

To determine the hub nodes in the LCeNET, all 

nodes in the LCeNET were sorted in a descending order 

according to their degree. We chose the top 5 percent of 

miRNAs, lncRNAs and mRNAs with the highest degree 

as the hub components according recent studies [19, 20]. 

Figure 1: Ovarian cancer-specific lncRNA-associated ceRNA network and their characteristics. A. Global view of the 

LCeNET in ovarian cancer. This network consists of 1045 nodes and 2516 links. B. Degree distribution of the LCeNET. C. The clustering 

coefficient of the LCeNET is higher than randomization test. The arrow represents the clustering coefficient in the real network. D. The 

characteristic path length of the LCeNET is higher than randomization test. The arrow represents the characteristic path length in the 

real network. E. The functional enrichment map of GO terms. Each node represents a GO term, which are grouped and annotated by GO 

similarity. A link represents the overlap of shared genes between connecting GO terms. Node size represents the number of gene in the 

GO terms. Color intensity is proportional to enrichment significance. F. Significantly enriched KEGG pathway of mRNAs in the LCeNET.
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We identified 5 hub miRNAs (HubmiRs), 8 hub lncRNAs 
(HublncRs) and 40 hub mRNAs (HubmRs), and found that 
known OvCa-related genes were significantly enriched in 
the hubs (p = 6.992e-04, Hypergeometric test) (Figure 
2D). 11 of 53 hub nodes were known OvCa-related genes, 

including 5 HubmiRs, 1 HublncR and 5 HubmRs. All of 
these observations demonstrated that hub nodes in the 

LCeNET were significantly more likely to be essential for 
OvCa development and progression compared with non-

hub nodes.

We further investigated the modularity feature 

of the LCeNET. Based on the OvCa-specific LCeNET, 
16 OvCa-related functional modules, comprising 129 

genes, were identified using molecular complex detection 
(MCODE) method [21]. These functional modules were 

numbered from 1 to 16 in order of decreasing module size 

(Supplementary File 3). We found that these functional 

modules varied greatly in size, ranging from 3 to 58 genes, 

with a mean size of 16 genes. Known OvCa-related genes 

in the LCeNET were observed to occur preferentially in 

these functional modules (p = 0.044, Hypergeometric 
test), suggesting that these functional modules were 

significantly associated with OvCa. We also found a hub 
miRNA miR-186-5p function as a date hub to connect 

four functional modules (module 2, 3, 4 and 5), implying 

its important roles in organizing the functional modules. 

A recent study suggested that miR-186 can act as a key 

player in overcoming chemoresistance in ovarian cancer 

therapy [22], which strongly supported our findings.

Progression-related network analysis reveals 
prognostic lncRNA biomarkers associated with 
progression of OvCa

To identify potential prognostic lncRNA biomarkers 

associated with progression of OvCa stages, we further 

constructed progression-related LCeNETs of OvCa 

patients in stage II, III and IV based on correlated 

relationships among miRNAs, lncRNAs and mRNAs 

under a specified condition. The stage II and III-related 

Figure 2: The ovarian cancer-associated nodes tend to be hubs and are enriched in modules. A. The difference of degree 

between ovarian cancer-associated nodes and other nodes. Ovarian cancer-associated nodes had a higher degree than other nodes. B. The 

difference of betweenness centrality between ovarian cancer-associated nodes and other nodes. Ovarian cancer-associated nodes had a 

higher betweenness centrality than other nodes. C. The difference of clustering coefficient between ovarian cancer-associated nodes and 
other nodes. Ovarian cancer-associated nodes had a higher clustering coefficient than other nodes. P-values were calculated based on 

Wilcoxon rank sum test. D. The proportion of ovarian cancer-associated nodes among hubs and all nodes in the LCeNET. E. The proportion 

of ovarian cancer-associated nodes among modules and LCeNET. P-values were calculated based on Hypergeometric test.
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Figure 3: Prognostic value of ten-lncRNA signature for assessing clinical outcome of ovarian cancer. A. Hierarchical 
clustering heatmap and dendrogram of ovarian cancer samples based the expression patterns of ten stage-specific HublncRs. B. Kaplan-

