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Abstract

MicroRNAs are small noncoding RNAs that function by

regulating target gene expression posttranscriptionally. They

play a critical role in developmental and physiologic processes

and are implicated in the pathogenesis of several human

diseases including cancer. We examined the expression profiles

of 241 human microRNAs in normal tissues and the NCI-60

panel of human tumor-derived cell lines. To quantify micro-

RNA expression, we employed a highly sensitive technique that

uses stem-loop primers for reverse transcription followed by

real-time PCR. Most microRNAs were expressed at lower levels

in tumor-derived cell lines compared with the corresponding

normal tissue. Agglomerative hierarchical clustering analysis

of microRNA expression revealed four groups among the

NCI-60 cell lines consisting of hematologic, colon, central

nervous system, and melanoma tumor–derived cell lines

clustered in a manner that reflected their tissue of origin. We

identified specific subsets of microRNAs that provide candi-

date molecular signatures characteristic of the tumor-derived

cell lines belonging to these four clusters. We also identified

specific microRNA expression patterns that correlated with the

proliferation indices of the NCI-60 cell lines, and we developed

evidence for the identification of specific microRNAs as

candidate oncogenes and tumor suppressor genes in different

tumor types. Our results provide evidence that microRNA

expression patterns may mark specific biological character-

istics of tumors and/or mediate biological activities important

for the pathobiology of malignant tumors. These findings call

attention to the potential of microRNAs to provide etiologic

insights as well as to serve as both diagnostic markers and

therapeutic targets for many different tumor types. [Cancer Res
2007;67(6):2456–68]

Introduction

Molecular biomarkers that help classify the numerous types of
human cancers and that correlate with specific biological activities
of tumor cells are essential for elucidating the molecular basis of
oncogenesis and for effectively treating cancer. More than 300
microRNA genes and an even greater number of predicted
microRNA targets have been identified in the human genome.
The breadth of genetic regulatory effects potentially mediated by
microRNAs and their central role in diverse cellular and develop-

mental processes (1–4) has led to the hypothesis that aberrant
expression of microRNA genes could contribute to human disease,
including cancer (5–8). A substantial number of microRNA genes
are located in genomic regions that are frequently amplified,
deleted, or rearranged in cancer, providing further evidence of a role
for microRNAs in cancer pathogenesis (9, 10). Deregulated micro-
RNA expression has been documented in diverse cancers including
lymphoma (11–14), colorectal cancer (15), lung cancer (16), breast
cancer (17), and glioblastoma (18, 19), and specific microRNAs have
been shown to target genes which are critical regulators for the
development of cancer such as E2F (20) and RAS (21).
The NCI-60 panel of human tumor cell lines provides unique

opportunities for identifying the molecular and genetic under-
pinnings of neoplasia. This set of 59 tumor cell lines is derived from
melanoma and from cancers of the gastrointestinal tract, kidney,
ovary, breast, prostate, lung, and central nervous system (CNS) as
well as from various leukemias. The NCI-60 cell lines have been
extensively employed as experimental models of neoplastic disease
and are annotated by multiple large-scale data sets, including
results of pharmacologic studies that document the sensitivities of
these cells to >100,000 different chemical compounds and chemo-
therapeutics (22–25). In addition, the National Cancer Institute’s
Developmental Therapeutics Program has assessed the molecular
features of these cell lines related to cancer and chemotherapeutic
sensitivity (24, 26, 27). To better understand how microRNAs might
contribute to malignancy, we evaluated the expression patterns of
241 microRNAs in each of the 59 cell lines that comprise the NCI-60
panel and in a set of corresponding normal tissues. We found that
the patterns of microRNA expression among these normal and
neoplastic cells suggest the potential activities of specific micro-
RNAs in contributing to the pathobiology of certain types of human
tumors.

Materials and Methods

RNA purification from cell lines and normal tissue samples. Frozen

pellets of the NCI-60 panel cell lines were received from Dr. Susan Holbeck
at the National Cancer Institute Developmental Therapeutics Program.

Total RNA was enriched by standard procedures using TRIzol. Human total

RNA samples were purchased from Ambion (Austin, TX). RNA from human

peripheral blood mononuclear cells was available in the laboratory.
Real-time quantification of 241 microRNAs using stem-loop real-

time PCR. The expression profiles of 241 microRNAs were measured as

described previously (28). This method uses stem-loop primers for reverse

transcription followed by real-time PCR (TaqMan MicroRNA Assays;
Applied Biosystems, Foster City, CA). RNA input was normalized using

four endogenous controls: 18S rRNA, h2M, glyceraldehyde-3-phosphate

dehydrogenase, and h-actin.
Data analyses. Statistical analyses including the leave-one-out sensitivity

analyses, Student’s t tests, and Spearman rank analysis were carried out using

TM4MeV v4.0b software (Institute for Genomic Research, Rockville, MD),

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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R statistical package4 and Microsoft Excel. Experimentally normalized DCt
values for themicroRNAprofileswere used to evaluate the NCI-60 cell lines by

agglomerative hierarchical clustering using average linkage and correlation

similarity and verified for significance by multiscale bootstrap resampling

analyses (29).
Target prediction for microRNAs up-regulated in CNS tumor–

derived cell lines. Potential targets for microRNAs were predicted using

MiRanda associated with the Sanger MIRBASE. Gene expression data

describing glioblastomas and normal brain tissue (30) and NCI-60 cell lines
(22) were extracted from the Stanford Microarray Database.

Results

We employed a recently described (28), highly sensitive TaqMan
MicroRNA assay for quantitative measurement of 241 mature
human microRNAs in 13 normal tissues and in 59 cell lines of the
NCI-60 panel of human tumor cell. This assay allows the rapid
quantification of microRNA levels using as little as 25 pg of total
RNA, and exhibits a dynamic range of seven orders of magnitude.
MicroRNA expression patterns characterize human cancer

cell lines based on their tissue of origin. Experimentally
normalized DCt values corresponding to the level of expression of
241 microRNAs were used to evaluate normal tissues and the NCI-
60 cell lines by agglomerative hierarchical clustering. This analysis
of patterns of microRNA expression revealed potential relationships
among the normal tissues and the 59 cell lines. To assess the
robustness of these relationships, we conducted a multiscale
bootstrap resampling analysis of these same data. The resulting
dendrogram describing these relationships had three main
branches: one that held all the NCI-60 cell lines and two others
which together held all the normal tissue samples (Fig. 1A). This
bootstrap analysis identified six statistically significant clusters.
Two of the six clusters consisted entirely of normal tissues. One of
these consisted of normal brain tissue and peripheral blood
mononuclear cells, whereas the other cluster included samples of
the normal tissues from small intestine, thymus, breast, prostate,
kidney, lung, pancreas, spleen, ovary, liver, lymph node, and normal
colon (Fig. 1A, black). The other four significant clusters consisted
entirely of NCI-60 cell lines derived from hematologic, colon,
melanoma, or CNS tumors (Fig. 1A).
The most prominent feature of the clustered data was that

