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Abstract 

The optical, electrochemical and density functional theory molecular simulation of  a metal 

free D-(-A)2 i.e. 3,3'-(5,5'-(9-hexyl-9H-carbazole-3,6-diyl)bis(thiophene-5,2-diyl))bis(2-

cyanoacrylic acid denoted as D) has been investigated. A step wise cosensitization of D with 

N719 dye is adopted to enhance the power conversion efficiency of dye sensitized solar cells. 

The metal free dye possesses strong absorption in the 370-450 nm wavelength range and 

effectively overcome the competitive light absorption by 
II /3 . The N719/D cosensitized 

dye sensitized solar cell shows a power conversion efficiency of about 7.24 % which is 

higher than the dye sensitized solar cells based on either N719 (5.78 %) or D (3.95 %) 

sensitizers. The improved power conversion efficiency of the cosensitized dye sensitized 

solar cell is attributed to the combined enhancement of both short circuit photocurrent and 

open circuit voltage. The short circuit photocurrent improvement is attributed to the increase 

in the both light harvesting efficiency of the cosensitized photoanode and charge collection 

efficiency of the dye sensitized solar cell.  However, the open circuit voltage is improved due 

to better adsorption and surface coverage of TiO2 on cosensitization and an associated 

reduction in the back electron recombination with increased electron lifetime. These effects 

are analyzed using electrochemical impedance spectroscopy and dark current–voltage 

measurements of the dye sensitized solar cells.    

Key words: Co-sensitization, metal free D-(-A)2 dye, dye sensitized solar cells, 

electrochemical impedance spectroscopy 
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1. Introduction  

 

In recent decades [1-3], since the pioneering work of Michael Grӓtzel and coworkers [4], 

considerable research efforts have been devoted to dye sensitized solar cells (DSSCs).  This 

can be attributed to their lower cost compared to inorganic photovoltaic technologies.  The 

sensitizer is a key component of a DSSC, since its role is to efficiently harvest the light and 

inject the photogenerated electrons from the excited state into the conduction band of the 

metal oxide semiconductor. Many aspects of DSSCs have been investigated, including 

sensitizers, semiconducting metal oxide photoanodes, electrolytes and counter electrodes.  

These research efforts have resulted in the achievement of power conversion efficiencies 

(PCEs) up to 12.3 % for DSSCs [5]. Generally, DSSCs based on ruthenium complex based 

dyes show optimum efficiencies with the use of thick (> 15m) TiO2 photoanodes mainly 

because of their low molar extinction coefficient at maximum absorption wavelength peak 

due to metal to ligand charge transfer molecular excitation. On the other hand, metal free 

dyes compared to ruthenium complex based dyes, have larger molar extinction coefficients 

and allow fabrication of DSSCs with thinner TiO2 photoanodes that minimize charge 

transport losses. The highest efficiency of metal free sensitizers based DSSCs have reached 

10 % [6-9]. However, the sharp and narrow absorption band of the metal free dyes weakens 

the light harvesting capabilities over the whole visible spectrum. Enhancement of light 

harvesting efficiency may be achieved through incorporation of dyes that have broad 

absorption bands in the near infrared of the solar spectrum. However, the disadvantage of the 

single dye with wider absorption spectra is its difficulty to inject the photogenerated electron 

from sensitizer into the photoanode, if its LUMO level approaches the conduction band of 

TiO2 [10-16]. Therefore, cosensitization of two dyes having complementary absorption is an 

effective approach to increase the photoanode light absorption behavior. Several research 

groups [17-23] have investigated DSSCs based on the cosensitization of two or more dyes 
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and found that the PCE of these devices had been improved significantly with respect to the 

DSSCs sensitized with individual dyes. Han et al. [21] has reported a very high PCE (11.4%) 

for DSSCs based on a cosensitized system of metal-free dye and black dye. A record high 

PCE of 12.3% is reported with two metal containing porphyrin dyes as co-sensitizers with the 

use of a Co (II/III) based redox electrolyte [5]. Recently 13 % PCE has been reported for 

DSSCs based on porphyrin dyes [24]. Several research groups [25-27] have used the 

cosensitization of two dyes using the molecular cocktail method but the success is limited due 

to the solubility of different dyes in a common solvent. Apart from this approach, step wise 

selective dye adsorption is a much simpler and inexpensive method for cosensitization of 

multiple sensitizers on a single TiO2 electrode [28-32]. 

