Characterization of metric spaces whose free space is isometric to ℓ_1^*

Aude Dalet

Pedro L. Kaufmann

Antonín Procházka

Abstract

We characterize metric spaces whose Lipschitz free space is isometric to ℓ_1 . In particular, we show that the Lipschitz free space over an ultrametric space is not isometric to $\ell_1(\Gamma)$ for any set Γ . We give a lower bound for the Banach-Mazur distance in the finite case.

1 Introduction

An \mathbb{R} -*tree* (T, d) is a metric space which is geodesic (i.e. for every pair of points $x, y \in T$ there is an isometry $\phi : [0, d(x, y)] \to T$ with $\phi(0) = x$ and $\phi(d(x, y)) = y$) and satisfies the 4-*point condition*:

 $\forall a, b, c, d \in T \quad d(a, b) + d(c, d) \le \max \{ d(a, c) + d(b, d), d(b, c) + d(a, d) \}.$

A space which satisfies just the 4-point condition is called 0-*hyperbolic*. Clearly, a subset of an \mathbb{R} -tree is 0-hyperbolic. The converse is also true [4, 7], so we will use terms "0-hyperbolic" and "subset of an \mathbb{R} -tree" interchangeably. Moreover, for every 0-hyperbolic M there exists a unique (up to isometry) minimal \mathbb{R} -tree which contains M, we will denote it conv(M). Thus one can define the Lebesgue measure $\lambda(M)$ of M which is independent of any particular tree containing M. We will say that M is negligible if $\lambda(M) = 0$. A. Godard [9] has proved that a

Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 391-400

^{*}The collaboration on this paper started during the Conference on Geometric Functional Analysis and its Applications in Besançon sponsored by the Region Franche-Comté.

Received by the editors in December 2015.

Communicated by G. Godefroy.

²⁰¹⁰ Mathematics Subject Classification: 46B04; 46B20.

Key words and phrases : branching point; extreme point; Lipschitz free space; norm-attaining Lipschitz functional; real-tree.

metric space *M* is 0-hyperbolic if and only if $\mathcal{F}(M)$, the *Lipschitz free space over M* (see the definition in the next section), is isometric to a subspace of some $L_1(\mu)$. In this paper we are interested in metric spaces whose free space is isometric to (a subspace of) ℓ_1 . By the above, such spaces must be 0-hyperbolic, and it is also easy to see that they must be negligible (if not the free space will contain L_1).

So let *M* be a separable negligible complete metric space which is a subset of an \mathbb{R} -tree. One can ask two questions:

- When is $\mathcal{F}(M)$ isometric to ℓ_1 ?
- When is $\mathcal{F}(M)$ isometric to a subspace of ℓ_1 ?

Concerning the first question, the results of A. Godard point to the relevance of branching points of conv(M). We recall that a point $b \in T$ is a branching point of a tree T if $T \setminus \{b\}$ has at least three connected components. A sufficient condition for $\mathcal{F}(M) \equiv \ell_1$ is that M contain all the branching points of conv(M) [9, Corollary 3.4]. The main result of this paper (Theorem 5) claims that this is also a necessary condition. We give two different proofs – one is based on properties of the extreme points of $B_{\mathcal{F}(M)}$ and the other on properties of the extreme points of $B_{\text{Lip}_0(M)}$ (Theorem 4).

For certain finite 0-hyperbolic spaces *M* we have a third proof which also allows to compute a simple lower bound for the Banach-Mazur distance between $\mathcal{F}(M)$ and $\ell_1^{|M|-1}$ (Proposition 9).

As far as the second question is concerned, it is obviously enough that M be a subset of a metric space N such that $\mathcal{F}(N) \equiv \ell_1$. We will show that this is the case when M is compact, 0-hyperbolic and negligible (Proposition 8). We do not know whether one can drop the assumption of compactness in general.

This paper is an outgrowth of a shorter preprint in which we have shown that for any ultrametric space M, the free space $\mathcal{F}(M)$ is never isometric to ℓ_1 (Corollary 6) answering a question posed by M. Cúth and M. Doucha in a draft of [5]. In the meantime, this question has been independently answered in [5].

