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Abstract

Molecular Recognition Features (MoRFs) are short, interaction-prone segments of protein disorder
that undergo disorder-to-order transitions upon specific binding, representing a specific class of
intrinsically disordered regions that exhibit molecular recognition and binding functions. MoRFs are
common in various proteomes and occupy a unique structural and functional niche in which function
is a direct consequence of intrinsic disorder. Example MoRFs collected from the Protein Data Bank
(PDB) have been divided into three subtypes according to their structures in the bound state: α-MoRFs
form α-helices, β-MoRFs form β-strands, and ι-MoRFs form structures without a regular pattern of
backbone hydrogen bonds. These example MoRFs were indicated to be intrinsically disordered in
the absence of their binding partners by several criteria. In this study we used several geometric and
physiochemical criteria to examine the properties of 62 α-, 20 β- and 176 ι-MoRF complex structures.
Interface residues were examined by calculating differences in accessible surface area between the
complex and isolated monomers. The compositions and physiochemical properties of MoRF and
MoRF partner interface residues were compared to the interface residues of homodimers,
heterodimers, and antigen-antibody complexes. Our analysis indicates that there are significant
differences in residue composition and several geometric and physicochemical properties that can
be used to discriminate, with a high degree of accuracy, between various interfaces in protein
interaction datasets. Implications of these findings for the development of MoRF-partner interaction
predictors are discussed. In addition, structural changes upon MoRF-to-partner complex formation
were examined for several illustrative examples.
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Protein-protein interaction sites have been intensively analyzed by different researchers to
understand the molecular determinants of protein recognition and to identify specific
characteristics of protein-protein interfaces.1–18 Different aspects of interaction sites,
including residue propensities, residue pairing preferences, hydrophobicity, size, shape,
solvent accessibility, and hydrogen bond protection, have all been examined. Although each
of these parameters provides some information indicative of protein-protein interaction sites,
none of them perfectly differentiates interaction sites from noninteracting protein surfaces.
Protein interaction sites have been observed to be hydrophobic, planar, globular and protruding.
1, 2, 4, 8, 9, 16 Furthermore, interfaces in different types of even the simplest protein complexes
(e.g., homodimers, heterodimers) have different properties 9, 11, 15. Homocomplexes are often
permanent and optimized, whereas many heterocomplexes are nonobligatory, associating and
disassociating according to the environmental or external factors and involve proteins that must
also exist independently.9 Subunit interfaces in stable oligomeric proteins tend to closely
resemble the protein core with respect to hydrophobicity and residue composition. In contrast,
the interfaces in transient protein-protein complexes were shown to be relatively close to the
protein exterior in composition, with the residues usually being smaller and more polar than
those in the interaction surfaces of stable oligomers.9, 16, 17

Despite the intensive scrutiny applied to protein-protein interactions, a model of sufficient
quality to reliably predict protein-protein interactions from unbound structures remains elusive.
19 To clarify, by interaction prediction we mean the prediction of low resolution information
from sequence or structure, information such as identities of interacting partners or interacting
residues from specific partners. The relevance of this problem increases daily, as the structures
of mono- or homomultimeric proteins are continually produced by structural genomics centers.
20

One reason for the lack of a good interaction model is the generally invalid assumption of a
static protein backbone upon protein-protein complex formation. The static structure
assumption has been ubiquitous in protein-protein docking, until recently, and in the prediction
of interaction surface patches. Relaxing the static structure assumption indeed increases the
accuracy of solutions to the unbound-unbound problem for structures with limited backbone
mobility,21 but no methods that include flexibility in the prediction of interaction patches have
been reported. Even methods that included consideration of backbone flexibility are not
effective for proteins with large scale backbone movements, due to inefficient exploration of
the large, accessible conformational space of these proteins.22

The complexity of the interaction prediction problem is compounded when intrinsically
disordered proteins (IDPs) are considered. IDPs lack a stable three-dimensional structure in
solution, with conformations that fluctuate over time and populations. These proteins are
characterized by a lack of tertiary structure; by a lack of, or the transient formation of, secondary
structure; and by a hydrodynamic radius corresponding to that of a random polymer in poor
solvent,23 which falls between a random-walk polymer and a compact globule. Consequently,
three-dimensional structure determination is simply inapplicable to such proteins, since no
equilibrium structure exists, although advances have been made in deducing conformational
biases within the ensemble of conformers.24 Although structure determination methods are
inapplicable to IDPs in isolation, this is not necessarily the case when IDPs are bound to
molecular partners. Many IDPs, such as those examined here, perform molecular recognition
functions, undergoing a disorder-to-order transitions upon binding to their partners.25–27 This
disorder-to-order phenomenon has recently been exploited to obtain the structure of an IDP
that had previously failed in the high-throughput structure determination pipeline of structural
genomics.28 The approach of crystallizing IDPs in the presence of their molecular binding
partners promises to greatly increase the number of proteins amenable to the structural
genomics methodology.