 In this communication, we report a DSSC system using a well known Ru based dye 

i.e. N719 and metal free dye carbazole based D-(-A)2 i.e. 3,3'-(5,5'-(9-hexyl-9H-carbazole-

3,6-diyl)-bis-(thiophene-5,2-diyl))-bis(2-cyanoacrylic acid) denoted as D.  These are 

employed as primary and secondary sensitizers, respectively for cosensitization via a step 

wise adsorption approach to increase the PCE of the DSSC. The N719/D cosensitized DSSC 

shows a PCE of about 7.24 % which is higher than that of DSSCs based on either N719 (5.78 

%) or D (3.95 %) sensitizers. The improved PCE of the cosensitized DSSC is attributed to the 

combined enhancement of both short circuit photocurrent (Jsc) and open circuit voltage (Voc).   

These are non-optimized DSSC that do not contain TiCl4 treatments or scattering layers. 

2. Experimental details  

Fluorine doped tin oxide (FTO) glass substrates were cleaned by sonication in decon 

90, distilled water, isopropanol and finally with ethanol. The working electrodes for the 

DSSC were prepared by firstly forming a blocking layer from 0.2M di-isopropoxy titanium 

bis (acetylacetone) in isopropanol by spray pyrolysis.  This was then followed by the 

deposition of a nano-crystalline layer of TiO2 using the doctor blade technique using Dyesol  
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TiO2 paste (DSL 18NR-T) on a pre-cleaned FTO coated glass substrate. The surface area of 

Dyesol TiO2 paste (DSL-18NR, Dyesol) is 72.9 m2/g. The TiO2 coated FTO electrodes were 

heated at 500οC for 30 min. The TiO2 electrodes were then dipped in 0.02 M aqueous TiCl4 

for 20 minutes, rinsed with water and ethanol and annealed at 500οC for 20 min. The 

thickness of the TiO2 electrode was measured using a thin film thickness measurement system 

(Nano calc XR Ocean Optics Germany) and was found to be in the range 10-12 μm. The dye 

solutions were prepared using 5×10−4M dye D in THF and 3×10−4M N719 in acetonitrile/tert-

butanol (1:1 v/v). For the cosensitization, the prepared TiO2 photoanode was first dipped into 

the solution of N719 for 4 hrs before rinsing with ethanol and then dipping into the solution 

of D for a further 4 hrs. The counter electrode was prepared by spin coating of H2PtCl4 

solution (2 mg of Pt in 1ml of isopropanol) onto the pre-cleaned FTO coated glass substrate 

and then heating at 450C for 15 min in air. The sensitized working electrode was assembled 

with a Pt coated FTO electrode into a sandwich type cell and sealed with the hot-melt 

polymer Surlyn. To complete the DSSC fabrication, the electrolyte solution containing LiI 

(0.05M), I2 (0.03 M), 1 methyl-3-n-propylimidazolium iodide (0.6M ) and 0.5M tert-

butylpyridine in a mixture of acetonitrile and valeronitrile (85:15 volume ratio) was 

introduced into the space between the two electrodes through a drilled hole in the Pt coated 

FTO by vacuum backfilling. DSSCs sensitized with N719 and D was also prepared for 

comparison. Moreover, cosensitized DSSCs were also prepared by dipping the 

photoelectrode firstly into the D solution followed by the N719 solution to determine if the 

order of application had any influence on performance.  

