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Abstract. We prove that a lower semicontinuous function defined on a reflex-

ive Banach space is convex if and only if its Clarke subdifferential is monotone.

1. Introduction

In [8] Poliquin showed that a lower semicontinuous function defined on R"

is convex if (and only if) its Clarke subdifferential is a monotone set-valued

operator. For the particular case of a locally Lipschitzian function this fact had

been remarked by Clarke [4, Proposition 2.2.9].

In this paper we extend this result to a lower semicontinuous function defined

on a reflexive Banach space. The method used by Poliquin depends heavily on

the notion of quadratic conjugate function that he introduces. In our work the

use of the Moreau-Yosida proximal approximation allows us to prove the result

more generally in a reflexive Banach space.

2. Definitions and properties

In this paper F is a reflexive Banach space and we always consider lower

semicontinuous functions from F into EU {+00} that are not identically equal

to +00.

It is known [5, Corollary 3, p. 167, Theorem 4, p. 32] that E admits an
equivalent Kadec norm, that is, a norm || • || for which a sequence (y„) in E

converges to y provided that (y„) is weakly convergent to y and ||y„|| —> \\y\\.

In the sequel we assume that E is endowed with such a norm.

In what follows we recall some notions and properties from nonsmooth anal-

ysis.
The Fenchel-subdifferential of a function / at a point a £ E such that

f(a) £ R is the set

dcf(a) = {x* £ E* : f(a + d) - f{a) > (x*, d) for all d £ E}

where E* denotes the topological dual of E and (•, •) the bilinear form of

the duality.   For the properties of dcf see Moreau [7, Chapters 10-12] and

Received by the editors February 3, 1991.

1991 Mathematics Subject Classification. Primary 49A52; Secondary 49A51, 47H05.

Partially supported by Fondo Nacional de Ciencias.

©1992 American Mathematical Society

0002-9939/92 $1.00+ $.25 per page

67

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



68 R. CORREA, A. JOFRÉ, AND L. THIBAULT

Rockafellar [9, Part 5]. The Clarke-subdifferential of a function / at a point

a £ E such that fia) e R is the set

df(a) = {x* £ E* : fia ; d) > (x*, d) for ail d £ E}

where
rt,    jx    .•         • c f(x + ty) - f(X)
f (a ; d) = hm sup inf —-——-±-/- .

x-+ ¡a   y^d t

r-0+

For the definition of lim sup inf and the properties of df and P see Clarke

[4, Chapter 2] and Rockafellar [10]. We extend these two definitions by setting

df(a) = dcf{a) = 0 when /(a) = +oo .
We recall now four properties of these subdifferentials.

2.1. Property.  dcf{a) c df{a).

2.2. Property, df is nonempty in a dense subset of the set where / is finite.

Moreover, when / is locally Lipschitzian, <9/(x) ^ 0 for all x e F .

2.3   Property. If / is convex, then dcfia) = dfia).

We recall that a set-valued operator T: E —» E* is monotone if

x* £ T{x),  z* £ T{z) =*• (x* - z*, x - z) > 0.

2.4. Property. If / is convex, then the set-valued operator df is monotone.

Property 2.2 is due to Mc Linden [6], Property 2.4 follows immediately from

Property 2.3 and the definition of dc f. Our aim in this work is to show that

the converse of Property 2.4 is also true in reflexive spaces.

One difficulty in the study of the converse of Property 2.4 is that we must

work directly with the Clarke-subdifferential. In fact, the Fenchel-subdifferential

is monotone for any function. This means that the monotonicity of these two

subdifferential set-valued operators are not equivalent.

In our arguments we need the following intermediate subdifferential.

2.5. Definition. The Frechet-subdifferential of a function / at a point a £ E

such that f(a) e R is the set

dFfi{a) = ix* £ E*: nminff{a + y)-{^-{x*>y) > ol .
I y-o IMI -  J

2.6. Property. If / is locally Lipschitzian, then

d f(a) = cow*-limsupdFf(x)
x—»a

where coF denotes the closed convex hull of the set T c E* and

w*-limsupx_aT(x) denotes the w* sequential upper limit of the sets T(x) c

E* in Kuratowski's sense.