2 Preliminaries

As usual, for a metric space M with a distinguished point $0 \in M$, the *Lips*chitz free space $\mathcal{F}(M)$ is the norm-closed linear span of $\{\delta_x : x \in M\}$ in the space $\operatorname{Lip}_0(M)^*$, where the Banach space $\operatorname{Lip}_0(M) = \{f \in \mathbb{R}^M : f \text{ Lipschitz}, f(0) = 0\}$ is equipped with the norm $\|f\|_L := \sup \{\frac{f(x) - f(y)}{d(x, y)} : x \neq y\}$. It is well known that

 $\mathcal{F}(M)^* = \operatorname{Lip}_0(M)$ isometrically. More about the very interesting class of Lipschitz-free spaces can be found in [10].

To prove that a Lispchitz-free space is not isometric to ℓ_1 , we will exhibit two extreme points of its unit ball at distance less than one. For this purpose we will use the notion of *peaking function at* $(x, y), x \neq y$, which is a function $f \in \text{Lip}_0(M)$ such that $\frac{f(x)-f(y)}{d(x,y)} = 1$ and for every open set U of $\{(x, y) \in M \times M, x \neq y\}$ containing (x, y) and (y, x), there exists $\delta > 0$ with

$$(z,t) \notin U \Rightarrow \frac{|f(z) - f(t)|}{d(z,t)} \le 1 - \delta.$$

This definition is equivalent to: $\frac{f(x)-f(y)}{d(x,y)} = 1$ and if $(u_n)_{n \in \mathbb{N}}$, $(u_n)_{n \in \mathbb{N}} \subset M$, then

$$\lim_{n \to +\infty} \frac{f(u_n) - f(v_n)}{d(u_n, v_n)} = 1 \Rightarrow \lim_{n \to +\infty} u_n = x \text{ and } \lim_{n \to +\infty} v_n = y.$$

Moreover in [11, Proposition 2.4.2], the following is proved:

Proposition 1. Let (M, d) be a complete metric space and $x \neq y$ in M. If there is a function $f \in \text{Lip}_0(M)$ peaking at (x, y), then $\frac{\delta_x - \delta_y}{d(x,y)}$ is an extreme point of the unit ball of Lip $_0(M)^*$. In particular, it is an extreme point of the unit ball of $\mathcal{F}(M)$.

Given an \mathbb{R} -tree (T, d) and $x, y \in T$, the *segment* [x, y] is defined as the range of the unique isometry $\phi_{x,y}$ from $[0, d(x, y)] \subset \mathbb{R}$ into T which maps 0 to x and d(x, y) to y.

We recall that for every 0-hyperbolic space M, there exists an \mathbb{R} -tree T such that $M \subset T$. The set $\bigcup \{ [x, y] : x, y \in M \} \subset T$ is then also an \mathbb{R} -tree. It is clearly a minimal \mathbb{R} -tree containing M; it is unique up to an isometry and will be denoted conv(M). Simple examples show that conv(M) does not have to be complete when M is. This does not present any difficulty in what follows.

A point $b \in T$ is said to be a *branching point* if there are three distinct points $x, y, z \in T \setminus \{b\}$ with $[x, b] \cap [y, b] = [x, b] \cap [z, b] = [y, b] \cap [z, b] = \{b\}$. We say that the branching point *b* is witnessed by x, y, z. The set of all branching points of *T* is denoted Br(T). If *M* is 0-hyperbolic, the set of all branching points of conv(*M*) is denoted Br(M).