The current–voltage (J-V) characteristics of the DSSCs under illumination (AM1.5, 

100mW/cm2) were measured with a computer controlled Keithley source meter (2601 A) and 

illuminated using the solar simulator TS space system class AAA.  The incident photon to 
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current efficiency (IPCE) spectra of the DSSCs was measured using a Bentham IPCE system 

(TMc 300 monochromator computer controlled). 

Electrochemical data were recorded using an Autolab Potentiostat/Galvanostat 

PGSTAT30. The cyclic voltammogram curves were obtained from a three electrode cell in 

0.1 M Bu4NPF6 N, N-dimethylformamide solution at a scan rate of 100 mV.s-1, using a 

platinum wire counter electrode and Ag/AgCl reference electrode.  The system was calibrated 

with ferrocene. Electrochemical impedance spectra was recorded using a CH Electrochemical 

workstation (CH-604D), of the DSSCs were measured in darkness, applying the dc biasing 

equivalent to the open circuit voltage in the frequency range 0.1 to 100 KHz.   

3. Results and discussion 

A D-(-A)2 metal free dye i.e. 3,3'-(5,5'-(9-hexyl-9H-carbazole-3,6-

diyl)bis(thiophene-5,2-diyl))bis(2-cyanoacrylic acid) denoted as D with carbazole as a donor, 

cyanoacrylic acid as acceptor as well as anchoring group and thiophene as -linker has been 

used as a second sensitizer along with the N719 dye for cosensitization. The Synthesis and 

characterization of metal free dye D has already been reported in literature [33]. The optical 

absorption spectrum of the D in solution is shown in Fig. 1. The band located at the shorter 

wavelength region is attributed to the -* electron transition of chromophore. The 

absorption band at 265- 360 nm can be ascribed to localized aromatic -* transitions. 

However, the absorption band at around 375–435 nm can be attributed to an intramolecular 

charge transfer between the carbazole donor and cyanoacetic acceptor [34]. It can be seen 

from Fig. 1 that  the absorption maxima (max) for D is 418 nm and the corresponding molar 

extinction coefficient is about 4.28 x104 M-1 cm-1 which is a higher value than that of 2.1 

x104 M-1 cm-1 at 540 nm for the N719 dye.  The fluorescence emission spectra of D exhibited 

stronger luminescence maxima in the wavelength region 490-550 nm recorded upon the 

excitation of absorption maximum value (Fig. 1). The zero-zero excitation energy (E0-0) has 
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been estimated from the intersection point of emission and the corresponding absorption 

spectra, which is found to be 2.38 eV.     

 The absorption spectra of D on TiO2 film is also shown in Fig. 1. The maximum 

absorption peak of D on TiO2 is at about 430 nm. Compared to the solution spectra, the 

absorption band of D is redshifted by about 12 nm and also shows some broadening. This 

redshift can be explained by the formation of J-aggregates of the dye on TiO2.   

The ground state oxidation potential (Eox) corresponding to the highest occupied 

molecular orbital level of D is about 1.04 V vs SCE (Saturated Calomel Electrode). This 

value is more positive than the redox potential of the 
II /3 (0.4 V vs SCE [35-37].  This 

indicates that the oxidized dye formed after electron injection into conduction band of TiO2 

should be able to accept electrons from the 
I ions in the electrolyte [38]. The excited state 

oxidation potential Eox* that corresponds to the lowest unoccupied molecular orbital 

(LUMO) energy level of sensitizer also plays an important role in the injection mechanism 

into the TiO2 conduction band. The excited state oxidation potential is estimated using, Eox
*= 

Eox – E0-0. The LUMO level of D is -1.34 V vs SCE which is more negative than the 

conduction band edge of the TiO2 (-0.5 V vs SCE) [39, 40]. Since the difference in the 

LUMO of dye and conduction band edge of TiO2 should be greater than 0.2 V this suggests 

that the electron injection process [41] is energetically favorable.  