Vacic et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2008 October 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



IDPs are prevalent in the proteomes of higher organisms29–31 and are thought to play a central
role in molecular recognition,27 particularly in interaction-mediated signaling events.25 The
advantages of IDPs in this role are many, including the decoupling of specificity and affinity,
32 the ability to recognize multiple partners through adoption of different conformations,33

and faster on-rates34 due perhaps to the fly-casting35 or fishing36 mechanism. Clearly, the
current approach to the computational unbound-unbound problem is intractable for IDPs and,
given their relevance to a broad class of interaction-mediated signaling events, new methods
are needed for prediction of the interaction complexes of IDPs.

Toward this goal, we have recently proposed an algorithm that is able to find a specific
structural element that mediates many of the binding events of IDPs.32 These structural
elements were termed α-helical Molecular Recognition Features (α-MoRFs) and consist of
short regions – on the order of 20 residues – that undergo disorder-to-order transitions and that
form α-helices upon binding to their partners. Furthermore, these regions are typically flanked
with regions of intrinsic disorder.32 These α-MoRFs are members of a wider class of short,
interaction-prone segments of protein disorder that undergo disorder-to-order transitions upon
specific binding.

We have recently mined the PDB for proteins that fit the general MoRF model of disorder-
mediated protein interactions.33 The resulting dataset consists of 372 examples that are very
likely to be disordered prior to binding their protein partners, as shown by both sequence- and
structure-based predictions33 Therefore, all or nearly all of these examples conform to the
MoRF hypothesis. These MoRFs were separated into four major groups based on their
secondary structure content: α-MoRFs, which form α-helices; β-MoRFs, which form β-strands
or β-sheets; ι-MoRFs, which have irregular, non-repeating psi- and phi- angles; and complex-
MoRFs, which have two or more secondary structure types of about equal abundance (see
Figure 1). While many of the MoRFs contain regions of polyproline II (PPII) helix,33 this
structural form does not represent the predominant secondary structure for any of the examples
found to date. Thus, at least for now we have not been able to assemble a PPII-MoRF set.

The goal of the present work is to investigate the properties of 62 α-, 20 β- and 176 ι-MoRF-
partner interactions by identifying and characterizing the interactions sites in terms of residue
composition, interface geometry, and physicochemical features, relative to well studied
interfaces including homodimers, large and small protomers from hetero-complexes, and
antigens in antigen-antibody complexes. The degree of similarity between the datasets was
quantified, using a set of surface residues from monomeric protein structures as a control. We
found that there were significant differences in residue composition and in several geometric
and physicochemical properties between the interfaces in the various protein interaction
datasets. In addition, the phenomenon of disorder-to-order transitions in both MoRFs and their
partners was explored, as well as conformational changes induced in partners by MoRF
binding. We conclude with a discussion of the implications of these findings on the future
development of a MoRF-partner interaction predictor.

Materials and Methods

Datasets

The MoRF dataset was extracted from the Protein Data Bank37, as a non-redundant collection
of protein segments more than 10 but less than 70 residues in length and bound to globular
proteins. We used 10 as a lower bound to reduce the chance of including chameleon segments,
38 the longest of which so far observed are 8 residues in length.39 Chameleon segments have
identical local amino sequences but exist in unrelated proteins and typically have completely
different secondary structures.38, 40 We used 70 as an upper bound because, above this length,
the proteins are very often globular or very often contain globular domains.
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Out of the 372 MoRF examples identified in our previous work33, 258 were classified as α-,
β-, or ι-MoRFs, based on their secondary structure content, where classification was based on
the secondary structure type having the largest percentage value. The remaining examples with
no clear preponderance of one secondary structure type – i.e. nearly equal (±1%) values for
the top two or more secondary structure types – were classified as complex-MoRFs and were
not examined here. In order to understand how MoRF binding affects the structure of MoRF
partners, PDB was searched for structures of MoRF partners with and without corresponding
MoRFs and the 50 pairs found were further analyzed.

Non-redundant collections of homodimers, hetero- and antigen-antibody complexes were
taken from studies by Jones and Thornton10, 11 and Lo Conte et al.13 and used as controls in
the study of protein-protein interfaces. The dataset of monomeric proteins is a sample of
monomeric structures from the Protein Quaternary Structure file server (http://pqs.ebi.ac.uk).
A summary of the datasets is given in Table 1. Atom coordinates for proteins in all datasets
were extracted from the September 2005 revision of the PDB.

Identification of Surface and Interface Residues

Protein surfaces and interfaces were analyzed at the residue level. The Molecular Surface (MS)
software from Biohedron (http://www.biohedron.com), which is an implementation of the
Connolly surface algorithm,41 was run for individual chains and for complexes to determine
the solvent accessible surfaces for each. Residues directly involved in interactions were
identified from molecular structures as residues with the change in ASA on complex formation
greater than 1 Å2(refs 10, 11). This process has been illustrated in Figure 2. All calculations
used a probe radius of 1.4 Å, which roughly corresponds to the size of a water molecule.