although many microRNAs displayed similar patterns of expression
among all samples, the expression levels of most microRNAs were
significantly reduced in the cancer cell lines as compared with the
normal tissue (Fig. 1A). Also, the clusters into which the cell lines
segregated generally reflected the tissue of origin of the tumors
from which they were derived (Fig. 1A). Cell lines derived from
hematologic, melanoma, CNS, colon, and renal tumor tissues were
clustered into independent terminal branches corresponding to
the tissues from which these tumors arose. The exceptions to this
trend towards clustering by tissue of origin included cell lines
derived from epithelial tumors of lung, ovarian, prostate, and breast,
and these distributed in multiple different terminal branches. Over-
all, these results suggest that the patterns of microRNA expression
among the NCI-60 cell lines reflect, in part, the lineage-specific
characteristics and the biological, including pathologic, character-
istics of these cell lines.
The NCI-60 lines have also been characterized by others based

on mRNA expression levels. As microRNAs can regulate mRNA

levels, we explored whether the relationships between cell lines
that we detected based on microRNA expression patterns (Supple-
mentary Fig. S1) were similar to the relationships between these
same cell lines based on mRNA expression patterns. We compared
our hierarchical clustering of the NCI-60 microRNA profiles to
the clustering analysis of mRNAs in these lines reported in the
Stanford cDNA Microarray Database (Supplementary Fig. S1).
A comparison of the dendrograms derived from these clustering
analyses revealed similar patterns, in which cell lines segregated in
a manner that reflected the tissue of origin of the tumors from
which they were derived. Similar to the hierarchical clustering
based on microRNA expression patterns (Fig. 1A), the clustering
based on mRNA expression of cell lines derived from hematologic,
melanoma, CNS, colon, and renal tumor tissues were found in
independent terminal branches, and those derived from lung,
ovarian, prostate, and breast tumors were distributed in multiple
different terminal branches (Supplementary Fig. S1).
Expression of specific microRNAs is essential for the

clustering of tumor cell lines based on their tissue of origin.

The multiscale bootstrap analysis characterized the expression
levels of 241 different microRNAs and identified four highly
significant clusters of cell lines derived from hematologic, colon,
melanoma, and CNS tumors, respectively (Fig. 1A). To identify
those microRNAs in which the expression patterns most signifi-
cantly distinguished these four cell line clusters, we did a
comparative t test analysis. For each of the four clusters, the
average Ct of each microRNA in the cell lines within the cluster
was compared with the average Ct for that same microRNA in all
of the NCI-60 cell lines not within that cluster. By this analysis,
microRNAs were selected in which the average level differed
significantly (P V 0.01) between a cluster and the rest of the NCI-60
cell lines (Supplementary Table S1). From this evaluation of all
microRNAs in each of the four clusters, a total of 81 distinguishing
microRNAs were identified for further analysis.
To determine if this set of 81 significant microRNAs was

sufficient to define the four significant tumor cell clusters, we
conducted a hierarchical cluster analysis of the NCI-60 cell lines
using expression data from these 81 microRNAs only. The
dendrogram describing the relationship of the cell lines in this
analysis (Supplementary Fig. S1) contains distinct clusters of cell
lines derived from hematologic, melanoma, CNS, colon, and renal
tissues, whereas cell lines derived from lung, ovarian, prostate, and
breast tumors were distributed in multiple different terminal
branches. This pattern closely parallels the relationships we
observed in our initial analysis of all 241 microRNAs (Fig. 1A).
Moreover, multiscale bootstrap analysis of the dendrogram in
Fig. 1B revealed the same four significant clusters of cell lines
derived from hematologic, melanoma, CNS, and colon tumors as
were detected in Fig. 1A . These findings confirm that this set of
81 microRNAs is sufficient to define the four clusters of tumor cell
lines from hematologic, colon, melanoma, and CNS tissue.
To evaluate the relative contribution of each of the 81 microRNAs

to the integrity of the tumor cell line clusters, we determined the
effect of omitting each individual microRNA from the multiscale
bootstrap analysis shown in Fig. 1B . For this evaluation, we first
eliminated 39 microRNAs that displayed an expression pattern
indistinguishable from the pattern of one of the other microRNAs,
based on a Pearson coefficient of correlation of >0.8 at P V 0.05
(Table 1). The remaining 42 microRNAs (Table 1, boldface), each of
which is expressed in a unique pattern, were evaluated by a leave-
one-out sensitivity analysis. Of these 42 tested, two microRNAs
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(mir-375 and mir-211), upon being taken out of the analysis, had no
effect; however, when each of the remaining 40 microRNAs were
individually removed from the multiscale bootstrap analysis of all
the NCI-60 cell lines, the confidence interval for one or more
clusters dropped below 95% (corresponding to P V 0.05) or cluster
membership changed by two or more cell lines (Table 1). Thus,
among the core set of 81 distinguishing microRNAs that were
identified based on t test analyses (Supplementary Table S1), the
40 microRNAs (and the candidates showing correlated expression
patterns) play a significant role in maintaining one or more of the
four significant NCI-60 cell line clusters in Fig. 1A .
Distinctive patterns of microRNA expression levels are

associated with cell lines derived from different human

tumors. The analysis described above shows that the expression
levels of a distinct subset of microRNAs underlies the tissue-
specific clustering of tumor cell lines. Suggesting that the
expression patterns of specific microRNAs might provide charac-
teristic molecular signatures that could be used to identify specific
types of cancers. Candidates for such signature microRNAs would
include subsets of the 81 microRNAs, the expression of which
was significantly different by t test (Supplementary Table S1).
To assess the expression patterns of the microRNAs identified as