For this equality and other properties of dF f see Borwein and Strojwas [3].

2.7. Property.  dcf(a) C dF f(a) c df(a).

Properties 2.7 and 2.6 show that the monotonicity of df is equivalent to

that of dFf when / is a locally Lipschitzian function.

3. The characterization

In Lemma 3.2 we use the following approximate mean-value theorem recently

proved by Zagrodny [10].
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3.1. Approximate mean value theorem. Let a, b £ E such that f{a), fib) £

R. Then there exist c e]a, b], a sequence (xk) converging to c, and xk e

df(xk) such that

L _ *   limsup(x¿ ,xk-a)< f(b) - f{a).

3.2. Lemma. If df is monotone, then df{x) = dcf(x) for all x e E.

Proof. Let x e E. If df(x) = 0 the equality is evident. If df(x) ^ 0 then
f(x) £ R, and from the approximate mean value theorem for each d e E such

that f(x + d) £ R there exist a sequence u^ —> d, a sequence 4-»/e]0, 1],

and x£ e <9/(x + tkvk) such that

/(x + d) - f(x) > t~x limsup(x£ , x + tkvk - x).

Then, the monotonicity of df implies that for all x* e dfi(x)

f(x + d) - f(x) > t~ ' lim sup(x*, x + tkvk - x) = (x*, d).

This shows that x* e dcf(x), that is, df(x) c dcf(x). The equality follows

from Property 2.1.   □

It is easy to prove that if {x e F: dcf(x) f 0} = E then the function / is

convex. In fact let x, y, z — Xx + (I - X)y in E, and z* e dcf(z), then we

have f(x) > f(z) + (z*, x - z) and f(y) > /(z) + (z*, y - z), which show

that for X e [0, 1], A/(x) + (1 - X)f(y) > f(z). This fact jointly with Lemma
3.2 show that if df is monotone and nonempty valued, then the function /

is convex. For this reason we will use a pointwise approximation f of f such

that its Clarke subdifferential is monotone and nonempty valued.

3.3. Definition. For any X > 0 the Moreau-Yosida proximal approximation

of index X of a function / is

Mx)= inf
y€E

/(y) + ¿ll*

3.4. Property. If / is bounded from below by a continuous affine function,

then fix is finite and locally Lipschitzian.

3.5. Property. If / is bounded from below by a continuous affine function,

then / = sup^o fix .

For the proof of Properties 3.4 and 3.5 see [1].

The monotonicity of df implies, by Lemma 3.2 and Property 2.2, that /

is bounded from below by a continuous affine function. Then, Properties 2.2

and 3.4 ensure that {x 6 E: df{x) / 0} = E, hence if we can prove the

monotonicity of df we will obtain, by Lemma 3.2 again, the convexity of f .

After this, the convexity of / will be an immediate consequence of Property

3.5.

3.6. Lemma. If the convolution

(fng)(a) = inf\f(y) + g(a - y)]
y€E

is exact, that is, if the above infimum is attained at y, then

dF(fUg)(a) c dFf(y) n dFg(a - y).
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Proof. Let x* e dF{fUg)ia) and y £E, then

f(y + y)- f(y) - (x*, y) = f(y + y) + g{a -y)- f(y) - g (a -y)- (x*, y)

>(fng)(a+y)-(fng)(a)-(x*,y).

Dividing by ||y|| and taking the lower limit as ||y|| —> 0, we obtain that

x* e dFf(y). Analogously it can be shown that x* e dF g (a —y).   □

3.7.   Lemma. If df is monotone then df is monotone.

Proof. (1) In order to use the inclusion in Lemma 3.6 we will first show, fol-

lowing the technique in the proof of Theorem 11 in [2], that if dFf(a) f 0 ,

then there exists y such that fx(a) — f(y) + (l/2X)\\a - y\\2.
Fix a sequence (t„) of positive number converging to 0 and find a sequence

(y'f) such that

(A) f(yn) + ^\\a-yn\\2<A(a) + t2n.