For examination of the solvent exposure of interface residues and the determination of surface
residues, the relative accessible surface area (RASA) was used. This measure normalizes the
observed ASA of a residue by the ASA of a residue X in an extended Ala-X-Ala tripeptide,
Following the work of Miller at al., a residue was considered to be on the surface of a protein
if the RASA of the residue was greater than 5%.42

Amino Acid Composition Profiles

Analysis of amino acid composition in the MoRF datasets was based on a modification of a
previously described approach.43 The fractional difference between the composition of
interface residues (ICX) from a given dataset and the composition of surface residues
(SCmonomers) of monomeric proteins from PDB was calculated. Residue composition was
estimated as the mean of the frequency of a particular residue in 100,000 pseudoreplicate
datasets obtained by bootstrap sampling44 from the set of interface residues. The fractional
difference was calculated as (ICX-SCmonomer)/SCmonomer. A plot of this value for each of the
20 amino acids gives an interface composition profile.

Relative Entropy

If we consider amino acid compositions of two samples of interaction sites P and Q to be
generated independently, each by a separate stochastic process according to probability
distributions p and q, we can express the similarities in residue compositions of different
datasets using relative entropy, H (p||q). Using the frequencies of residues as the maximum
likelihood estimate for the underlying probability distributions p and q, relative entropy of the
sample P with respect to the sample Q is defined as:

(1)
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where pk and qk are relative frequencies of the 20 amino acids in the two samples.45 Relative
entropy is always greater than or equal to zero, with equality achieved only when residue
compositions are identical.

Relative entropy was used as the test statistic to evaluate the statistical significance of
differences in observed ICX distributions. P-values were estimated under the null hypothesis
that residue compositions of the two interface types come from the same underlying
distribution. In each bootstrap iteration, samples for the two sets were generated by pooling
the two interface datasets and sampling whole interfaces from each with replacement. This
procedure was repeated 100,000 times and the p-value was calculated as the number of
occurrences of relative entropy values equal to or greater than the observed value.

In assessing the significance of results, the type I error rate – i.e. the rate at which the null
hypothesis is incorrectly rejected – is controlled by the selection of alpha value, typically
selected to be 0.05. This p-value cutoff implies that 1 out of 20 significance test will incorrectly
reject the null hypothesis. When many significance tests are performed in a single experiment,
this implies that many incorrect hypotheses will be accepted. In testing the significance of
relative entropy values, 55 individual significance tests are performed, which means that one
would expect that the null hypothesis would be rejected incorrectly at least twice. That is, the
experiment-wise type I error rate becomes 2.25. Several methods are available to adjust the
experiment-wise type I error rate to more reasonable levels. Here a conservative approach, the
Bonferroni adjustment,46 is used to adjust the experiment-wise type I error rate to 0.05. This
was done by dividing the alpha value of 0.05 by the number of individual significance tests,
which gives a p-value cutoff of 9.1×10−4.

Geometry and Physicochemical Properties of Interfaces

In order to differentiate MoRF-partner from other protein-protein interactions, size, accessible
surface area, and planarity were used to describe the geometry of binding sites. Aromatic
content, total and net charge, hydrophobicity, surface exposure, interface propensity, and
flexibility were used to describe the major physico-chemical properties of interface residues.
The sizes of all sets of interfaces were calculated in terms of number of residues as well as the
ASA of all residues participating in the interaction. The planarity of the interface is given by
the RMSD of all the atoms in the interface to the least square error fitting to a plane. Aromatic
content of an interface was based on the total number of aromatic residues (i.e., Phe, Trp, Tyr).
Total and net charges were calculated from residue identities as the sum or difference,
respectively, of the number of positive and negative residues. All counts were averaged over
the number of residues comprising the interface. Other properties calculated were means of
the values assigned to interface residues by various scales: the surface exposure index of Janin
and co-workers,47 the flexibility index of Vihinen and co-workers,48 the hydropathy scale of
Fauchere and Pliska,49 and the residue interface propensity of Jones and Thornton.9

Classification of Interface Types

Classification of interface types was performed using a naïve Bayes classifier, a simple
probabilistic classifier which assumes conditional independence between attributes. Despite
this relatively strong assumption that often does not hold in practice, it is an optimal linear
classifier under zero-one loss even when the attribute independence assumption is violated by
a huge margin.50 In our initial experiments, Bayes was found to perform better than logistic
regression or support vector classifiers (results not shown). Naïve Bayes was implemented in
Matlab, where kernel density estimates were used to model parameter distributions.
Classification was made on a one-versus-all (OVA) basis, where a positive dataset made up
one class and the remaining datasets were assigned to a negative class. This was repeated for
all datasets and prediction accuracy was evaluated by leave-one-out cross validation, which is
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a standard validation method when one of the classes has very few examples. In the leave-one-
out procedure, the following is repeated for each interface: an interface was removed from the
dataset, the model was trained, and the prediction accuracy for the left-out example was
assessed. Since the training sets were not balanced in the number of positive and negative
examples, both the sensitivity and specificity are reported, in addition to the overall accuracy.
In this context, sensitivity is the fraction of correct predictions for the interface type in question
and specificity is the fraction of correct predictions for all other interface types.