being differentially expressed in a specific cell line cluster, we created
heat maps in which the expressions of microRNA were found to be
significantly different in one cell line cluster when compared with all
other cell lines (Fig. 2A–D). In these heat maps, the cell lines of
the NCI-60 panel were grouped by tissue of origin and aligned across
the top of Fig. 2, and microRNAs identified by t test analysis as being
differential expressed were displayed on the vertical axis. Indeed,
for each of the cell line clusters derived from hematologic, CNS,
colon, and melanoma tumors (Fig. 1A), the subset of microRNAs
key for the establishment of each cluster (Table 1) displays a pattern
of expression apparently unique to that cluster (Fig. 2).
In the six hematologic cell lines, 24 microRNAs were expressed

at significantly different levels compared with the other NCI-60 cell
lines; 8 microRNAs were down-regulated, whereas 16 were up-
regulated (Fig. 2A). The hematopoietic tumor cell lines examined
here were derived from several different tumor types, but were
all non–solid tumors, whereas all the other NCI-60 lines were
derived from solid tumors. Thus, the pattern of microRNA expres-
sion associated with hematologic tumors (Fig. 2A) suggests a
signature that could differentiate non–solid from solid tumors.
Other microRNAs provide potential signature patterns of

expression in each of the cell line clusters examined. In the six
CNS tumor–derived lines, a total of 52 microRNAs were expressed at
significantly different levels when compared with their level of
expression in the other NCI-60 lines. Of these 52 microRNAs, only 6
were expressed at higher levels, whereas 46 microRNAs were down-
regulated (Fig. 2B). Among the seven colon tumor-derived lines,
30 microRNAs were expressed at significantly different levels. Of

these, 5 were down-regulated, whereas the remaining 25 were up-
regulated when their expression levels were compared with the
other NCI-60 lines (Fig. 2C). In the eight melanoma lines, only 15
microRNAs were expressed significantly differently; 4 were up-
regulated and 11 down-regulated when compared with levels in the
other NCI-60 lines (Fig. 2D). Therefore, the down-regulation of
specific microRNAs together with the up-regulation of other
microRNAs formed a distinctive signature for each of the four cell
line clusters examined (Fig. 2A–D).
MicroRNAs as candidate tumor suppressors or oncogenes.

Cancer is a collection of heterogeneous genetic diseases that arise in
association with the accumulation of mutations that activate proto-
oncogenes and inactivate tumor suppressor genes. There is con-
siderable literature relevant to the emerging role of microRNAs in
tumor development, and others have identified a number of micro-
RNAs as candidate oncogenes and tumor suppressor genes (31–34).
We sought to identify microRNAs in which the expression level in
specific tumor cell lineswas either significantly increased or decreased
from that observed in a corresponding normal tissue and therefore
suggested that their function was either enhanced or diminished
in association with tumorigenesis. We examined the microRNAs
expressed in three clusters of cell lines (hematologic, CNS, and colon)
as each of these clusters expressed a significantly distinct pattern of
microRNAs (Fig. 2), and in each case, there was a sufficient number of
normal tissue controls for comparison in a t test analysis.
One hundred and forty-five microRNAs were significantly

increased or decreased at least 2-fold in one or more cell line
clusters compared with their corresponding normal tissues
(Supplementary Table S2). Seventy microRNAs were decreased in
all three clusters or in two of the three clusters, compared with their
respective normal tissues, and could act as tumor suppressors in
more than one type of tumor-derived cell line (Supplementary
Table S2). Alternatively, reduction of microRNAs in multiple cell line
clusters could reflect other differences between a cultured tumor
cell line and a normal tissue specimen, such as changes resulting
from the in vitro culture of tumor cells. However, if a microRNA is
down-regulated in cell lines derived from just a single tumor type,
it is less likely that this reduction would result from nonspecific
changes associated with in vitro growth conditions. Accordingly, in
Table 2A and B, we present only those microRNAs that were
expressed at a significantly different level in only one of the three
clusters we examined. In the hematologic, colon, and CNS tumor–
derived cell lines, 4, 7, and 59 potential tumor suppressors,
respectively, were identified that satisfied this criterion of tumor
cell type specificity (Table 2A). Of these potential tumor suppressor
microRNAs, 15 microRNAs (1 in the hematologic, 1 in the colon, and
13 in the CNS tumor–derived cell lines) are of particular interest as
they did not display cell type–specific expression among the normal
hematologic, colon, and CNS tissue samples (Table 2A). This finding
suggests that these microRNAs do not seem to be simply markers of

Figure 1. A, hierarchical clustering with bootstrap analysis of 241 microRNA expression profiles in 59 tumor-derived cell lines. Expression profiles (DCt values) of 241
microRNAs measured in total RNA from normal tissues and the NCI-60 cell lines were clustered and verified for significance by multiscale bootstrap resampling
analyses (1,000 iterations, sampling with replacement). Clusters were scored as statistically significant in cases in which three or more cell lines or normal tissues
clustered with a 95% or better confidence interval (corresponding to P V 0.05), as determined by the bootstrap analysis. B, hierarchical clustering of the NCI-60 panel
with bootstrap analysis of 81 selected microRNAs. Eighty-one microRNAs which were expressed within one of the four cell line clusters identified in (A) at levels
significantly different (P V 0.01) from the expression level in all the other cell lines in a comparative t test analysis (see Materials and Methods and Table 1) were
evaluated. The expression of these 81 microRNAs in the NCI-60 cell lines was analyzed by agglomerative hierarchical clustering and verified for significance by
multiscale bootstrap resampling analyses. Columns, NCI-60 tumor cell lines; rows, microRNA expression profiles (A and B). Star, clusters of cell lines having a 95%
confidence interval or higher and containing three or more samples as determined by multiscale bootstrap analysis. The cell lines are color-coded based on their tissue
of origin.
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hematologic, colonic, or CNS differentiation, providing additional
evidence of their potential role in oncogenesis.
We did not identify any microRNAs that were up-regulated in

either colon or hematologic lines compared with the corresponding
normal tissues. FivemicroRNAswere expressed at higher levels in the
CNS tumor–derived cell lines compared with normal brain tissue,
and hence, were candidate oncogenes for CNS cells (Table 2B). Two of
these five candidate CNS oncogenes, mir-196a and mir-10b, did not
display brain-specific expression in normal tissues (Table 2B).
Interestingly, two other microRNAs in which the level of expression
was increased in CNS tumor–derived cell lines, mir-10a and mir-
196b, behaved like tumor suppressors in hematologic cell lines.
We sought to ascertain whether an association between micro-