To obtain further insight into the electron distribution of the D dye, density functional 

theory (DFT) calculations have been performed at a B3LYP/6-31G* level using the Gaussian 

09 program package [42]. The initial geometry optimizations have been performed using the 

Turbomole package [43]. The excitation transitions of the D have been calculated using time-

dependent density functional theory (TD-DFT) calculations. We have calculated the optical 

gap both in gas phase as well as in the presence of solvents. The frontier molecular orbitals 

are shown in Fig. 2. The calculated parameter i.e. HOMO and LUMO energies, HOMO–
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LUMO gap, optical gap with corresponding oscillator strength, and dipole moment (D) are 

compiled in Table 1. Solvent effects are taken into account for Tetrahydrofuran (THF). From 

Fig. 2, it can be seen that the carbazole contribution to the HOMO is 59 % and the remaining 

contribution is from thiophene -spacer, while alkenes contributes less than 0.5 %.  The 

situation is reversed for the LUMO in which we compute 88% contributions from the 

thiophene units along with anchoring carboxylic groups in D. The optical gaps computed 

using the B3LYP functional are in reasonable agreement with our experimental values, with a 

difference of only 0.37 eV.   

Electronic binding of the anchoring group at the surface of TiO2 has been investigated 

using FTIR spectroscopy of the pristine D powder and D adsorbed on the TiO2 surface as 

shown in Fig. 3. For the pristine D powder, the C=O stretching band of the carboxyl group 

has been observed at 1724 cm-1 and characteristics stretching bands of C=N and C=C have 

been observed at 1585 cm-1 and 1384 cm-1, respectively. When D is adsorbed onto the TiO2 

surface, the C=O stretching band at 1724 cm-1 disappears and the band corresponding to C=N 

is broadened. This indicates the formation of a strong bridging linkage between the carboxyl 

group of D and the Bronsted acid site on the TiO2 surface [44].  

The most commonly Ruthenium complex dye, N719, has been chosen as the primary 

sensitizer due to its wide absorption over visible region with absorption peaks at 540 nm 

(molar extinction coefficient 2.0 x104 M-1cm-1) and 400 nm (molar extinction coefficient 2.5 

x104 M-1cm-1). The absorption peaks around 540 nm and 400 nm correspond to the metal to 

ligand charge transfer (MLCT) transition and MLCT along with a contribution from the -* 

transition.  

 The current–voltage characteristics of the DSSCs sensitized with N719 dye, D dye 

and N719/D and D/N719 are shown in Fig. 4 and the photovoltaic parameters are 

summarized in Table 2. The DSSC sensitized with only N719 yielded Jsc of 13.14 mAcm-2, 
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Voc of 0.62 V, FF of 0.71 and an overall PCE of 5.78 %. The DSSC based on only D 

sensitizer yielded Jsc of 9.34 mAcm-2, Voc of 0.58 V, FF of 0.73 and PCE of 3.95 %. 

However, the cosensitized (N719/D) DSSC shows a significant improvement in the device 

performance (Jsc = 14.63 mAcm-2, Voc = 0.66 V, FF = 0.75 and PCE = 7.24 %) over the 

individual sensitized N719 and D with the improvement in both Jsc and Voc. On the other 

hand the cosensitized (D/N719) DSSC shows inferior performance (Jsc = 10.45 mAcm-2, Voc 

= 0.62, FF = 0.64 and PCE = 4.15 %) compared to the DSSC sensitized with N719. The PCE 

of DSSC cosensitized with N719/D shows higher Jsc when compared to the DSSCs sensitized 

with individual dyes.  