Prior to classifier training, a subset of features was selected by a two-sample t-test between
values of individual parameters in the positive and negative classes. 33 possible attributes were
considered in the selection process: interface ASA, relative interface ASA, fraction of the
protein surface occupied by the interface, interface size in terms of number of residues, fraction
of all residues which participate in the interface, interface planarity, hydrophobicity, flexibility,
interface propensity, surface exposure, net and total charge, aromatic content and 20 attributes
representing amino acid content of the interfaces defined as fractions of all interface residues.
Only features with p-value lower than 0.5 were kept.

Results

Datasets

Previous observations indicated that the structural and sequence properties of different MoRF
subtypes might be significantly different from each other.32, 33 Accordingly, the previously
compiled MoRF dataset33 was broken into the α-, β-, and ι-MoRF subsets (Table 1), based on
a predominant content of helix, strand, or irregular structure, respectively (see Materials and
Methods). Non-redundant collections of homodimers, hetero- and antigen-antibody complexes
were used as controls, allowing for the comparison of MoRF interfaces with previously studied
interface types.

Analysis of amino acid compositions

The composition of the interface residues of all datasets were examined relative to amino acid
composition of surface residues from monomeric proteins (Figure 3), which here provides the
background amino acid distribution. Fractional relative compositions are shown arranged from
left to right by increasing surface exposure in globular proteins, according to the Janin scale.
47 On this scale, the dividing line between mostly buried and mostly exposed residues occurs
between tryptophan and histidine.

There are several general trends in the compositional biases among the datasets. All MoRF
interfaces (Figures 3A-F) are generally depleted in the six most highly exposed residues,
enriched in the six most highly buried residues, and have variable or small biases in residues
with intermediate exposure. These trends may be indicative of the propensity of these residues
towards interaction, although all datasets deviate from this generality to some extent. Also, the
compositions of MoRFs and their partners appear to be strikingly similar, although results
given in later sections show that there are some significant differences. Homodimers and
heterodimers (Figures 3G, H, and I) are enriched in buried residues and depleted in exposed
residues similar to MoRF complexes. However, these enrichments and depletions are not
generally as pronounced as for MoRFs and their partners, where heterodimers show this trend
at best sporadically. Unlike the other interface datasets, antigens are depleted in buried residues
and show no general trend for exposed residues. However, antigen biases are also the weakest
among all the datasets (Figure 3J), suggesting that they are more similar to monomer surfaces
than other interfaces.
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There are several notable deviations from these overall compositional trends. In MoRF
interfaces, β- and ι-MoRFs are enriched in proline, which contrasts with α-MoRFs likely due
to the helix breaking nature of proline. Both α-MoRFs and their partners are depleted in tyrosine
and histidine and both β-MoRFs and their partners are depleted in tryptophan. Also, β-MoRFs
are depleted in cysteine but their partners are significantly enriched in this amino acid. In
general, the differences between the datasets seem to be more pronounced on the buried part
of the scale. The largest relative differences were in the cysteine content of ι-MoRFs, β– MoRF
partners, and heterocomplexes and in the methionine content of α-MoRF partners. With the
exception of antigens, much of the variability in compositional biases among all datasets is in
the eight residues with intermediate exposure. For example, tryptophan is enriched in α-MoRF
complexes, ι-MoRF complexes, and small protomers of heterodimers, but depleted in β-MoRF
complexes, homodimers, and large protomers from heterocomplexes.

Relative Entropy

The difference in amino-acid compositions of all interaction site datasets was quantified by
calculation of the relative entropy45 between the compositions of all pairs of interface datasets
(Table 2), as described in Materials and Methods. Most pair-wise comparisons show
statistically significant differences between the interface compositions of the 10 datasets; only
8 of the 55 pair-wise comparisons are insignificant using the conservative – i.e. Bonferroni
adjusted46 – alpha value of 9.1×10−4. Of the tests that give insignificant results, 5 involve
comparisons to homodimers, indicating that homodimers may have more generalized interface
compositions than other sets.

The interface compositions of MoRFs and partners are in general very different from the
interface compositions of other hetero-complexes, with the exception of ι-MoRFs, which
suggests that MoRF interaction surfaces are distinct from those of other complexes. Also, the
interfaces of antigens show significant divergence from all other interfaces, with the difference
being most pronounced between antigens and MoRFs and their partners. The relative entropies
between α-, β- and ι-MoRFs and their respective partners are among the smallest observed of
all pairs of datasets, where the difference between α- and β-MoRFs and their respective partners
is not found to be statistically significant. This compositional symmetry of MoRFs and their
partners is also apparent in Figure 3. Interfaces of α- and β-MoRFs are different in residue
composition from all datasets other than their respective partners, and there is also a significant
difference between the two. Interfaces of ι-MoRFs are also significantly different from most
other datasets. These results imply that the interfaces of MoRFs and their binding partners can
be discriminated based on the residue composition, and suggest that MoRF and partner
classifiers can be constructed. This possibility has been investigated with the inclusion of
additional attributes as discussed below.