RNA expression and copy number changes in the DNA encoding the
set of 81 microRNAs that define the four highly significant clusters
of tumor cell lines derived from hematologic, colon, melanoma,
and CNS tissues (Fig. 1B) could be identified. We used spectral
karyotyping data5 combined with single nucleotide polymorphism
(SNP) data6 to calculate the SNP copy number in the specific
regions that carry the 81 microRNAs. If a microRNA fell within the
50 kb range of a known SNP copy number (calculations described
in Supplementary Table S4A), it was included in our analysis.
Based on this criteria, we identified 59 microRNAs in which the
SNP copy number could be evaluated and compared that to the
level of their corresponding RNA copy number in the 27 cell lines
that make up the four distinct clusters. Of these 59, we found 3
microRNAs in which the expression levels were moderately
correlated (P V 0.05) with the DNA copy number of the region
in which they are located (Supplementary Table S4A). Mir-182,
mir-192, and mir-31 had a Spearman r value of 0.482295482,
0.425824176, and 0.402625153, respectively (Supplementary Table
S4B). All three of these microRNAs were highly expressed in cell
lines that had excess copies of the region of the genome in which
they were located, suggesting that gene amplification might
contribute to the high levels of expression we observed.
Potential targets of microRNAs that are up-regulated in CNS

tumor–derived cell lines. Although determining the precise
contribution of each microRNA in which the level of expression
might be altered in a particular tumor type is beyond the scope of
this investigation, we sought additional evidence supporting the
likelihood that microRNAs expressed at aberrant levels were
contributing to the malignant characteristics of the tumors from
which the cell lines we examined were derived. We identified
putative target genes that might be regulated by microRNAs
highly expressed in CNS tumor–derived cell lines. We used the
MiRanda target prediction algorithm associated with the Sanger
MIRBASE to examine mirs-10a/b, mirs-196a/b, and mir-21 that
are overexpressed in CNS tumor–derived cell lines. Six hundred
and eighty-nine unique predicted target transcripts for these
microRNAs were identified. Four hundred and seventy-four of
these have UniGene IDs, and 388 have analyzable mRNA
expression profiles in CNS tumors reported in a published
microarray data set examining 3 normal brain and 29 glioblas-
toma specimens (30). We hypothesized that some of the
transcripts might encode proteins involved in tumor-suppressive
activities in glioblastomas, and hence, should have decreased
expression in glioblastomas compared with normal brain. To

determine whether the expression of these genes was significantly
decreased in glioblastomas, a Student’s t test was done on 252
genes for which there were data for at least two specimens of
both glioblastoma tissue and normal brain. Among these, we
found 23 genes with significantly decreased expressions in glio-
blastomas compared with normal brain (P V 0.05; Table 3;
Supplementary Table S3). Many genes among these have no
currently recognizable relationship to tumorigenesis, however, one
extracellular matrix protein, SPOCK1 (35), and two transcription
regulators, ZMYND11 (36) and RB1CC1 (ref. 37; Table 3), have
known functions that could contribute to tumorigenesis.
MicroRNA expression levels correlate with cell proliferation

indices. The work of others, and our findings, suggest that patterns
of microRNA expression might be used to classify diverse types of
cancers and seems likely to be associated with important biological
activities that contribute to tumorigenesis. Cell cycle deregulation
leading to uncontrolled cellular proliferation is a key aspect of
tumorigenesis. Measurement of S phase fraction and indices of
proliferation such as the tumor cell doubling time could be
associated with both pathologic and clinical tumor characteristics
and thereby serve as a biomarker for disease classification and
identification. Therefore, among the 241 microRNAs, we identified
microRNAs whose expression patterns correlated with the
doubling time of cell lines in the NCI-60 panel (using Spearman
rank analysis; P V 0.01). The heat maps shown in Fig. 3 describe the
expression levels of microRNAs that had a significant correlation
with doubling time. Two distinct subgroups emerged consisting of
five microRNAs in which the expression levels tended to increase
with increasing doubling time (Fig. 3A) and 16 microRNAs in which
the expression levels tended to decrease with increasing doubling
time (Fig. 3B). The microRNAs in which elevated expression
correlates with longer doubling times could be interpreted as
candidate antiproliferative microRNAs that act across a broad
range of tissue types. Similarly, the microRNAs in which expression
correlates with rapid cell cycling represent a set of potentially
broadly acting enhancers of proliferation.

Discussion

Knowledge of genetic regulatory mechanisms initiating and
maintaining malignancy are essential for understanding malignant
cellular transformation, pathologic attributes of cancer, and
ultimately, for designing effective strategies for cancer prevention
and treatment. Genes encoding microRNAs are numerous and each
microRNA potentially regulates a large number of targets (38–40).
Understanding the function of microRNAs in tumorigenesis may
provide insight into a key conundrum that pervades all cancer
research; i.e., how can the limited number of genetic alterations
recognized in tumor cells result in the profound physiologic changes
that characterize all malignant tissues. Our precise quantification of
the expression levels of 241microRNAs in normal tissues and diverse
cancer cell lines provides a dimension of the molecular phenotype of
malignancy beyond that provided by conventional mRNA profiles
and a powerful data set for genomic analysis of tumorigenesis.
Agglomerative hierarchical clustering followed by multiscale

bootstrap resampling analyses identified major features of the
microRNA expression patterns in these cells. First, we observed that
these patterns were distinctly different in normal and malignant
tissues. Normal tissues clustered separately from the NCI-60 cell
lines, and the cell lines segregated into major subclusters (Fig. 1A).
Second, major subclusters reflected their tissue of origin, suggesting

5 http://www.ncbi.nlm.nih.gov/sky/skyweb.cgi?formtype=submitters
6 http://dtp.nci.nih.gov/mtargets/download.html
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Table 1. MicroRNAs required for clustering of tumor cell lines based on tissues of origin

microRNA* Confidence interval for tumor cell line clusters
c

Hematologic (95)
b

Colon (95)
b

Melanoma (96)
b

CNS (97)
b

miR-127, miR-382 95 95 96 0,X
miR-130aN 70 70 81 94
miR-200a, miR-141, miR-141N, miR-200c,
miR-200cN, miR-200b, miR-200bN

96 96 92 73,X

miR-100, miR-125b, miR-99a 89 89 94 90
miR-10b 96 96 96 81
miR-106a, miR-17-3p, miR-17-5p, miR-18, miR-19a,
miR-19b, miR-20, miR-20N, miR-92N