Meier survival curves for ovarian cancer samples classified into two subgroups using the unsupervised hierarchical clustering strategy. 
P-Values were calculated using the log-rank test. C. Kaplan-Meier survival curves for ovarian cancer samples classified into high-risk and 
low-risk groups using the ten-lncRNA signature. P-values were calculated using the log-rank test. D. The ten lncRNA-based risk score 

distribution, patients’ survival status and heatmap of the ten stage-specific HublncRs expression profiles. The black dotted line represents 
the cutoff value of the risk score derived from the TCGA patients which separated patients into high- and low-risk groups. E. Receiver 

operating characteristic (ROC) analysis of the risk scores for overall survival prediction in the TCGA dataset.
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LCeNETs have significantly more nodes and edges 
than the stage IV-related LCeNET. The stage II-related 

LCeNET contains 1114 nodes (101 miRNAs, 204 

lncRNAs and 809 mRNAs) and 2391 edges, and stage 

III-related LCeNET contains 1180 nodes (99 miRNAs, 

162 lncRNAs and 919 mRNAs) and 2837 edges, whereas 

stage IV-related LCeNET contains only 839 nodes (88 

miRNAs, 139 lncRNAs and 612 mRNAs) and 2046 

edges (Supplementary File 4). Network analyses revealed 

that all three progression-related LCeNETs had similar 

topological properties, such as the clustering coefficient 
(0.768, 0.748 and 0.735, respectively), characteristic path 

length (4.418, 4.038 and 4.074, respectively) and small 

world index (11.829, 7.332 and 8.076, respectively) (Table 

1 and Supplementary File 5). In order to identify potential 

critical lncRNAs associated with OvCa progression, we 

focused our attention on hub lncRNAs (are hereafter 

referred to as HublncR) in progression-related LCeNETs.

We identified HublncR as the top 5% with the 
highest degree for lncRNAs, and 10, 8 and 7 lncRNAs 

were identified as HublncRs in three progression-related 
LCeNETs respectively (Supplementary File 6). One of 

HublncRs, NEAT1 was commonly shared among three 

progression-related LCeNETs, implying that NEAT1 was 

most likely to play an important role in OvCa. Although 

several previous studies have reported the important roles 

of NEAT1 as biomarker in acute promyelocytic leukemia 

[23] and prostate cancer [24], little is known about the role 

of lncRNA NEAT1 in OvCa. More recently, a latest study 

through cell proliferation assays and migration assays 

performed by Patel et al. found OvCa cell migration 

decreased when lncRNA NEAT1 was silenced [25], 

which provided experimental evidences for functional 

implication of NEAT1 in OvCa. Three lncRNAs (TP73-

AS1, AC000120.7 and CTB-89H12.4) were identified 
as HublncRs both in stage III and IV-related LCeNETs, 
implying their critical functional roles in the advanced 

stage of OvCa. lncRNA TP73-AS1, the antisense of 

the protein-coding gene TP73, has been reported to 

be associated with tumorigenesis and histological 

differentiation and can function as a biomarker in non-

small-cell lung carcinomas (NSCLC) [26]. lncRNA 

AC000120.7 overlaps with the sense strand of protein-

coding gene KRIT1. KRIT1 is a binding partner of the 

GTPase Rap1a and can function as a tumor suppressor 

[27]. lncRNA CTB-89H12.4 is the retained intron of 

protein-coding gene CSNK1A1. Previous study has 

suggested that the expression of CSNK1A1 is implicated 

in advanced stage (III/IV) of OvCa [28]. A recent study 

about relationships between lncRNAs and protein-

coding genes has suggested that the function of lncRNA 

overlapping with protein-coding gene tended to be similar 

to this protein-coding gene [29]. These results implied 

that AC000120.7 and CTB-89H12.4 may function by 

posttranscriptional regulation of the KRIT1 and CSNK1A1 

genes, and had significant roles in advanced stage (III/

IV) of OvCa. Ten HublncRs were found to be stage-
specific, including six HublncRs for stage II-specific, two 
HublncRs for stage III-specific and two HublncRs for 
stage IV-specific. These stage-specific HublncRs may have 
important functions in individual stages in the course of 

OvCa progression.