From Lemma 3.2 and Property 2.2 we know that the function / is bounded

from below by a continuous affine function. Then the sequence (y'n) must be

bounded and there exists a subsequence (y„) converging weakly to some y and

suchthat ||a — >z„||-+a.

We will prove that ||J> —a|| =a and, since | | is Kadec, we will conclude that

(yf) strongly converges to y. Then, taking the lower limit in (A) the desired

equality will be obtained.
The inequality ||a-y|| <a is a consequence of the weak lower semicontinuity

of the norm.
Let us prove that ||a - Jz|| > a.

For any £ > 0, x* e dFfi(a), and zz large enough, we have

(x* ,y„-a)

< tñx[f(a - t„(a - y„)) - f{a)] + e

<tñl fi(yn) + ¿11(1 - t„){a - v„)||2 - f{yH) - ¿IM -yn\\2 +12„ + s

= --\\a-yn\\2 + 2j||a -y„\\2 + t„ + e,

and taking the limit, we obtain for all e > 0

(x* ,y -a) < --a2 + e;

then

(B) ^<||x*||||a-y||.
À

Analogously, for any e>0, xeF, x*e dFf(a), and zz large enough, we

have

(x*, x) < t~x[fxia + t»x) - fixia)] + s

<t~x f(yn) + ¿||a - yn + tnx\\2 - f(yn) - ^\\a - yn\\2 + t2n + e

< j\\a -yn\\\\x\\ + ^\\x\\2 + tn + e,
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and taking the limit, we obtain for all e > 0 and x e E

(x*, x) < ja\\x\\ + e;

then

(O 11*11 <f
From (B) and(C) we obtain that ||a - y\\ > a .

(2) From Property 2.7, the monotonicity of df implies that of dFf. Let

us prove now that dFfix is monotone.

Let x* e dF fx(x) and y* e dFfx(y). From Lemma 3.6 and the first part of

the proof of the lemma there exist x, y such that

dFfx(x)cdFfiix)ndFg{x-x)   and   dFfx(y)cdFf(y)ndFg(y-y)

where g = (1/2A)|| • ||2. Then

(x* - y*, x - y) = (x* - y* ,x -y) + (x* - y*, (x -x) - (y -y)) >0.

The equivalence between the monotonicity of dFfix and d fix (Property 2.6)

completes the proof.   D

3.8.   Theorem. If df is monotone then f is convex.

Proof. From Lemma 3.7 we know that the monotonicity of df implies that

of dfix . Then, from Lemma 3.2 we see that d fix = dcfix and, since dfx(x) is

nonempty for any x 6 E , we conclude that fix must be a convex function.

The convexity of / is a consequence of Property 3.5.    D

Examples. The following examples (a) and (b) show respectively that the lower

semicontinuity of / and the monotonicity of df (on domain of df) are
necessary.

{?:

x*°> art   ^      J0' X^0'
x = 0, ( 0,       x = 0;

hence <9/ is monotone but / is not convex.

rw «   >     J0'       *^0' */v  ï     J0' x^0'
(b) /(X) = {-1,    x = 0, 9/(x) = {r,        x = 0;

hence / is lower semicontinuity, df is monotone on R\{0} dense in domain

of df, and / is not convex.

3.9. Remark. (1) Notice that the proof is simpler whenever F is finite dimen-

sional. Indeed in this case the function /+ (l/2A)||x - -||2 is inf-compact and

hence the first part of the proof of Lemma 3.7 is unnecessary.

(2) The Hadamard subdifferential could be used instead of the Frechet sub-

differential.

3.10 Remark. Symmetric arguments allow us to prove that if -df is mono-

tone then / is concave; in this sense, we recall that in general -df is not equal

to d(-f).
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