95 95 95 85

miR-92 94 94 96 95
miR-10a 96 96 96 86
miR-146 94 94 94 87,X
miR-203 95 95 95 88
miR-335 100 88,X 92 96,X
miR-30a-3p 100 94,X 91 91,X
miR-342 100 95,X 93 95
miR-108, miR-185 96 96 95 95
miR-142-3p, miR-142-5p 96 97,X 95 96,X
miR-135b 96 96 95 98
miR-148a 93 93 97 98
miR-204 94 94 98 94
miR-31 95 95,X 97 96
miR-95 94 94 94 92
miR-151 95 95 95 94
miR-153 95 95 95 94
miR-184 94 94 93 95
miR-148b 94 94 95 97
miR-218 94 94 95 96
miR-128a, miR-129, miR-133a, miR-302a, miR-302b,
miR-302c, miR-302d, miR-367, miR-326

94 94 94 96

miR-182, miR-183, miR-96 94 94 94 96
miR-378, miR-422a, miR-422b 95 95 94 97
miR-137 95 95 95 96
miR-25, miR-23bN, miR-27b, miR-93, miR-32 95 95 95 96
miR-194, miR-215 92 92 93 97
miR-7, miR-7N 92 92 92 97
miR-224 93 93 95 97
miR-330 93 93 94 96
miR-34b 94 94 93 98
miR-372, miR-373 93 93 93 98
miR-192 90 90 95 99
miR-196b 90 90 95 99
miR-149 91 91 96 96
miR-34a, miR-34aN 91 91 95 96

NOTE: Among the 81 microRNAs that were selected as being sufficient to define the four statistically significant clusters (Fig. 3), 38 microRNAs were
determined to be expressed in a pattern similar to that of at least one other microRNA based on a Pearson coefficient of correlation >0.8 at a P V 0.05,

and hence, only one representative of each such group was taken for further analysis. We evaluated the remaining 43 microRNAs (shown in boldface),

which were expressed in unique patterns, in a leave-one-out sensitivity analysis. Of the 43 tested, 36 exhibited a critical contribution to the clustering:

when any one of these 36 and their correlated microRNAs listed in the table were removed from a multiscale bootstrap/hierarchical cluster analysis of
the NCI-60 cell lines, the confidence interval either dropped to <95% or changed the cluster memberships by two or more cell lines. The effect on all

four of the clusters in the absence of any one of the 31 microRNAs is shown by a change in the confidence interval or a change in the cell lines making

up the clusters. The microRNAs in each of the correlated expression groups are identified and listed together with the microRNAs that were tested in

the analysis. Seven microRNAs (highlighted in gray) were those that upon being left out of the analysis, did not cause a decrease or an increase in the
confidence interval or change the dissimilarity distance between cell lines.

*MicroRNAs in boldface were tested in the leave-one-out analysis. MicroRNAs with correlated expression patterns are listed adjacent to the ones that

were tested.
cMicroRNAs listed here exhibited the following behavior in a leave-one-out multiscale bootstrap resampling analysis (see Materials and Methods):

Leaving out the indicated microRNA caused a decrease in the confidence interval assignment, and/or changed the dissimilarity distance between cell

lines (indicated by an X) leading to gain or loss of cell line members in a cluster.
bStarting confidence interval for the individual clusters as calculated by multiscale bootstrap resampling analyses.
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that the microRNA expression may signify the fundamental
properties of these tumor lines. In vitro growth conditions including
the inclusion of synthetic medium and fetal bovine serum may have
an effect on microRNA expression patterns in these human tumor
cell lines. However, it seems unlikely that the microRNA expression
patterns of the NCI-60 cell lines are merely artifacts of in vitro

culture conditions. If that were the case, similar changes in
microRNA expression throughout the NCI-60 cell lines irrespective
of their distinctive biological characteristics would have been
observed. Finally, the expression patterns of a limited number of

specific microRNAs (Table 1) were found to underlie the tissue-
based clustering of some tumor cell lines. Leave-one-out sensitivity
analysis showed that the expression of 81 specific microRNAs was
sufficient for the tissue-specific clustering of cell lines derived from
melanoma and tumors of hematologic, colonic, and CNS origin
(Table 1; Fig. 1B). The molecular signatures encompassed by this
relatively small number of microRNAs (Fig. 1B) may reflect the role
of these microRNAs in mediating tissue-specific differentiation and/
or tumorigenesis, and furthermore, suggest a molecular basis for the
development of disease.

Figure 2. MicroRNA expression signatures of cell lines derived from specific types of human tumors. MicroRNAs that were expressed at significantly different levels in
any one of the cell line clusters in Fig. 1A and B compared with the rest of the NCI-60 lines (see Table 1) are grouped by the cell line cluster that they distinguish.
Rows, microRNA; columns, NCI-60 cell lines. A to D, significant microRNAs for the hematologic (A), CNS (B ), colon (C ), and melanoma lines (D ). A blue-yellow
color scale (�3 to +3) depicts normalized microRNA expression level (in which 3 on the scale corresponds to a Ct value of 21 and �3 to a Ct value of 35).
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Table 2. MicroRNAs as candidate tumor suppressors or oncogenes

MicroRNAs Colon Hematologic CNS Studies establishing

function in primary

Copies/cell Fold

decrease

Copies/cell Fold

decrease

Copies/cell Fold

decrease

tumors

Normal

tissue

Tumor

lines

Normal

tissue

Tumor

lines

Normal

tissue

Tumor

lines

(A) Candidate tumor suppressor microRNAs
hsa-miR-214 1,838* 0 1,838 — — — — — —
hsa-miR-424 83 5 16.6 — — — — — —
hsa-miR-130a 501

c
35 14.3 — — — — — — Down-regulated in colon

cancer; Lu et al. (7)
hsa-miR-378 279 21 13.3 — — — — — —
hsa-miR-148a 1,392 206 6.75 — — — — —
hsa-miR-15a 2,652 552 4.8 — — — — — — Antiapoptotic, targets BCL2, down-

regulated in chronic lymphocyte
leukemia; Calin et al. (9)

hsa-miR-422a 57 6 9.5 — — — — — —
hsa-miR-28 — — — 380 30 12.6 — — —
hsa-miR-10a — — — 511 40 12.8

b b b

hsa-miR-196b — — — 147 15 9.8
b b b

hsa-miR-27b — — — 1,022 117 8.7 — — —
hsa-miR-124b — — — — — — 5,233 1 5,233
hsa-miR-124a — — — — — — 2,779 0 2,779
hsa-miR-7N — — — — — — 298 1 251.3