A subset *A* of *T* is *measurable* if $\phi_{x,y}^{-1}(A)$ is Lebesgue-measurable, for every *x* and *y* in *T*. For a segment S = [x, y] in *T* and *A* measurable, we denote $\lambda_S(A) := \lambda(\phi_{x,y}^{-1}(A))$, with λ the Lebesgue measure on \mathbb{R} . Let \mathcal{R} be the set of subsets of

T that can be written as a finite union of disjoint segments. For $R = \bigcup_{k=1}^{k} S_k \in S_k$

 \mathcal{R} , define $\lambda_R(A) := \sum_{k=1}^r \lambda_{S_k}(A)$ and finally, set $\lambda_T(A) := \sup_{R \in \mathcal{R}} \lambda_R(A)$. If M is 0-hyperbolic, we put simply $\lambda(M) := \lambda_{\operatorname{conv}(M)}(M)$. We say that M is *negligible* if $\lambda(M) = 0$.

Given two points *x* and *y* in *T*, we will denote $\pi_{xy} : T \rightarrow [x, y]$ the metric projection onto the segment [x, y]. It is well known and easily seen that π_{xy} is non-expansive (see [1, 3]).

Finally, we recall that a metric space (M, d) is *ultrametric* if $d(x, y) \le \max \{d(x, z), d(y, z)\}$ for any $x, y, z \in M$.

3 Isometries with ℓ_1

Let us start by characterizing precisely when there exists a function peaking at (x, y) for points $x, y \in M \subset T$.

Proposition 2. Let (M, d) be a complete subset of an \mathbb{R} -tree and $x, y \in M, x \neq y$. The following assertions are equivalent

- (*i*) There is $f \in \text{Lip}_0(M)$ peaking at (x, y).
- (*ii*) $M \cap [x, y] = \{x, y\}$ and for every $p \in \{x, y\}$,

$$\liminf_{u,v\to p}\frac{d(\pi_{xy}(u),u)+d(\pi_{xy}(v),v)}{d(\pi_{xy}(u),\pi_{xy}(v))}>0,$$

(with the convention that $\frac{\alpha}{0} = +\infty$). (1)

(*iii*)
$$M \cap [x, y] = \{x, y\}$$
 and for every $p \in \{x, y\}$,

$$\liminf_{u \to p} \frac{d(\pi_{xy}(u), u)}{d(\pi_{xy}(u), p)} > 0, \text{ (with the convention that } \frac{\alpha}{0} = +\infty).$$
(2)

Proof. (ii) \Rightarrow (i) Let us first suppose that x, y satisfy (1) and $[x, y] \cap M = \{x, y\}$. For any $u \in M$ we define $f(u) = d(y, \pi_{xy}(u))$. Then $\frac{f(x) - f(y)}{d(x, y)} = 1$ and $||f||_L = 1$. Consider $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \subset M$ such that $\lim_{n \to +\infty} \frac{f(x_n) - f(y_n)}{d(x_n, y_n)} = 1$. We thus have for n large enough

$$d(y, \pi_{xy}(x_n)) = f(x_n) > f(y_n) = d(y, \pi_{xy}(y_n)).$$
(3)

It follows

$$1 = \lim_{n \to +\infty} \frac{f(x_n) - f(y_n)}{d(x_n, y_n)} = \lim_{\substack{n \to +\infty}} \frac{d(\pi_{xy}(x_n), \pi_{xy}(y_n))}{d(x_n, \pi_{xy}(x_n)) + d(\pi_{xy}(x_n), \pi_{xy}(y_n)) + d(\pi_{xy}(y_n), y_n)}$$

and in particular

$$\lim_{n \to \infty} \frac{d(x_n, \pi_{xy}(x_n)) + d(\pi_{xy}(y_n), y_n)}{d(\pi_{xy}(x_n), \pi_{xy}(y_n))} = 0.$$
 (4)

Since $\lim_{n \to +\infty} d(x_n, \pi_{xy}(x_n)) = \lim_{n \to +\infty} d(y_n, \pi_{xy}(y_n)) = 0$, the sets of cluster points of the sequences $((\pi_{xy}(x_n), \pi_{xy}(y_n)))_{n \in \mathbb{N}} \subset [x, y]^2$ and $((x_n, y_n))_{n \in \mathbb{N}} \subset M^2$ coincide. By compactness of $[x, y]^2$ there exists such a cluster point $(u, v) \in [x, y]^2$. Since the space *M* is complete, $(u, v) \in M^2$, and therefore $(u, v) \in \{(y, x), (x, x), (y, y), (x, y)\}$. Clearly, (3) implies $(u, v) \neq (y, x)$, and (1) together with (4) imply

394

that $(u, v) \neq (x, x)$ and $(u, v) \neq (y, y)$. We thus get that (x_n) converges to x and (y_n) converges to y which proves that f is peaking at (x, y).