Based on above observations, we further explored 

whether these ten stage-specific HublncRs had prognostic 
significance for predicting clinical outcome in OvCa. We 
used an unsupervised hierarchical clustering strategy to 

group the expression patterns of ten HublncR and 401 
patients with OvCa. All patients were divided into two 

subgroups (219 patients vs. 182 patients) based on the 

first bifurcation of the clustering dendrogram (Figure 
3A). As seen in Figure 3B, survival analysis revealed 

obvious difference in overall survival (OS) between these 

two patients subgroups (median OS 41.6 months vs.45.6 

months) (log-rank test p = 7.6E-02; Figure 3B), indicating 

the prognostic potential of ten stage-specific HublncRs 
as candidate biomarkers in the prediction of clinical 

outcomes. Although most of these stage-specific lncRNAs 
have not been functionally characterized, hub lncRNA 

MALAT1 is well known to promote cancer metastasis in 

lung, colorectal, bladder and multiple myeloma when its 

expression was up-regulated [30-32]. Moreover, recent 

study has demonstrated aberrant expression of lncRNA 

MALAT1 in OvCa-associated fibroblasts [33], which was 
consistent with results produced by clustering analysis.

Prognostic value of ten-lncRNA signature for 
assessing clinical outcome of OvCa

To build a lncRNA signature to predict survival 

outcome in OvCa, these ten HublncRs were fitted in 
a multivariate Cox regression model with OS as the 

dependent variable and other clinical information as 

covariables. A ten-HublncR-based risk score model 
was constructed according to a linear combination of 

expression values of these ten HublncRs weighted by 
the regression coefficients derived from multivariate Cox 
regression analysis as follows: Risk score = (5.303e-

02* expression value of AC005562.1)+(-8.968e-02* 

expression value of AC074117.10)+(6.192e-01*expression 

value of AC105760.2)+(1.088e-02* expression 

value of EPB41L4A-AS1)+(1.182e-06*expression 

value of MALAT1)+(4.516e-02* expression value 

of MCM3AP-AS1)+(-1.121e-01* expression value 

of MEG8)+(-1.045e-02* expression value of RP11-

220I1.1)+(5.753e-02* expression value of RP11-

429J17.2)+(-3.291 * expression value of RP11-618G20.1). 

We then calculated the ten-HublncR signature based risk 
score for each patient in the TCGA dataset (n = 401). The 

patients were divided into a high-risk group (n = 200) 

and a low-risk group (n = 201) using the median risk 

score as the cut-off. Patients in the high-risk group had 
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significantly shorter survival than those in the low-risk 
group (median 39.6 months vs. 48.4 months, log-rank p 

= 4.26e-03) (Figure 3C). The 5-year survival rate of the 

high-risk group was 26.6%, whereas the corresponding 
rate in the low-risk group was 34.2%. In the univariate 
analysis, the hazard ratios of low-risk versus high-risk 

group was 2.718 (p = 0.002; 95% confidence interval 
(CI) = 1.458-5.068) (Table 2).The distribution of risk 

score, patient status and ten HublncR expression in 
401 patients of TCGA dataset are shown in Figure 3D. 

Of these ten HublncRs, four were found to be risky 
lncRNAs (AC005562.1, AC105760.2, EPB41L4A-AS1 

and MCM3AP-AS1) and six were found to be protective 

lncRNAs (AC074117.10, MALAT1, MEG8, RP11-220I1.1, 

RP11-429J17.2 and RP11-618G20.1). Patients with high-

risk scores tended to express risky HublncRs, whereas 

patients with low-risk scores tended to express protective 

HublncRs. Furthermore, we performed the time-dependent 
ROC curve analysis to evaluate sensitivity and specificity 
for survival prediction of ten-HublncR signature in the 
entire TCGA set. As shown in Figure 3E, the ten-HublncR 
signature achieved AUC values of 0.694, demonstrating its 

better prediction performance. 