hsa-miR-153 — — — — — — 188 1 188

hsa-miR-7 — — — — — — 797 5.1 155.4

hsa-miR-219 — — — — — — 133 0 133
hsa-miR-383 — — — — — — 83.6 1 83.6

hsa-miR-129 — — — — — — 82 1 82

hsa-miR-128b — — — — — — 73 0 73 Up-regulated in colon, lung
and pancreatic cancers;
Volinia et al. (41)

hsa-miR-323 — — — — — — 358 6 59.6
hsa-miR-128a — — — — — — 49 0 49
hsa-miR-346 — — — — — — 72 1.7 42.3
hsa-miR-330 — — — — — — 34 0 34
hsa-miR-340 — — — — — — 80 3 26.6
hsa-miR-34aN — — — — — — 477 18 26.5
hsa-miR-137 — — — — — — 1,495 66 22.6
hsa-miR-138 — — — — — — 22 0 22
hsa-miR-321 — — — — — — 9,096 448 20
hsa-miR-187 — — — — — — 19.3 1 19.3
hsa-miR-338 — — — — — — 170 9 18.8
hsa-miR-34a — — — — — — 56 3 18.6
hsa-miR-149 — — — — — — 926 52 17.7
hsa-miR-203 — — — — — — 53 3 17.3 Down-regulated in colon

cancer; Lu et al. (7)
hsa-miR-328 — — — — — — 480 28 17
hsa-miR-425 — — — — — — 82 6 13.6
hsa-miR-135a — — — — — — 880 70 12.5
hsa-miR-154* — — — — — — 11 0 11
hsa-miR-370 — — — — — — 54 5 10.8
hsa-miR-98 — — — — — — 189 18 10.5
hsa-miR-382 — — — — — — 181 18 9.7

hsa-miR-107 — — — — — — 70 8 8.75 Up-regulated in colon, lung
and pancreatic cancers;
Volinia et al. (41)

hsa-miR-361 — — — — — — 228 29 7.8
hsa-let-7g — — — — — — 3,313 449 7.3
hsa-miR-134 — — — — — — 29 4 7.25
hsa-miR-331 — — — — — — 399 59 6.7
hsa-miR-17-3p — — — — — — 13 2 6.5 B-Cell lymphoma; He (12)

(Continued on the following page)
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Further support for the interpretation that microRNA expression
patterns reflect bona fide properties of the cells of origin of the
NCI-60 cell lines comes from our comparison of the expression
patterns of microRNAs to the patterns of mRNA expression in the
NCI-60 panel (Supplementary Fig. S1). Specifically, the microRNA
and mRNA clustering patterns exhibited both, significantly

clustering based largely on the tissue of origin (Supplementary
Fig. S1). In particular, cell lines derived from hematologic,
melanoma, CNS, colon, and renal tumor tissues were similarly
clustered into independent terminal branches in both analyses
(Fig. 1A ; Supplementary Fig. S1). The observation that lung,
ovarian, prostate, and breast tumors were distributed throughout

hsa-miR-181c — — — — — — 95 15 6.3 Down-regulated in glioblastomas;
Ciafre et al. (18)

hsa-miR-30c — — — — — — 5,522 876 6.3 Down-regulated in glioblastomas;
Ciafre et al. (18)

hsa-miR-212 — — — — — — 65 11 5.9
hsa-let-7d — — — — — — 365 64 5.6

hsa-miR-103 — — — — — — 1,124 208 5.4
hsa-miR-213 — — — — — — 42 8 5.2 Down-regulated in colon cancer;

Lu et al. (7)
hsa-miR-148b — — — — — — 116 23 5.1

hsa-miR-194 — — — — — — 44.9 8.8 5.1
hsa-miR-26b — — — — — — 3,162 657 4.8
hsa-miR-181a — — — — — — 1,938 410 4.7 Down-regulated in glioblastomas;

Ciafre et al. (18)
hsa-miR-192 — — — — — — 67 14 4.5
hsa-miR-191 — — — — — — 1,078 246 4.4
hsa-miR-324-3p — — — — — — 306 74 4
hsa-miR-324-5p — — — — — — 339 83 4
hsa-let-7iN — — — — — — 1,273 322 3.9
hsa-miR-30bN — — — — — — 623 1,585 3.9
hsa-miR-32 — — — — — — 60 17 3.5

hsa-miR-30b — — — — — — 1,650 483 3.4
hsa-miR-30d — — — — — — 350 108 3.2
hsa-miR-181b — — — — — — 3,055 981 3.1
hsa-miR-345 — — — — — — 161 57 2.8
hsa-miR-197 — — — — — — 306 119 2.5
hsa-miR-20N — — — — — — 829 325 2.5

(B) Candidate oncogenic microRNAs
hsa-miR-10a — — — — — — 0.8* 108 136
hsa-miR-196a — — — — — — 1

c
64.9 64.9

hsa-miR-196b — — — — — — 1 36.51 36.5
hsa-miR-10b — — — — — — 8 1,861 23.2 Up-regulated in glioblastomas
hsa-miR-21 — — — — — — 809 14,361 17.7 Up-regulated in glioblastomas,

breast, colon, lung, pancreatic,
prostate, and stomach cancers;
Chan et al. (19)

NOTE: MicroRNAs that were either significantly down-regulated (potential tumor suppressor microRNAs; A) or significantly-up-regulated (potential

oncogenic microRNAs; B) in only one of the hematological, colon, or CNS tumor–derived cell line clusters are shown. Each of the three clusters
selected had multiple normal tissue controls (n > 3) to which they could be compared. The microRNAs listed showed expression levels in one set of

tumor cell lines significantly different from that observed in the corresponding normal tissue. The RNA copy number in the cell lines as well as in

normal tissue is listed for each microRNA. The microRNAs are listed in descending order of fold change from the expression level in the corresponding

normal tissue.
*MicroRNAs that are in boldface show tissue-specific expression patterns, i.e., these microRNAs vary significantly among corresponding normal tissue

comparisons.
cMicroRNAs that are in italics are not tissue-specific, i.e., these microRNAs do not vary significantly among corresponding normal tissue comparisons.
bMicroRNAs are down-regulated in either colon or hematologic cancer lines, but are up-regulated in CNS tumor lines compared with normal brain

tissue and may act as potential oncogenes (Table 2B).