Analysis of Geometric and Physiochemical Parameters

Size of Binding Site and ASA—The sizes of interfaces were compared in terms of total
residue count and total accessible surface area, ASA (Figure 4A–F). The absolute number of
residues involved in the interface (Figure 4A) of all three types of MoRFs (average of 17±1
residues) shows that MoRFs are generally smaller than all other interaction types (average of
28±2 residues). However, the absolute interface ASA (Figure 4B) of MoRFs (average of 1141
±110 A2) is slightly larger than other interface types (average of 948±72 A2).

Since MoRFs are generally shorter than members of other datasets (Table 1), these size
measures were normalized in order to obtain the relative averaged size of a binding site and
the relative averaged accessible surface area. Normalization of interface size by residue (Figure
4C) shows that the binding interfaces of the three MoRF datasets (average of 75±24% of
residues) involve much more of the sequence than the interfaces of other datasets (average of
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18±8% of residues). Normalized ASA (Figure 4D) also demonstrates that the interfaces of the
MoRF dataset (average of 43±17% of ASA) involve much more of the protein surface than
the interfaces of other types of complexes (average of 11±4% of ASA).

To provide an alternative view of the participation of interface residues, the average relative
ASA of interface residues was calculated (Figure 4E). MoRF interfaces show a significantly
higher RASA (73±2%) compared to all other datasets (43±1%).

Buried Surface Area—The ΔASA of an interface is frequently used as a metric for the size
of an interface13, 14 and is calculated as the sum of the ASA of the isolated components minus
that of the complex.2 Protein-protein complexes have been observed to bury surface areas in
the range of 1600±400 Å2, which represents the “standard size” of the interface area.13

Similarly, interfaces burying less than 1200 Å2 and more than 2000 Å2 are considered to be
small and large interfaces, respectively.

Calculation of ΔASA for MoRFs and their binding partners (Figure 4O) shows that most
complexes examined here fall into the standard size interface category, with fewer in the small
and large interface categories. Complexes of α- and β-MoRFs with their binding partners and
homodimers are characterized by many large interfaces, where -MoRF, hetero-, and antigen-
antibody complexes are closer to the standard size.

Planarity of Binding Surfaces—Several researchers observed that the interfaces of
protein-protein complexes tend to be flat.1, 9, 11, 14 One measure of the flatness of an interface
is planarity, calculated as the root mean squared deviations (RMSDs) of all the atoms in
interface from the least squares plane fitted to the atoms. A lower RMSD indicates a closer
agreement to the best-fit plane, and therefore that the interface is flatter. The planarity was
calculated for each interface (Figure 4G) and all three types of MoRF interfaces are flatter
(average RMSD of 2.47±0.14) than other protein-protein interaction interfaces (average
RMSD of 2.98±0.5). MoRF partner interfaces (3.76±0.21) are significantly less flat than
MoRFs, possibly indicating that MoRFs may protrude into the partner, thereby including
residues that are not well solvent exposed. This idea is supported by the relatively low RASA
of interface residues of MoRF partners (Figure 4E). These results also suggest that the flatness
of the interface as measured relative to the MoRF may be due in part to the small overall size
of the MoRF compared to the sized of the globular protein partner.

Physicochemical Properties of Binding Surfaces

Aromatic Content, Total Charge and Net Charge—The charged residues – particularly
arginine – and the aromatic residues – particularly tyrosine, tryptophan and histidine – are
relatively abundant in protein-protein interaction sites.11 The role of these residues in the
formation of complexes between MoRFs and their binding partners was investigated and
compared to other protein-protein complexes. Aromatic content, total charge and net charge
were calculated and averaged over the number of residues comprising the interface (Figures
4H, I, and J). α-MoRFs are effectively depleted in aromatic residues, whereas β-MoRFs and
ι-MoRF partners are enriched in these residues. There is a notable asymmetry in the aromatic
content in all MoRF-partner pairs, where one member of the complex has a larger composition
of aromatic residues than the other. This same asymmetry is also observed for heterocomplexes,
where the larger partner is enriched in aromatic residues and the smaller partner is depleted in
these residues. These observations suggest that specific interactions involving aromatic amino
acids might play a crucial role in the formation and stabilization of the MoRF-partner
complexes.

In terms of mean total charge (Figure 4I), most datasets are similar, with β-MoRFs having the
lowest mean total charge and antigens and small subunits of heterocomplexs having the largest
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mean total charge. Similarly, most datasets have a mean net charge (Figure 4J) not significantly
different from zero, showing little bias toward positive or negative charge. The exceptions are
ι-MoRFs, homodimers, and the small subunits of heterocomplexes, which are biased towards
net positive charge.