(i) \Rightarrow (iii) If there is $z \in M \cap (x, y)$, then $\frac{\delta_x - \delta_y}{d(x, y)}$ is a convex combination of $\frac{\delta_x - \delta_z}{d(x, z)}$ and $\frac{\delta_z - \delta_y}{d(z, y)}$ so by Proposition 1, there cannot be a peaking function at (x, y).

Next assume that $[x, y] \cap M = \{x, y\}$ but there is a sequence $(u_n)_{n \in \mathbb{N}} \subset M$ converging to *x* and

$$\lim_{n \to +\infty} \frac{d(\pi_{x,y}(u_n), u_n)}{d(\pi_{x,y}(u_n), x)} = 0.$$

Let $f \in S_{\text{Lip}_0(M)}$ be such that $\frac{f(x)-f(y)}{d(x,y)} = 1$. Let \tilde{f} be a 1-Lipschitz extension of f to [x, y]. Then

$$|f(x) - f(u_n)| \ge |f(x) - \tilde{f}(\pi_{xy}(u_n))| - |\tilde{f}(\pi_{xy}(u_n)) - f(u_n)|$$

= $d(x, \pi_{xy}(u_n)) - |\tilde{f}(\pi_{xy}(u_n)) - f(u_n)|$
 $\ge d(x, \pi_{xy}(u_n)) - d(\pi_{xy}(u_n), u_n)$
 $\ge d(x, u_n) - 2d(\pi_{xy}(u_n), u_n)$

It follows that

$$\lim_{n \to +\infty} \frac{|f(x) - f(u_n)|}{d(x, u_n)} = 1$$

and f is not peaking at (x, y).

(iii) \Rightarrow (ii) Finally, since

$$\frac{d(u, \pi_{xy}(u)) + d(v, \pi_{xy}(v))}{d(\pi_{xy}(u), \pi_{xy}(v))} \ge \min\left\{\frac{d(\pi_{xy}(u), u)}{d(\pi_{xy}(u), p)}, \frac{d(\pi_{xy}(v), v)}{d(\pi_{xy}(v), p)}\right\}$$

we get

$$\liminf_{u \to p} \frac{d(\pi_{xy}(u), u)}{d(\pi_{xy}(u), p)} = 0$$

if the limit in (1) is 0 for some $p \in \{x, y\}$.

For the dual version of the proof we will need the following simple lemma which is valid in any metric space (see also [8] for a different proof).

Lemma 3. Let (M, d) be any metric space and suppose that $0 \in A \subset M$. If $f \in \operatorname{ext}(B_{\operatorname{Lip}_0(A)})$, then $f_S, f_I \in \operatorname{ext}(B_{\operatorname{Lip}_0(M)})$ where $f_S(x) := \sup_{z \in A} f(z) - d(z, x)$ and $f_I(x) := \inf_{z \in A} f(z) + d(z, x)$

for $x \in M$.

Note that f_S resp. f_I above are the smallest resp. the largest 1-Lipschitz extensions of f (which basically gives the proof).

Proof. Let us give a proof for f_S . The proof for f_I is similar. Clearly $f_S(x) = f(x)$ for $x \in A$ and f_S is 1-Lipschitz as a supremum of 1-Lipschitz functions. Let $f_S = \frac{p+q}{2}$, $p, q \in B_{\text{Lip}_0M}$. If $x \in A$, then p(x) = q(x) = f(x) as $f \in \text{ext}(B_{\text{Lip}_0A})$. If $x \in M \setminus A$, then $\forall z \in A$:

$$f(z) - p(x) = p(z) - p(x) \le d(z, x).$$

Thus

$$f_S(x) = \sup_{z \in A} f(z) - d(z, x) \le p(x).$$

By the same argument $f_S(x) \le q(x)$. So $f_S(x) = p(x) = q(x)$ for all $x \in M$.