 The increase in the Jsc in DSSCs is related to the light harvesting efficiency of the 

photoanode used in the device, electron injection efficiency from the excited state of the 

sensitizer and charge collection efficiency. The light harvesting efficiency of the DSSC is 

directly related to the absorption profile of the dye adsorbed photoanode.  To obtain 

information about the light harvesting capabilities of the different dye sensitized 

photoanodes, UV-Visible spectra of the photoanode adsorbed with D, N719 and N719/D has 

been carried out (as shown in Fig. 1 for D and Fig. 5 for N719 and N719/D). These figures 

indicate that the D possesses higher absorption intensity in the 400-450 nm region compared 

to N719. Therefore, upon co-sensitizing N719 with D, the absorption spectra of the N719/D 

adsorbed on to TiO2 film demonstrates the panchromatic feature to provide an increased light 

harvesting efficiency. Since the LUMO level of both D (-1.34 vs SCE) and N719 (-0.94 V vs 

SCE) lies above the conduction band edge of TiO2 (-0.5 V vs SCE), the electron injection 

from the LUMO level both dyes into the conduction band is energetically favorable. 

Moreover, the HOMO level of both dyes is more positive than the redox potential of 
II /3  

in the electrolyte and therefore supplies a thermodynamic driving force for dye regeneration 

[45-47]. The incident photon to current efficiency (IPCE) spectra of the DSSCs sensitized 
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with D, N719 and N719/D is shown in Fig. 6. It can be seen from Fig. 6 that the IPCE values 

at each wavelength are higher for the cosensitized DSSC than the individual dye sensitized 

DSSCs. Therefore, the cosensitization enhances the photoanode light harvesting capability 

and carrier generation across the whole visible region from 350 nm to 750 nm. The DSSC 

sensitized with N719 dye has only a broad IPCE spectrum extending from 350 nm to 750 nm 

and displayed the highest IPCE of about 47-63 % in the wavelength region 450 – 700 nm. 

The IPCE value decreases up to 32 % in the wavelength region 380 – 440 nm, which is 

attributed to the competitive light absorption between 
3I  and N719, since the molar 

extinction coefficient of 
3I  in this wavelength region is higher than that for the N719 dye 

[21]. However, the dip in the IPCE spectra is recovered for N719/D cosensitized DSSC 

probably because the molar extinction coefficient for the D dye in this region is higher than 

that for both 
3I and N719 and the loss of light absorption by the 

3I was suppressed by the D 

dye.   

 Dye loading of the photoanode is another important parameter for the PCE of DSSCs. 

The amount of dye loading on to the 12 m thick sensitized TiO2 photoanode is measured as 

described in the literature [32]. The amount of the dye loading for individual N719 and D 

coated photoanodes is approximately 0.45x10-7mol.cm-2 and 0.98 x10-7mol.cm-2 respectively. 

However, the amount of N719 and D adsorbed in the cosensitized system is lower with 

values of 0.42 x10-7 mol.cm-2 and 0.64 x10-7 mol.cm-2, respectively. In spite of this the total 

amount the co-sensitized dye molecules (N719/D) is increased by up to 1.6 x10-7 mol.cm-2. 

These results indicate that total coverage of TiO2 surface has been improved by incorporating 

the small sized D molecules into gaps within the N719 dye adsorbed TiO2 film. However, the 

total amount of dye adsorbed for the D/N719 system has been reduced, which may be due to 

the large molecular size of N719 when compared to D. When the TiO2 photoanode is initially 

dipped into D before N719, the D completely adsorbed onto the TiO2 surface.  This 
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effectively hindered the subsequent absorption of the larger molecular sized N719 dye 

severely limiting its adsorption. The reduced dye loading for D/N719 suppresses the light 

harvesting efficiency and results in the lower PCE observed.  

 The Jsc is strongly influenced by the light harvesting efficiency, charge separation 

(such as injection dye regeneration and recombination) and charge collection. It has been 

reported that the cosensitization of dyes with co-adsorbents leads to breakup of dye 

aggregates, resulting in high PCE (mainly enhancement in Jsc and Voc) [48-50].  

Electrochemical impedance spectroscopy (EIS) provides information about the 

electron transport and recombination at the photoanode/dye/electrolyte interface in DSSCs 

[51-58]. EIS measurements are conducted to obtain information about interfacial charge 

transfer processes and the enhancement in PCE of the N719/D cosensitized DSSC. 