Hydrophobicity—Calculation of the Fauchere-Pliska hydrophobicity for the complexes
(Figure 4K) shows that the interfaces of MoRFs and their partners are somewhat more
hydrophobic than the interfaces of other complex types. This supports the hypothesis that
hydrophobic interactions might play a crucial role in formation of these complexes.

Surface Exposure—The surface exposure was calculated for each interface dataset using
the Janin scale (Figure 4L), where the calculated values indicate the propensity of interfaces
to be exposed in the context of a folded protein. The α- and ι-MoRFs and their partners have
an intermediate propensity toward surface exposure, similar to homodimers and the large
subunits of heterocomplexes. The β-MoRFs and their partners show a much lower propensity
toward surface exposure.

Interface Propensity—The binding site propensities for each of the interfaces in all the
datasets were calculated using the scale of Jones and Thornton9, 11 (Figure 4M). Compared
to the interfaces of other complexes, the binding sites of MoRFs and their partners are
comprised of residues with comparable or higher interface propensity. The α-MoRFs and ι-
MoRFs have a lower interface propensity than their respective partners, whereas the β-MoRFs
have a higher interface propensity than their partners. The ι-MoRFs have the lowest interface
propensities among the MoRF complexes, comparable to homodimers and small subunits from
heterocomplexes.

Flexibility—The mean flexibility of interface residues was calculated using the scale of
Vihinen et al. 48 and the flexibility distributions of each interface type was summarized (Figure
4N). By this measure, ι-MoRFs are the most flexible whereas the β-MoRFs are the least flexible
among MoRFs and their binding partners. MoRF interfaces are comparably or less flexible by
the this scale than other interface types, which is surprising given previous evidence that
suggests that MoRFs are IDPs.33 Evidently, the non-interface residues of the MoRFs
contribute substantially to the lack of folding prior to binding.

Classification of Interface Types

To investigate the possibility that a combination of multiple geometric and physicochemical
parameters can be used to accurately differentiate between different types of interfaces, naïve
Bayes classifiers were trained on a subset of properties that show significant discrimination
power between a particular interface type and the combination of all other interface types. The
number of selected parameters and the top 5 parameters, judged by the smallest p-values of
the selection t-test, are shown for each interface class (Table 3). The top 5 parameters generally
reflect the differences observed in comparisons of datasets by individual features (Figures 3
and 4). For example, hydrophobicity is the most significant parameter for antigens, which
would be expected from its relative distribution (Figure 4K). The top features selected for
MoRFs are generally distributed in two groups: (1) geometric features that distinguish MoRFs
from other interface types (e.g. relative interface size), and (2) compositional features that
distinguish the various MoRF types (e.g., lysine in α-MoRFs, valine in β-MoRFs, and proline
in ι-MoRFs).

Total prediction accuracies are good across all datasets (see Table 4), with none less than 75%.
MoRF prediction accuracies fall in the 83.8±1.0 to 93.6±1.4 range, whereas for MoRF partners
values are between 76.4±2.3 and 88.0±2.4. Note that in the current framework, a prediction
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accuracy of 50% is expected for random assignment. Sensitivities are generally lower than
specificities, which is a consequence of the use of unbalanced datasets in the one-versus-all
procedure. In conclusion, these results support the idea that all these interfaces can be
distinguished based on geometric and physiochemical features along with amino acid
compositions.

Binding Induced Folding of MoRFs

MoRFs represent short interaction-prone segments of protein disorder that can undergo
disorder-to-order transition upon specific binding.33 The ability of α-MoRFs to fold upon
interaction with binding partners was illustrated by several exemplifying cases described in
our recent paper detailing the development of a preliminary α-MoRF predictor.32 Figures 5A
and B illustrate examples of β-MoRFs and ι-MoRFs, respectively that have been shown
experimentally to undergo a disorder-to-order transition upon binding to partners. Also shown
are the PONDR VLXT43 and PONDR VSL151 predictions for the entire length of the parent
sequences of these MoRFs in order to illustrate the context in which these MoRFs occur.

β-MoRFs

The p21 protein (Figure 5A), and a family of related proteins, directly blocks cell cycle
progression in response to DNA damage through inhibition of cyclin-dependent protein kinases
by a conserved N-terminal domain.52 Unlike related proteins, p21 contains a C-terminal
domain that can block DNA replication directly, through the disruption of interactions between
proliferating cell nuclear antigen (PCNA) and polymerases; PCNA anchors polymerases to
template DNA and the C-terminus of p21 functions through the disruption of this interaction
by blocking PCNA-polymerase interaction sites.53 The p21 protein carries out these various
functions without pre-formed structure,54 undergoing a disorder-to-order transition upon
binding to partners. The C-terminal domain is an example of a verified β-MoRF, which
functions though physically blocking other protein-protein interactions. The N-terminal
domain is also likely to be a MoRF; although the bound structure of the N-terminal domain
has not been determined, its sequence in this region is highly similar to p27, for which a CDK-
cyclin complex structure has been determined.52 Furthermore, the N-terminal domain and C-
terminal domains correspond to predictions of order and sharp drops in disorder predictions,
respectively. PONDR VL-XT plots with these characteristics have been shown previously to
correlate with segments that undergo disorder-to-order transitions.32, 55, 56