We further investigated whether the prognostic value 

of the ten-HublncR signature was independent of other 
clinical variables. For this, we first performed multivariate 
Cox regression analysis including ten-HublncR risk 
score, age, grade, stage and surgical debulking status as 

covariates. The results showed that ten-HublncR risk score 
(HR = 2.485, p = 0.004), age (HR = 1.018, p = 0.007) 

and stage IV (HR = 2.666, p = 0.044) were independent 

prognostic factors (Table 2). Next, data stratification 

Figure 4: Stratification analyses of all patients with available age or tumor stage information using the ten-lncRNA 
signature. A. Kaplan-Meier survival curves for elder patients with OvCa (age > 65, n = 126). B. Kaplan-Meier survival curves for 

younger patients with OvCa (age < = 65, n = 275). C. Kaplan-Meier survival curves for all patients with stage IV (n = 60). D. Kaplan-Meier 

survival curves for all patients with II and III (n = 341). P-values were calculated using the log-rank test.
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analysis was then performed for age and stage. All patients 

of TCGA dataset were stratified by age into either an elder 
stratum (age > 65) or a younger stratum (age≤65). This 
stratified analysis showed effective prognostic power of 
the ten-HublncR signature in both the younger and elder 
patient groups. The ten-HublncR signature could classify 
patients within each age stratum into either high- or low-

risk groups with significantly different OS (median OS 
36.4 months vs. 38.7 months, log-rank test p = 0.045 

for the elder patient group and median OS 42.6 months 

vs. 50.5 months, log-rank test p = 0.058 for the younger 

patient group) (Figure 4A and 4B), indicating that the 

prognostic power of ten-HublncR signature was also age-
independent. Then the patients of stage II-III and stage 

IV for TCGA dataset were classified into two separate 
groups. The stratified analysis was further performed in 
patients group with stage II-III and patients with stage 

IV to evaluate whether the ten-HublncR signature could 
predict OS of patients for different clinical stage. The 

results of stratification analysis showed that the ten-
HublncR signature could further subdivide patients with 
stage IV into either a high-risk group with shorter survival 

or a low-risk group with longer survival (median OS 31.6 

months vs. 62.6 months, log-rank test p = 0.004) (Figure 

4C). Difference for OS between high-risk group (n = 171) 

and low-risk group (n = 170) was also observed in patients 

with stage II-III (median OS 41.6 months vs.45.5 months) 

(Figure 4D), although the log-rank p value is 0.052 which 

was slightly above the 0.05 significance level.

DISCUSSION

Recently, ceRNA hypothesis has been proposed 

to represent a novel post-transcriptional layer of gene 

regulation working through miRNA competition [3, 4]. 

With the discovery of ceRNA crosstalk, it has been shown 

that miRNA and their ceRNA targets can connect directly 

or indirectly to form a complex ceRNA network [5]. In the 

present study, based on the ceRNA hypothesis, we utilized 

paired miRNA, lncRNA and mRNA expression profiles 

of OvCa patients in combination with experimentally 

validated miRNA-target interactions to reconstruct 

lncRNA-associated ceRNA network in the progression of 

OvCa. The constructed OvCa-related LCeNETs provide 

important clues for understanding the key roles of ceRNA-

mediated gene regulatory network in the development and 

progression of OvCa.

Complex alterations of disease-specific or stage-
specific global expression profiles for miRNAs, lncRNAs 
and mRNAs, and the resultant changes in lncRNA-

associated ceRNA crosstalk interactions, may become 

the determinant of progression of cancer stages [4]. We 

found that three progression-related LCeNETs exhibited 

substantial differences in ceRNA crosstalk interactions, 

even though their network structures were similar. These 

differences may be attributed to miRNA and ceRNA 

abundance variations and rewiring interaction in the 

progression of OvCa. We further investigated the observed 

variations of stage-specific LCeNETs and found ten stage-
specific HublncRs associated with OvCa stage. Based on 
the expression patterns of these ten stage-specific lncRNA 
hubs, 401 patients with OvCa were classified into two 
groups with different clinical outcomes, indicating the 

potential roles of ten hub lncRNAs as potential prognostic 

biomarkers for predicting the clinical outcome in OvCa.