We are now ready to state and prove a statement about extreme points of the ball in $\mathcal{F}(M)$ and $\operatorname{Lip}_{0}(M)$ when *M* is 0-hyperbolic.

Theorem 4. Let M be a complete subset of an \mathbb{R} -tree. If there is $b \in Br(M) \setminus M$ then

- a) there exist $\mu \neq \nu \in \operatorname{ext} \left(B_{\mathcal{F}(M)} \right)$ such that $\|\mu \nu\| < 2$.
- b) there exist $f \neq g \in \operatorname{ext}\left(B_{\operatorname{Lip}_{0}(M)}\right)$ such that $\|f g\|_{L} < 2$.

Since the Lipschitz free space over the completion of *M* is isometric to the Lipschitz free space of *M*, the above completeness hypothesis is not restrictive.

Proof. **a)** Let the points $x', y', z' \in M$ witness that $b \in Br(M)$. For $p' \in \{x', y', z'\}$ we denote $M_{p'} = \{w \in M : \pi_{bp'}(w) \in]b, p']\}$. Then $M_{p'}$ is closed in M as $\pi_{bp'}$ is continuous and b is isolated from M. Notice that $p \in M_{p'}$ satisfies (2) if there is $\alpha > 0$ such that $d(w, \pi_{bp}(w)) \ge \alpha d(p, \pi_{bp}(w))$ for all $w \in M_{p'}$. We will show that for every $0 < \alpha < 1$ such a point p exists. Indeed let $\frac{1-\alpha}{1+\alpha} =: \beta > 0$ and set f(w) := d(b, w). Then Ekeland's variational principle [6] ensures the existence of a point $p \in M_{p'}$ such that $f(p) \le f(w) + \beta d(p, w)$ for all $w \in M_{p'}$. It follows that

$$\begin{array}{rcl} d(b,\pi_{bp}(w)) + d(\pi_{bp}(w),p) &\leq & d(b,\pi_{bp}(w)) + d(\pi_{bp}(w),w) + \beta d(p,w) \\ \implies & & d(\pi_{bp}(w),p) &\leq & d(\pi_{bp}(w),w) + \beta (d(\pi_{bp}(w),w) \\ & & & + d(\pi_{bp}(w),p)) \\ \implies & & & \frac{1-\beta}{1+\beta} d(p,\pi_{bp}(w)) &\leq & d(w,\pi_{bp}(w)). \end{array}$$

Thus, we see that we can find $x, y, z \in M$ such that (iii) in Proposition 2 is satisfied for the segments [p,q] where $p \neq q \in \{x, y, z\}$. Proposition 1 then yields that $\frac{\delta_p - \delta_q}{d(p,q)}$ is an extreme point of the unit ball of $\mathcal{F}(M)$. Assuming, as we may,

that $d(x,z) \le d(z,y) \le d(x,y)$, we obtain

$$\begin{aligned} \left\| \frac{\delta_x - \delta_y}{d(x, y)} - \frac{\delta_z - \delta_y}{d(y, z)} \right\|_{\mathcal{F}(M)} &= \left\| \frac{1}{d(x, y)} \left[(\delta_x - \delta_z) + (\delta_z - \delta_y) \right] - \frac{\delta_z - \delta_y}{d(y, z)} \right\|_{\mathcal{F}(M)} \\ &= \left\| \left[\frac{1}{d(x, y)} - \frac{1}{d(y, z)} \right] (\delta_z - \delta_y) + \frac{\delta_x - \delta_z}{d(x, y)} \right\|_{\mathcal{F}(M)} \\ &\leq d(z, y) \left[\frac{1}{d(y, z)} - \frac{1}{d(x, y)} \right] + \frac{d(x, z)}{d(x, y)} \\ &= 1 + \frac{d(x, z) - d(z, y)}{d(x, y)} \leq 1. \end{aligned}$$