Impedance is measured over the frequency range 105 Hz to 0.1 Hz at room temperature in 

darkness with an applied voltage equivalent to the open circuit voltage of the DSSCs. Nyquist 

and Bode phase plots for the DSSCs sensitized with D, N719 and N719/D are shown in Fig. 

7(a) and 7(b), respectively.  The three semicircles from left to right in the Nyquist plots of the 

EIS represent the impedances of charge transfer at the Pt counter electrode (high frequency 

range), the charge transfer and recombination competition at the TiO2/dye/electrolyte 

interface (middle frequency range), and electrolyte diffusion (low frequency range), 

respectively. To elucidate the interfacial charge transfer process, we have focused our 

attention on the large centrally located semicircle. This semi-circle gives information on 

recombination resistance (Rct) and electron life time (n). The electron life time is estimated 

from the peak frequency (fmax) in the Bode phase plots, as shown in Fig. 7(b) using n 

=1/2fmax. The charge collection efficiency is estimated from
1)/1(  cttcc RR , where 

Rt is the electron transport resistance. The electron transport resistance (Rt) is manifested as a 

linear feature in the high frequency region of the central semicircle which indicates that the 
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electron transport features a transmission line behavior, which has been observed for DSSCs 

using TiO2 photoanodes [52, 57]. An equivalent circuit based on the transmission line model 

[52-57] is applied yielding the EIS parameters, Rct, Rt, C, n and cc, which are summarized 

in Table 3.  The recombination resistance of the DSSC based on the N719/D is higher than 

that for the DSSCs sensitized with individual dyes, N719 or D. The cosensitization may 

induce the changes in the adsorption state of the dye and electronic states of the dye 

sensitized TiO2, therefore influencing the electron injection efficiency [59, 60]. Therefore, the 

improved Jsc for the DSSC cosensitized with N719/D compared to DSSC with either N719 or 

D may be ascribed to the breakup of dye aggregates from the competitive coadsorption 

between N719 and D.  

Improvement in the Voc is generally related with the negative shift in the conduction 

band edge of TiO2 or suppression of charge recombination. Voc of DSSCs can be expressed as 

the voltage difference between the redox potential of the electrolyte (Eredox/q) and quasi Fermi 

potential of the TiO2 as shown below [61].  

q

E

N

n

q

kT

q

E
V redox

cb

cb

oc 







 ln

    

Ecb is the conduction band edge of TiO2, Ncb is the density of states in TiO2, n is the 

number of electrons in TiO2 and q is the electronic charge. Since, we have used the same 

electrolyte in all DSSCs, Eredox is constant and the Voc is only determined by the position of 

the TiO2 Ecb and n. The dyes used as sensitizers can vary these two parameters. The 

conduction band (CB) of the TiO2 can be affected by the surface charge induced by the 

interaction between the dye molecules and ions with TiO2 at the interface.  Any change in the 

surface charge will shift the Ecb of the TiO2. The number of the electrons in the TiO2 is 

related with the balance between the electron injection and recombination processes at the 

TiO2/dye/electrolyte interfaces. The DSSC based on cosensitized N719/D has a longer 
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electron life time compared to the DSSC sensitized with either N719 or D.  This suggests that 

the electron recombination with oxidized species of electrolyte has been reduced in the case 

of cosensitized DSSCs. Moreover, the total dye loading of DSSCs based on N719/D is higher 

than that for DSSCs sensitized with individual dyes, indicating better dye converge and a 

more compact layer. This compact layer prevents the penetration of electrolyte towards the 

TiO2 surface. This reduces the recombination due to the back electron transfer between TiO2, 

and 
3I  ions increasing the Voc compared to those DSSC sensitized with individual dyes. 

Moreover, the recombination resistance (Rct) is higher for N719/D system than the individual 

dyes, also support the reduction in dark current that results an improvement in Voc for N719/D 

co-sensitized DSSC. 