The differential expressions of lncRNAs have been 

widely observed in various cancers [34-37], and their 

expressional perturbation has been implicated in the 

development and progression of cancers [38, 39]. Several 

lncRNA signatures have been developed to improve 

prognosis prediction of cancers, including colorectal 

cancer [40], glioblastoma multiforme [41], breast cancer 

[42], lung cancer [43] and multiple myeloma [44]. 

Recently, Du and colleagues identified approximately 100 
lncRNAs correlated with OS using Cox regression analysis 

[45]. However, the prognostic role of lncRNA signature in 
OvCa has not been investigated. So we created a risk score 

model according to the patients’ expression values of ten 

stage-specific HublncRs, and applied this ten-HublncR 
signature to the TCGA patients. We found that the ten-

Table 2:Univariate and multivariate Cox regression analysis of the ten-lncRNA signature and overall survival of OvCa 
patients in the TCGA cohort

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value

Age 1.017 1.005-1.03 0.006 1.018 1.005-1.031 0.007

Stage II 1 (reference) Reference

III 1.958 0.919-4.269 0.082 2.086 0.842-5.168 0.112

IV 2.233 0.994-5.017 0.052 2.666 1.027-6.921 0.044

Grade G1/G2 1 (reference) Reference

G3/G4 1.343 0.912-1.978 0.136 1.388 0.921-2.091 0.117

Residual 0-10mm 1 (reference) Reference

>10mm 1.224 0.914-1.638 0.175 1.129 0.835-1.526 0.430

lncRNA risk 
score

2.718 1.458-5.068 0.002 2.485 1.328-4.647 0.004
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HublncR signature was able to differentiate OvCa patients 
between poor prognosis and good prognosis on the basis 

of differences in their expression profiles. 
From our literature review, we found that one of 

ten HublncRs, MALAT1, was a well-known prognostic 

marker linked to several cancers [46]. Another 

lncRNA, MEG8, was an imprinted gene which showed 

preferentially expressed in skeletal muscle [47]. As 

functional research of lncRNAs is still in its infancy, the 

functions of remaining eight HublncRs have not been 
reported yet. Currently, computational prediction for 

lncRNA function has demonstrated many advantages 

of the functional interpretation by their co-expressed 

mRNAs [48, 49]. So, we predicted lncRNA function 

through GO and KEGG enrichment analysis for its all 

mRNA neighbors in the ceRNA network, and top one 

enriched functional annotation of GO term and KEGG 

pathway was considered as potential function of lncRNA. 

We found that inferred functions of these HublncRs 
were involved in Hedgehog signaling pathway, VEGF 
signaling pathway, Wnt receptor signaling pathway, tube 

development, cell adhesion and ECM-receptor interaction, 

which are fundamental processes for cancer growth and 

are relevant to OvCa progression. For example, hedgehog 

signaling pathway involves in a variety of developmental 

process and its aberrant activation has profound effect 

on OvCa progression [50]. Vascular endothelial growth 

factor (VEGF), a key regulator of angiogenesis, has been 

implicated in OvCa progression, and VEGF signaling 

pathway has revealed its value as a therapeutic target 

in patients with OvCa [51]. A previous study suggested 

that abnormal activation of Wnt signaling pathway can 

promotes OvCa progression [52]. The negative effect 

on ECM-receptor interaction is able to inhibit OvCa 

progression by reducing invasive activity of cancer 

cells [53]. Functional analysis has suggested that these 

ten stage-specific HublncRs played important roles in 
OvCa and their expression patterns were correlated with 

distinct stages of OvCa progression. However, further 
experimental studies should be conducted to uncover the 

functional roles of these lncRNAs in OvCa progression. 

To our knowledge, the sample-matched expression profiles 
of mRNA, miRNA and lncRNAs in OvCa patients derived 

from TCGA are unprecedented in comprehensiveness. 