In conclusion, $\mu := \frac{\delta_x - \delta_y}{d(x,y)}$ and $\nu := \frac{\delta_z - \delta_y}{d(y,z)}$ are two extreme points of the unit ball of $\mathcal{F}(M)$ at distance less than or equal to 1.

b) We denote $\delta := \inf \{d(w,b) : w \in M\}$. Let x, y, z be 3 points witnessing the fact that b is a branching point. Two pointed metric spaces which differ only by the choice of the base point have isometric free spaces. This trivial observation allows us to assume that x = 0 and that, for a fixed $0 < \varepsilon < 1$, we have $d(b,z) < (1 + \varepsilon)\delta$. Let $M_z = \{w \in M : \pi_{zb}(w) \in (b,z]\}$. Let us consider the closed nonempty set $F = \{w \in M_z : d(b,z) \le (1 + \varepsilon)\delta\}$. Given $0 < \alpha < 1$ and using Ekeland's variational principle as above, we may assume that z satisfies $d(w, \pi_{zb}(w)) \ge \alpha d(z, \pi_{zb}(w))$ for all $w \in F$. Clearly $d(w, \pi_{zb}(w)) \ge \alpha d(z, \pi_{zb}(w))$

We define $f(\cdot) := d(0, \cdot)$ on M and then $g_2(\cdot) := d(0, \cdot)$ on $M \setminus M_z, g_1 := (g_2)_S$ on $(M \setminus M_z) \cup \{z\}$ and finally $g := (g_1)_I$ on M. Both $f, g \in \text{ext}(B_{\text{Lip}_0(M)})$ by Lemma 3. The fact that M is a subset of an \mathbb{R} -tree helps to write g explicitly:

$$g(w) = egin{cases} d(0,w), & w \in M \setminus M_z \ d(0,b) - d(b,z) + d(z,w), & w \in M_z. \end{cases}$$

It follows that f(w) - g(w) = 0 for $w \in M \setminus M_z$ and $f(w) - g(w) = 2d(b, \pi_{zb}(w))$ otherwise. We have

$$\|f - g\|_{L} = \max\left\{\sup_{\substack{w_{1} \in M_{z}, w_{2} \notin M_{z}}} \frac{2d(b, \pi_{zb}(w_{1}))}{d(w_{1}, w_{2})}, \\ \sup_{\substack{w_{1}, w_{2} \in M_{z}}} \frac{2|d(w_{1}, \pi_{zb}(w_{1})) - d(w_{2}, \pi_{zb}(w_{2}))|}{d(w_{1}, w_{2})}\right\}$$
$$\leq \max\left\{\frac{2(1 + \varepsilon)\delta}{2\delta}, \frac{2}{1 + \alpha}\right\} < 2$$

Theorem 5. Let (M, d) be a complete metric space. The Lipschitz free space over M is isometric to $\ell_1(\Gamma)$ if and only if M is of density $|\Gamma| - 1$ and is negligible subset of an \mathbb{R} -tree T which contains all the branching points of T.

Proof. The sufficiency follows from [9, Theorem 3.2]. Conversely, let us assume that $\mathcal{F}(M) \equiv \ell_1(\Gamma)$. Then *M* is of density $|\Gamma| - 1$ and it must be 0-hyperbolic

by [9, Theorem 4.2]. In this case $T = \operatorname{conv}(M)$. If $\lambda_T(M) > 0$, there is a set $A \subset [0,1]$ of positive measure such that A embeds isometrically into M. Then $L_1 \simeq \mathcal{F}(A) \subset \mathcal{F}(M) \equiv \ell_1(\Gamma)$ which is absurd. Since the extreme points of the ball (resp. dual ball) and their distances are preserved by bijective isometries we get by Theorem 4 a) (resp. b)) that $Br(M) \subset M$.

Corollary 6. Let *M* be an ultrametric space of cardinality at least 3. Then $\mathcal{F}(M)$ is not isometric to $\ell_1(\Gamma)$ for any Γ .