ι-MoRF

Nuclear import is mediated by greater than 30 nucleoporins (Nups) that comprise the nuclear
pore.57 In yeast, Kap60p binds to nuclear localization signals (NLS) of cytosolic proteins. This
complex in turn binds to Kap95p and to importins α and β. The entire Kap60p/Kap95p/importin
α/importin β complex is then translocated into the nucleus. The relatively tight binding of NLSs
to Kap60p requires a mechanism for dissociation of this interaction once translocation is
complete. Nup2p (Figure 5B), which is localized to the nuclear face of the nuclear pore,
competes with NLSs for binding to Kap60p through overlapping binding sites, thereby
accelerating release of the cargo protein.58 Nup2p also has low affinity interactions with
RanGTP through a N-terminal domain59 and with Kap95p mediated by Nup2p’s FXF(G)
central repeat domain.58

The entire Nup2p sequence has been shown to be disordered in isolation.60 Therefore the
Nup2p-Kap60p interaction is an example of a verified ι-MoRF that undergoes a disorder-to-
order transition upon complex formation. Unlike p21, the Nup2p MoRF region is predicted to
be disordered (Figure 5B). Also, although the Nup2p is known to be entirely disordered in
solution, PONDR VLXT predicts much of the sequence to be ordered with several, relatively
short, predictions of disorder. This prediction may reflect the many, and varied, binding
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activities of Nup2p.55 In contrast, PONDR VSL1 better reflects the highly disordered nature
of this protein, likely due to its more sophisticated architecture and large training set relative
to PONDR VLXT.

Structural Changes, Folding and Unfolding Induced in MoRF-Binding Proteins

Binding-Induced Small-Scale Displacements in MoRF Partners. A small-scale structural
alteration induced by MoRF binding is illustrated by the binding of the MoRF region of FliM
to CheYD13K/Y106W (Figure 6A). Chemotaxis in motile bacteria is controlled by the response
regulator protein CheY,61 which functions through association with the flagellar motor switch
protein, FliM. This interaction reverses the direction of rotation of the flagellar motor from
counterclockwise (smooth-swimming phenotype) to clockwise (tumbling phenotype).62, 63

The binding of CheY to FliM is modulated by phosphorylation of CheY, where phosphoryl-
CheY binds FliM with approximately 20-fold higher affinity than non-phosphorylated CheY.
64 Several CheY mutants, including CheYD13K/Y106W also know as CheY**, cause both a
hyperactive (increased tumbling) phenotype in vivo and increased FliM-binding in vitro.65

Binding of the MoRF region of FliM to CheY** causes small but noticeable changes in the
overall CheY** strucutre. At the quaternary level, FliM binding induces large change in the
rotameric orientations of Trp106 and Ile95 of CheY**.65 Superposition of the complex and
the free CheY** structures revealed that Trp106 in the unbound structure sterically clashes
with Ile11 of the FliM in the bound structure. Similarly, Ile95 in the unbound structure hinders
access of FliM to its binding site via steric conflict with Ile11. Both of these residues alter their
conformation to allow for the binding of FliM. All this indicates that the FliM binding requires
notable conformational rearrangement in CheY**.65

Large-Scale Movements of Secondary Structure Elements in MoRF Partners—
Of the 50 examples of MoRF induced structural changes that we examined, calmodulin
undergoes the most dramatic example of structural changes induced by MoRF binding (Figure
6B). Calmodulin (CaM) is one of the most extensively studied Ca2+ sensors; i.e. proteins
containing the Ca2+-binding EF-hand motif. CaM is an acidic, 148 residue protein containing
four EF-hands and is known to bind to and regulate dozens, if not hundreds, of different target
proteins, including kinases, phosphatases, and ion channels.66, 67

Figure 6B compares calmodulin in the free and bound states, where CaM binds to a dimer of
MoRFs from glutamate decarboxylase (GAD). CaM undergoes a dramatic change in order to
accommodate the dimeric helical GAD target. The two CaM domains in GAD-bound CaM
adopt an orientation markedly different from the unbound CaM and structures seen in other
CaM–target complexes.68 The massive structural changes observed in CaM are due primarily
to the solution instability of the helix that connects the N- and C- terminal EF-hand domains.
The NMR-determined structure of CaM reveals that the central helix is disordered in solution.
69 Disorder in this helix allows CaM to attain the varied conformations observed in the
structures of CaM bound to various partners. The helix observed in the crystal structure is
apparently an artifact of crystallization.68

Binding-Induced Folding of MoRF Partners—The binding of a MoRF region in Flap
endonuclease-1 (FEN-1) to PCNA is an example of partial folding induced by MoRF binding.
FEN-1 is a structure-specific nuclease that is central to both the DNA replication and repair
processes. During DNA replication and repair, a complex that includes FEN-1 and PCNA
removes RNA primers or damaged DNA and synthesizes replacement strands.70–72

The binding of PCNA to a MoRF from FEN-1 is illustrated in Figure 6C, which shows that
the interaction with a MoRF induces partial folding in its partner. The residues from the
unstructured C-termini of PCNA and FEN-1 interact to form ordered β-strands, creating an
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intermolecular β-zipper interface 73. The formation of this interface therefore represents a bi-
lateral disorder-to-order transition upon MoRF binding.