Table 2. MicroRNAs as candidate tumor suppressors or oncogenes (Cont’d)

MicroRNAs Colon Hematologic CNS Studies establishing

function in primary

Copies/cell Fold

decrease

Copies/cell Fold

decrease

Copies/cell Fold

decrease

tumors

Normal

tissue

Tumor

lines

Normal

tissue

Tumor

lines

Normal

tissue

Tumor

lines
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many branches in the cluster analysis would seem to be
inconsistent with this observation. However, these branches all
emanated from the same main secondary branch, perhaps
reflecting the likely epithelial tissues of origin.
The pattern of microRNA expression associated with hemato-

logic tumors (Fig. 2A) could provide a signature to differentiate
non–solid from solid tumors, as these cell lines are all found
clustered on a single dendrogram branch that differentiates them
from solid tumors (41). Of particular note is the polycistronic set of
microRNAs consisting of mir-17, mir-18, mir-19a, mir-19b, and mir-
92, which are overexpressed in leukemic lines compared with the
other cell lines. These closely linked, coexpressed microRNAs lie
within a region (C13orf25v2) of amplification in some leukemias
and lymphomas (11, 12). The mir-17-92 cluster is up-regulated in
chronic lymphocyte leukemias and chronic lymphocyte leukemia
cell lines, as well as many different lymphoma cell lines. Also,
overexpression of this cluster of microRNAs in human diffuse large
B-cell lymphoma has been described (19). Recently, in a mouse
B-cell lymphoma model, overexpression of the mir-17 cluster was

found to cooperate with c-myc to accelerate tumor development
(12). Our finding that mir-17-92 expression contributes to the
signature of hematologic tumor cell lines provides evidence that
microRNA expression patterns in NCI-60 cell lines reflects micro-
RNA patterns observed in primary hematologic malignancies.
The overall reduction in the expression level of many microRNAs

in cell lines compared with normal tissues (Fig. 1A) may reflect of
the relatively undifferentiated characteristics of most tumor cells.
The lowest levels of microRNA expression are seen in very poorly
differentiated tumors (42). Also, in mammalian embryonic stem
cells, most microRNAs are induced during cellular maturation in
tissue-specific gene expression patterns and play key roles in the
maintenance of cell lineage characteristics (43–45). Therefore, the
patterns of microRNA expression retained by tumor cells could
reflect microRNAs defining the developmental state of the cells in
which the tumor originated as well as microRNAs functioning in
transformation pathways.
Altered expression of microRNAs could have profound effects

on the expression of proteins key for mediating transformation.

Table 3. Potential targets of microRNAs up-regulated in CNS tumors and CNS tumor–derived cell lines

Gene Name and symbol* Mean

normal

Mean

Glioblastoma

P MicroRNAs predicted to

target the listed gene

Visinin-like 1 (VSNL1) 2.53 �0.32 0.00040 miR-196a
Sparc/osteonectin, cwcv and kazal-like domains proteoglycan1 (SPOCK1) 2.29 �0.29 0.00006 miR_21
Reticulon 4 receptor (RTN4R) 2.19 �0.18 0.00001 miR-10a, miR-10b
EGF-like repeats and discoidin I-like domains 3 (EDIL3) 2.02 �0.11 0.00644 miR-21
Reticulon 4 receptor (RTN4R) 2.01 �0.11 0.00042 miR-10a, miR-10b
ST6 beta-galactosamide alpha-2,6-sialyltranferase1 (ST6GAL1) 1.85 0.44 0.00093 miR-21
Reticulon 4 receptor (RTN4R) 1.79 �0.10 0.00044 miR-10a, miR-10b
Mannan-binding lectin serine peptidase2 (MASP2) 1.68 0.64 0.00176 miR-10a, miR-10b
Fused toes homolog (mouse) FTS 1.55 0.93 0.03596 miR-196a, miR-196b
EGF-like repeats and discoidin I-like domains 3 EDIL3 1.38 �0.20 0.00022 miR-21
Zinc finger, MYND domain containing 11 ZMYND11 1.36 0.52 0.00892 miR-10a
Tropomyosin 1 (alpha) TPM1 1.29 0.14 0.00540 miR-21
Transcriptional adaptor 2 (ADA2 homolog, yeast)-like TADA2L 1.17 0.40 0.00455 miR-21
RUN and SH3 domain containing 2 RUSC2 1.07 �0.04 0.00001 miR-10a, miR-10b
Copine IV CPNE4 0.95 0.21 0.00131 miR-196a, miR-196b
TBP-like 1 TBPL1 0.82 0.30 0.01409 miR-196a, miR-196b
v-ski sarcoma viral oncogene homolog (avian) SKI 0.67 �0.04 0.02134 miR-21
RB1CC1 || RB1-inducible coiled-coil 1 RB1CC1 0.36 �0.24 0.00358 miR-10b
Signal transducing adaptor molecule (SH3 domain and ITAM motif) 1 0.32 �0.24 0.02060 miR-196a
NPC1 (Niemann-Pick disease, type C1, gene)-like 1 NPC1L1 0.18 �0.92 0.00133 miR-196a
RB1CC1 || RB1-inducible coiled-coil 1 RB1CC1 0.17 �0.34 0.00310 miR-10b
Glutamic-oxaloacetic transaminase 1, soluble
(aspartate aminotransferase 1) GOT1

0.08 �1.60 0.00001 miR-10b

Jumonji, AT rich interactive domain 2 JARID2 0.00 �0.84 0.00914 miR-10a, miR-10b
NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae) NHP2L1 �0.05 �0.66 0.01998 miR-10a, miR-10b
ATP synthase, H+ transporting, mitochondrial F1 complex,
beta polypeptide ATP5B

�0.74 �1.37 0.02689 miR-21

cAMP responsive element binding protein 3-like 1 CREB3L1 �0.44 �1.21 0.03011 miR-196a, miR-196b
Tumor-associated calcium signal transducer 1 TACSTD1 �3.35 �4.38 0.00001 miR-21

NOTE: Potential targets for mirs-10a/b, mirs-196a/b, and mir-21 that are overexpressed in CNS tumor–derived cell lines were predicted using MiRanda

associated with the Sanger MIRBASE (http://microrna.sanger.ac.uk/sequences/). Gene expression data describing glioblastomas and normal brain tissue

(http://microarray-pubs.stanford.edu/gbm/) and NCI-60 cell lines (http://genome-www.stanford.edu/nci60/) were extracted from the Stanford

Microarray Database smd.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=443 and smd.stanford.edu/cgi-bin/publication/viewPublica-
tion.pl?pub_no=81, respectively). Correlation of expression between two genes was evaluated using the Pearson test, and the means of gene expression

between two specimen groups were compared using Student’s t test (P V 0.01). The extracellular matrix protein SPOCK1 and the two transcription

regulators, ZMYND11, and RB1CC1, with known functions that may potentially contribute to tumorigenesis are highlighted in gray.