There is no other independent datasets to validate our 

findings owing to the limitation of available lncRNA 

Table 3: Overall information and predicted functions of ten stage-specific HublncRs

Ensembl id Ensembl 
name

Chromosomal 
position

Known 
disease

Known 
function

Top 1 enriched GO 
function

Top1 
enriched 
KEGG 
pathway

ENSG00000214719 AC005562.1
Chr17: 30,576,464-
30,672,789 (+)

Unknown Unknown
cellular hormone 
metabolic process

NA

ENSG00000234072
AC074117.10

Chr2: 27,356,246-
27,367,622 (+)

Unknown Unknown transcription NA

ENSG00000227252
AC105760.2

Chr2: 237,059,434-
237,085,817 (-)

Unknown Unknown limb morphogenesis
Hedgehog 
signaling 
pathway

ENSG00000224032 EPB41L4A-
AS1

Chr5: 112,160,526-
112,164,276  (+)

Unknown Unknown
translational 
elongation

Ribosome

ENSG00000251562
MALAT1

Chr11: 65,497,762-
65,506,516  (+)

lung, 
colorectal, 
bladder, 
ovarian 
cancers and 
multiple 
myeloma

alternative 
splicing 
and cell 
cycle

regulation of 
transcription

VEGF 
signaling 
pathway

ENSG00000215424 MCM3AP-
AS1

Chr21: 46,229,217-
46,259,390 (+)

Unknown Unknown
positive regulation 
of Wnt receptor 
signaling pathway

Cysteine 
and 
methionine 
metabolism

ENSG00000258399
MEG8

Chr14: 100,894,770-
100,935,999  (+)

Unknown
imprinted 
gene

tube development NA

ENSG00000281649
EBLN3

Chr9: 37,079,857-
37,090,507  (+)

Unknown Unknown transcription NA

ENSG00000181097 RP11-
429J17.2

Chr8: 143,696,154-
143,698,413 (+)

Unknown Unknown cell adhesion NA

ENSG00000258964 RP11-
618G20.1

Chr14: 61,734,138-
61,776,260  (+)

Unknown Unknown
extracellular matrix 
organization

ECM-
receptor 
interaction
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expression. This ten-HublncR signature, if validated 
prospectively, may have important implications for the 

identification of novel diagnostic and therapeutic lncRNA 
ceRNAs in OvCa.

MATERIALS AND METHODS

Data collection

The mRNA and lncRNA expression profile data of 
OvCa patients were obtained from the research of Du et al. 

[45] by repurposing the exon-array data on the Affymetrix 

Human 1.0 ST array from the Cancer Genome Atlas 
(TCGA) data portal (http://cancergenome.nih.gov/) [54]. 

Briefly, the probe sets of Human Exon 1.0 ST array were 
re-annotated to the human genome. Then those probes 

that uniquely mapped to lncRNA sequences were kept to 

represent lncRNAs. The expression levels of lncRNAs 

were obtained by background correction and quantile 

normalization [45]. The miRNA expression profile data of 
OvCa patients was downloaded from TCGA [54]. Finally, 

expression profiles of 18292 mRNA, 10207 lncRNA and 
723 miRNA in 401 OvCa patients with stage information 

were included in our study.

Human miRNA and targets data were collected 
from TarBase (version 6.0) [55], miRTarBase (version 

4.5) [56] and miRecords (version 4) [57], which provide 

high-quality experimentally validated miRNA-target 

interaction relationships manually curated from published 

experiments. By integrating the above three databases, a 

total of 37659 non-redundant miRNA-target interactions 

were used in our study. The experimentally validated 

miRNA-lncRNA interaction was downloaded from 

starBase v2.0 [58], including 10129 miRNA-lncRNA 

interactions.

Experimentally verified OvCa-related miRNAs, 
mRNAs and lncRNAs were obtained from HMDD [59], 
miR2Disease [60], miRCancer [61], NCG [62] and 

LncRNADisease [63] databases.

Construction of lncRNA-associated ceRNA 

network

The lncRNA-associated ceRNA network was 

constructed based on “ceRNA hypothesis” as follows: 

First, expression correlation between mRNA and lncRNA 

was evaluated using Pearson correlation coefficient (PCC) 
from matched mRNA and lncRNA expression profiles data 
as follows:

 (1)

Where n is the number of patients with OvCa;  

  is the expression value 

of mRNA (lncRNA) in the OvCa patient i.   

 is the average expression level of 

mRNA (lncRNA), and
( )mRNAσ

  denotes 

the standard deviation of expression level of mRNA 

(lncRNA). To reduce false positives, only top correlated 

mRNA-lncRNA pairs, whose correlation coefficient are 
higher than the threshold of the 99th percentile of the 

corresponding overall correlation distribution (Pearson 

correlation coefficient > 0.33) [11], were chosen for 
further analysis. Second, an lncRNA-mRNA pair in which 

both are positively correlated and interact with more than 

one same miRNA was considered as a candidate LMceCT. 