Proof. The completion of M stays clearly ultrametric. Thus it can be isometrically embedded into an \mathbb{R} -tree [4]. However ultrametric spaces do not contain the interior of any segment, much less branching points.

4 Isometries with subspaces of ℓ_1

We shall now deal with the second question, i.e. when is $\mathcal{F}(M)$ isometric to a subspace of ℓ_1 .

Lemma 7. Let *M* be a compact subset an \mathbb{R} -tree such that $\lambda(M) = 0$. Then $\lambda_{\operatorname{conv}(M)}(\overline{Br(M)}) = 0$ where the closure is taken in $\operatorname{conv}(M)$.

Proof. Clearly $\lambda_{\operatorname{conv}(M)}(\overline{Br(M)} \cap M) = 0$. Assume that $\lambda_{\operatorname{conv}(M)}(\overline{Br(M)} \setminus M) > 0$. Then $\overline{Br(M)} \setminus M$ is uncountable. Hence there is some $\delta > 0$ such that $\overline{Br(M)} \cap \{x \in T : \operatorname{dist}(x, M) \ge \delta\}$ is uncountable and thus the set $Br(M) \cap \{x \in T : \operatorname{dist}(x, M) \ge \frac{\delta}{2}\}$ is infinite. We conclude that there is an infinite δ -separated family in M. This is absurd as M was supposed to be compact.

Proposition 8. Let M be a compact subset of an \mathbb{R} -tree such that $\lambda(M) = 0$. Then $\mathcal{F}(M)$ is isometric to a subspace of ℓ_1 .

Proof. Since *M* is compact, conv(M) is compact and thus separable. Indeed, the mapping $\Phi : M \times M \times [0,1] \rightarrow conv(M)$ defined by $\Phi(x,y,t) := \phi_{xy}(td(x,y))$ is continuous by [3, Theorem II.4.1]. Now

$$\mathcal{F}(M) \subseteq \mathcal{F}(Br(M) \cup M) \equiv \ell_1$$

by [9, Corollary 3.4] as $\lambda_{\operatorname{conv}(M)}(\overline{Br(M) \cup M}) = 0$ by the previous lemma.

We do not know if the above proposition is valid when *M* is supposed to be proper.

5 Banach-Mazur distance to ℓ_1^n

In the case of finite subsets of R-trees we get the following quantitative result.

Proposition 9. Let $M = \{x_0, x_1, ..., x_n\}$, $n \ge 2$, be a subset of a \mathbb{R} -tree. Let $x_0 = 0$ be the distinguished point. Let us suppose that

$$0 < \sup(M) := \frac{1}{2} \inf \left\{ d(x, y) + d(x, z) - d(y, z) : x, y, z \in M \text{ distinct} \right\}.$$

Then

$$d_{BM}(\mathcal{F}(M),\ell_1^n) > \left(1 - \frac{\operatorname{sep}(M)}{4\operatorname{diam}(M)}\right)^{-1}.$$

The condition sep(M) > 0 implies immediately that for each $x \neq y \in M$ we have $[x, y] \cap M = \{x, y\}$. For the proof we will need the following lemmas. The first one is inspired by [2, Lemma 2.3].

Lemma 10. Let X be a Banach space. Let $C = \bigcap_{i=1}^{n} x_i^{*-1}(-\infty, 1)$ where $x_i^* \in X^*$. Let $A \subset X \setminus C$ have the following property: for every $x \neq y \in A$, we have $\frac{x+y}{2} \in C$. Then the cardinality |A| of A is at most n.

Proof. For $x \in A$ let $\varphi(x) := i$ for some $i \in \{1, ..., n\}$ such that $x_i^*(x) \ge 1$. Since $1 > x_{\varphi(x)}^*\left(\frac{x+y}{2}\right)$ it follows that $x_{\varphi(x)}^*(y) < 1$ for every $y \in A$, $y \ne x$. Thus φ is injective and the claim follows.