*Replicates of target genes are from different microarray IMAGE clones from which the data were obtained.
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MicroRNAs that are overexpressed in tumors might contribute to
oncogenesis by diminishing the level of expression of targeted
tumor suppressor genes. Conversely, microRNAs with diminished
expressions in tumors might normally repress one or more
oncogenes, such that reduction of the microRNA could lead to
enhanced expression of one or more oncogenic mRNA. Accord-
ingly, we identified microRNAs that might contribute to malig-
nancy using the criterion that they were either significantly
down-regulated (Table 2A) or significantly up-regulated (Table 2B)
in just one of the three major tumor cell line clusters relative to
the corresponding normal tissue, and that did not display tissue-
specific expression in comparisons among the normal tissue
samples. MicroRNAs that were up-regulated or down-regulated in
more than one major tumor cell line clusters (Supplementary
Table S2) were interpreted as less likely to be tumor-suppressive

or oncogenic microRNAs, as their expression might have been
altered as a consequence of in vitro culture. It is striking that a
relatively large number of microRNAs (59) seemed to behave like
potential tumor suppressors for CNS (Table 2A). This result
suggests that the malignant behavior of CNS tumor cells could
result from relatively complex changes in gene expression,
compared with the colon or hematopoietic tumors. Alternatively,
the widespread reduction of microRNAs in CNS tumor lines
relative to normal brain tissue could reflect the widely recognized
complexity of cell types that make up brain tissue and which
would not be represented in the tumor line being examined. We
also compared our data on these potentially tumor-suppressive or
oncogenic microRNAs in cell lines to existing literature in tissue
from specific tumor types [Table 2A and B; Supplementary Table
S2; and reviewed in refs. (33, 46)].

Figure 3. MicroRNA expression levels correlate to doubling time. MicroRNAs in which the expression levels in the NCI-60 cell lines showed a statistically significant
correlation with published measurements of doubling time in culture were selected by Spearman rank analysis (P V 0.01). Cell lines are arranged in columns from the
fastest (17.4 h) to slowest (79.5 h) doubling times. The microRNAs that correlate with proliferative index fall into two distinct subgroups: microRNAs in which the
expression levels display an increase with increasing doubling time (A ), and microRNAs in which the expression levels exhibit a decrease with increasing doubling time
(B). A blue-yellow color scale (�3 to +3) depicts normalized microRNA expression level (in which 3 on the scale corresponds to a Ct value of 23 and �3 to a Ct
value of 35).
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Our finding that a number of microRNAs that were highly
expressed in selected cell lines exhibited an association between
their expression levels and the copy number of adjacent SNPs
(Supplementary Table S4) suggests that these microRNAs might be
biologically selected during tumorigenesis because of the impor-
tant functions they serve. Furthermore, the correlation of micro-
RNA expression in malignant tissues and cancer-associated
genomic regions (CAGR) identifies microRNAs possibly involved
in cancer (47). We examined whether genes for microRNAs up-
regulated or down-regulated in NCI-60 cell lines were also known
to be located in CAGRs such as fragile sites, minimal regions of loss
of heterozygosity, minimal regions of amplification, or common
breakpoint regions. Among the candidate tumor-suppressive
microRNAs we identified (Table 2A; Supplementary Table S2),
mir-125b, mir-34a, mir-143, mir-145, mir-26a, mir-99a, let-7a, let-7d,
let-7f, and let-7g were located in fragile sites and regions of loss
of heterozygosity/amplification (47). One of the candidate onco-
genic microRNAs that we identified (Table 2B), mir-21, was also
located in a fragile site/region of amplification (47). Importantly,
certain microRNAs that we have identified as potentially tumor-
suppressive or oncogenic are located in CAGRs known to be
important in variousmalignancies. For example, mir-125b and let-7a
are located in regions known to be altered in lung, breast, ovarian,
and cervical cancer, whereas mir-34a, mir-99a, and mir-26a are
located in CAGRs involved in breast, lung, and epithelial/nasopha-
ryngeal cancers. Additionally, mir-143 and mir-145 are located in
CAGRs involved in themyelodysplastic syndrome and the oncogenic
mir-21 in regions critical for neuroblastoma (47). Four of the five
potentially oncogenic microRNAs we identified in the CNS tumor–
derived cell lines (Table 2B) are locatedwithin HOX clusters, many of
which are overexpressed in glioblastoma cell lines as well as in
primary glioblastoma tumor tissue suggests their potential as
transforming genes (48). Mir-10a and mir-196a are located within
the HOX B cluster on 17q21, mir-196b is in the HOX C cluster on
12q13, and mir-10b is in the HOX D cluster on 2q31 (10), suggesting
the potential involvement of these particular microRNAs in
tumorigenesis.
Although a comprehensive analysis of the potential regulatory

targets of microRNAs in NCI-60 cell lines is beyond the scope of
this study, we found that a set of potential targets decreased in

glioblastomas. SPOCK1 is a predicted target of mir-21 in which
the level is increased 17.7-fold in CNS tumor–derived lines when
compared with normal brain (Table 2B). SPOCK1 is a proteogly-
can originally described as being expressed in neurons (35), but
its expression is increased in reactive astrocytes, and it inhibits
the activities of membrane-type matrix metalloproteinases and
cathepsin L, which promote migration of neoplastic astrocytes
(49). Mir-10a is up-regulated 64.9-fold in CNS tumor–derived lines
compared with brain (Table 2B) and one of its potential targets is
ZMYND11, a transcriptional suppressor of the adenovirus E1A
protein (36). E1A interacts with tumor suppressor genes (such as
RB1). RB1CC1, another known tumor-suppressor is up-regulated
23.2-fold in CNS tumor lines compared with brain, and is a
predicted target of mir-10b (Table 2B). RB1CC1 is a key regulator
of RB1 (37). Mutations of RB1CC1 occur in 20% of primary breast
cancers (50).
The NCI-60 cell line panel has been studied for numerous

characteristics related to malignancy including drug sensitivity,
gene expression patterns, and molecular and biological alterations
of importance for tumorigenesis. Our studies, revealing that
microRNA expression correlates to cell proliferation indices,
suggests specific microRNAs in which the biological activities may
be of importance in regulating proliferation. Importantly, these
findings indicate the feasibility of seeking correlations between
microRNA expression and the numerous other characteristics of
these cell lines reported in public databases. This should further
elucidate the pathophysiologic roles of microRNAs in various
types of cancers.
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