Third, the Pearson correlation coefficient for miRNA-
mRNA and miRNA-lncRNA was computed using paired 

miRNA, mRNA and lncRNA expression profile data 
according to the above equation (1). If both mRNA and 

lncRNA in the same candidate LMceCT are co-expressed 

negatively with a certain common miRNA, this candidate 

LMceCT was identified as the functional LMceCT. 
Finally, all the functional LMceCTs were integrated to 

form a miRNA-mediated lncRNA-associated ceRNA 

network (LCeNET).

Network analysis

The topological features of LCeNET, including 

degree, characteristic path length (CPL), betweenness 

centrality (BC), clustering coefficient (CC) and small 
world property (SWP), were analyzed. The degree of a 

node is the number of edges connecting to other nodes. 

The CPL of a network is the average shortest path length 

for all pairs of nodes. Lower CPL implies a more compact 

network form. The BC is an indicator of measuring the 

influence of a node exerting over the spread of information 
through the network. The high BC represents the key role 

of a node in communication and information diffusion 

[64]. The CC of a node measures the local cohesiveness, 

and the CC of network is the average of the CCs for all 

nodes in the network. The SWP can be calculated as 

follows [65]: 

 (2)

Where  CC
r 
and CPL

r 
are respectively the CC and 

CPL of the corresponding random network. A network has 

‘small word’ property if the small-world index is larger 

than random network.

To determine the statistical significance of 
topological features, randomization test was performed 

by comparing real topological features with those of 

1000 random network that preserve the same number of 

nodes and edges and keep the same degree of each node 

as in LCeNET. The empirical p-values of each measure 

were defined as the fraction of corresponding topological 
feature in 1000 random conditions which is greater 
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than the value in the real condition. The comparison 

on attributes of network between LCeNET and random 

network was performed by using the R package “igraph”. 

The LCeNET was visualized using Cytoscape 3.2.0, 

and the functional modules were mined using MCODE 

algorithm which can effectively dig out densely connected 

regions of a molecular interaction network [21].

Functional enrichment analysis

Functional enrichment analysis at the GO and 

KEGG levels was performed using DAVID Bioinformatics 

Resources (http://david.abcc.ncifcrf.gov/, version 6.7) 

[66]. The DAVID enrichment analysis was limited to 

KEGG pathways and GO- FAT biological process (BP) 

terms with the whole human genome as background. 

Functional categories with p-value of < 0.05 and an 

enrichment score of > 1.5 were considered statistically 

significant, and were visualized and clustered based on 
similar functions using the Enrichment Map plugin in 

Cytoscape 3.2.0 [67].

Survival analysis

By fitting prognostic lncRNA biomarkers in a 
multivariate Cox regression analysis, a risk score model 

was constructed by considering the power of each of the 

prognostic lncRNA biomarkers as follows:

 (3)

Where N is the number of prognostic lncRNAs,  

Exp
i
 is the expression level of prognostic lncRNA i and 

W
i
 is the estimated regression coefficient of lncRNA i 

in the multivariate Cox regression analysis. The median 

value of risk score was chosen as the cutoff to classify 

patients with OvCa into high-risk group and low-risk 

group. Kaplan-Meier survival analyses were carried out 

to assess the difference in OS between high-risk group and 

low-risk group, and statistical signifi cance was evaluated 
using the two-sided log-rank test using the R package 

“survival”. In addition, multivariate Cox regression 

analysis and data stratification analysis were performed 
to access whether the risk score model was independent 

of other clinical features. The time-dependent receiver 

operating characteristic (ROC) curve analysis was also 

performed to evaluate the sensitivity and specificity of risk 
score model for survival prediction using the R package 

“survivalROC”. Area under the curve (AUC) value 

was calculated from the ROC curve. All analyses were 

performed using R software and Bio-conductor. 
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