Lemma 11. Let $f_1, \ldots, f_{2n+1} \in S_Y$ such that $\left\| \frac{f_i + f_j}{2} \right\| \le 1 - \varepsilon$ for some $\varepsilon > 0$ and all $1 \le i \ne j \le 2n + 1$. Then $d_{BM}(Y, \ell_{\infty}^n) > (1 - \varepsilon)^{-1}$.

Proof. Let $T : Y \to \ell_{\infty}^{n}$ such that $||f|| \le ||Tf||_{\infty} \le (1 + \varepsilon) ||f||$. Then $||Tf_{i}|| \ge 1$ and $\left\|\frac{Tf_{i}+Tf_{j}}{2}\right\| < 1, i \ne j$, which is in contradiction with the previous lemma as $B_{\ell_{\infty}^{n}}^{O}$ is the intersection of 2n halfspaces.

Proof of Proposition 9. Given $0 \le i \ne j \le n$, we will denote $\pi_{ij} := \pi_{x_i x_j}$ the metric projection onto $[x_i, y_j]$. Further we define the function $f_{ij} : M \to \mathbb{R}$ as $f_{ij}(z) := d(x_j, \pi_{ij}(z))$ for $z \in M$. Observe that since $\operatorname{sep}(M) > 0$, this is the function peaking at (x_i, x_j) from the proof of Proposition 2. It is clear that $\left|\frac{f_{ij}(x) - f_{ij}(y)}{d(x,y)}\right| = 1$ if and only if $\{x, y\} = \{x_i, x_j\}$. We further have that

$$\left|\frac{f_{ij}(x) - f_{ij}(y)}{d(x, y)}\right| \le \frac{d(x, y) - \operatorname{sep}(M)}{d(x, y)} \le 1 - \frac{\operatorname{sep}(M)}{\operatorname{diam} M}$$

for any other couple $x \neq y \in M$. Hence $\left\|\frac{f_{ij}+f_{kl}}{2}\right\|_{L} \leq 1 - \frac{\operatorname{sep}(M)}{2\operatorname{diam} M}$ for each $(i,j) \neq (k,l)$. Since $n \geq 2$, we have that $(n+1)n \geq 2n+1$ and the result follows by Lemma 11.

Remark 12. Note that the lower bound given in Proposition 9 is not optimal. This can be seen when $M = \{0, x_1, x_2\}$ is equilateral. We also don't know if this result extends to infinite subsets of \mathbb{R} -trees.

References

- M. Bačák. Convex analysis and optimization in Hadamard spaces, De Gruyter, 2014.
- [2] J. Borwein, J. Vanderwerff. *Constructible convex sets*, Set-Valued Anal. 12 (2004), no. 1, 61-77.
- [3] M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer, 1999.
- [4] P. Buneman. A note on the metric properties of trees, J. Combinatorial Theory Ser. B. 17 (1974) 48-50.
- [5] M. Cúth M. Doucha. *Lipschitz free spaces over ultrametric spaces*, Mediterr. J. Math. (2015) DOI 10.1007/s00009-015-0566-7
- [6] I. Ekeland. Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), no. 3, 443-474
- [7] S. N. Evans. Probability and Real Trees, LNM 1920, Springer, 2008.
- [8] J.D. Farmer. *Extreme points of the unit ball of the space of Lipschitz functions*. Proc. Amer. Math. Soc. 121 (1994), no 3, 807-813.
- [9] A. Godard, *Tree metrics and their Lipschitz free spaces*, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4311-4320.
- [10] G. Godefroy and N.J. Kalton. *Lipschitz free Banach spaces*. Studia Math. 159 (2003), no. 1, 121-141.
- [11] N. Weaver. *Lipschitz algebras*. World Scientific Publishing Co. Inc., River Edge, NJ, 1999.

Université Franche-Comté Laboratoire de Mathématiques UMR 6623 16 route de Gray 25030 Besançon Cedex France emails :aude.dalet@univ-fcomte.fr, antonin.prochazka@univ-fcomte.fr

Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, Campus São José dos Campos - Parque Tecnológico, Avenida Doutor Altino Bondensan, 500, 12247-016 São José dos Campos/SP, Brazil email :plkaufmann@unifesp.br