4. Conclusions 

The optical and electrochemical properties of a metal free dye based on carbazole 

donor with double acceptor anchoring units, denoted as D and used as a co-sensitizer for 

DSSCs along with N719 dye has been investigated.  In addition DFT simulations of the 

HOMO and LUMO frontier orbitals have been conducted. 

It has been demonstrated that in a sequential stepwise co-sensitization process the co-

sensitizers are selectively distributed on the TiO2 surface due to differences in the molecular 

size of the sensitizers. The stepwise cosensitization starting with N719 i.e. N719/D was more 

effective than with D, i.e. D/N719. The overall PCE of the co-sensitized DSSCs was about 

7.24 % compared to 3.95 % and 5.78 % for those sensitized with individual D and N719 

dyes, respectively. The Jsc is improved because of the complementary absorption spectra, 

enhanced dye loading and favorable energy alignments of both D and N719 dyes.  

Improvements in Voc are attributed to better surface coverage of the TiO2 film forming a 

compact layer which helps to reduce the recombination due to the electron back reaction 
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between the injected electron in TiO2 and 
3I ions. The increase in both Jsc and Voc lead to an 

enhancement in the overall PCE of the DSSC with step wise cosensitization.   
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Table 1 

Calculated HOMO and LUMO energies (eV), HOMO–LUMO gap (eV), optical gap (eV) 

with corresponding oscillator strength and dipole moment (D) of the dye D structures in gas 

phase and THF solvent  

 

Phase  HOMO 

(eV) 

LUMO 

(eV) 

HL gap 

(eV) 

Optical gap 

(eV) 

Oscillator 

strength  

Dipole 

moment (D) 

Gas phase  -5.86 

 

-2.95 

 

2.92 

 

2.80 

 

0.08 

 

9.49 

 

THF 

phase  

-5.77 -3.01 2.76 2.39 1.37 11.23 

 

 

 

Table 2 

Photovoltaic parameters of DSSCs based on D, N719, N719/D and D/N719  

 

Dye system  

 

Jsc (mAcm-2) Voc (V) 

 

FF PCE (%) 

 

Overall dye 

loading (mol.cm-2) 

 

D 

 

9.34  0.58 

 

0.73 

 

3.95 

 

0.45 x10-7 

 

N719 

 

13.14 

 

0.62 

 

0.71 

 

5.78 

 

0.98 x10-7 

 

N719/D 14.63 

 

0.66 

 

0.75 

 

7.24 

 

1.6 x10-7 

 

D/N719 

 

10.45 

 

0.62 0.64 

 

4.15 

 

0.56x10-7 

 

 

 

Table 3 

EIS parameters and charge collection efficiency of DSSCs. Calculated values are from EIS 

data in dark conditions measured at forward bias of -0.6 V 

 

Dye system  Rt (Ohmcm2) Rct (Ohmcm2) C ( mF) n (ms) cc 

D 15.7 32 6.8 22  0.67 

N719 13.6 53 6.4 34  0.79 

N719/D 11.8 78 6.78 53 0.87 
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Figure 2 
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Figure 3 

 

 
 

 

 

Figure 4 
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Figure 5 

 

 
 

 

Figure 6 
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Figure 7 
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Figure captions 

Figure 1 Absorption spectra D in solution, adsorbed on to TiO2 film and emission spectra of 

D 

Figure 2 Molecular frontier orbitals of dye D 

Figure 3 FTIR spectra of D and D adsorbed on to TiO2 

Figure 4 Current–voltage (J-V) characteristics of cosensitized (N719/D and D/N719) DSSC 

and sensitized with D and N719, under illumination (100 mW/cm2) 

Figure 5 Optical absorption spectra of N719 and N719/D adsorbed onto the TiO2 surface. 

Figure 6 IPCE spectra of DSSCs sensitized with D, N719, N719/D and D/N719 

Figure 7(a) Nyquist and (b) Bode phase plots from the EIS spectra for the DSSCs sensitized 

with D, N719 and N719/D in dark conditions  

 

 

 

 

 

 