Binding-Induced Partial Unfolding of MoRF Partners—The MoRF of Bim induces
partial unfolding in its partner Bcl-xL as a result of complex formation (Figure 6D).74 Both
Bcl-XL and Bim are members of the Bcl-2 family of proteins, known to either inhibit or promote
apoptosis.75 Bcl-XL, like other anti-apoptotic members of the family contain regions of
homology known as BH1, 2, 3, and 4, but Bim, along with some other pro-apoptotic proteins,
contain only homology region BH3, which is essential for the death-dealing activities of this
subgroup of proteins.76

The BH3 region of Bim is hypothesized to be a MoRF and the structures of Bcl-XL both
unbound and bound to this MoRF region are illustrated (Figure 6D). The comparison of crystal
structures of MoRF bound and unbound mouse Bcl-XL revealed the existence of significant
flexibility at one of the ends of the Bcl-XL binding grove. Binding of the MoRF of Bim causes
the third α–helix of Bcl-XL to partially unfold, and also displaces the remaining helix by about
4 Å away from the Bim binding site. Conversely, the binding of Bim causes the fourth α-helix
of Bcl-XL to move about 4 Å toward the bound Bim.74 Thus, the interaction of the apoptosis
regulator Bcl-xL with its MoRF, Bim, is accompanied by the melting of one of the Bcl-xL α-
helices.

Discussion

We have focused on structural analysis and disorder prediction in our identification of MoRFs,
which we previously called molecular recognition elements or MoREs (Oldfield et al.,
Biochemistry 44: 12454 (2005)). MoRF is more descriptive because such elements “morph”
from disorder to order upon binding. Using standard molecular biology approaches, DePaoli-
Roach and coworkers identified similar regions in disordered inhibitors of protein phosphatase
1 and called them simply “interaction sites” (Yang et al., J. Biol. Chem. 275: 22635–22644
(2000) or “inhibitory domains” (Park and DePaoli-Roach J. Biol. Chem. 269: 28919–28928
(1994)). Using NMR to study 4E-BP1, Fletcher and Wagner (Protein Sci 7:1639–1642 (1998))
demonstrated an “extreme induced fit” for a disordered region as it became ordered upon
binding eIF4E; they called this segment the “short central region.” The same segment of the
same protein was called the “recognition motif” by Marcotriqiano et al. Mol. Cell. 3: 707–716
(1999)). Luisi and coworkers used approaches similar to ours but named the interaction-prone
regions regions of increased structural propensity (RISPs) (Callaghan et al., J. Mol. Biol. 340: :
965–979 (2004)). Csizmok et al. (Biochemistry 44: 3955–3964 (2005) called such regions
“primary contact sites.” Others used sequence analysis rather than structural analysis and
prediction to define regions of interaction. Their analysis also suggested that many of these
sites are located in regions of disorder (Neduva et al., PLoS Biol. 3: e405 (2005). This group
has called these regions ELMs (eukaryotic linear motifs) and have developed a very elegant
and useful server for their identification from sequence (Punterval et al., Nucleic Acids
Research 31:3625–3630 (2003)). Recent studies suggest that these ELMs typically contain a
few residues favoring structural order within an otherwise highly flexible or disordered region,
thus linking ELMs and MoREs (herein called MoRFs) (Fuxreiter et al., Bioinformatics; In
Press (2007)). Thus, the results found in this study are likely to be applicable far beyond the
relatively small number of examples characterized here.

The residue compositions, geometry, and physico-chemical features of the interfaces between
MoRFs and their partners, and other types of complexes have been examined. Overall, many
of these features offer insights into the nature of MoRFs and MoRF interfaces. Also, many of
these features are useful in distinguishing interface types. The nature of MoRF-partner
interactions were explored by examining specific examples and the various transitions that
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MoRFs and partners undergo during complex formation. The implications of these results for
the development of predictions of MoRF-partner interactions are discussed.

Comparative Interface Features

Interface Compositions—Analysis of amino acid compositions provides insight into the
physical basis of protein behavior, particularly for the case of intrinsically disordered proteins
43. Since a very different control set has been used to calculate these compositional profiles,
the analysis carried out here (Figure 3) is not directly comparable to previous analyses of MoRF
sequence compositions. The previous analysis showed that MoRFs have amino acid
compositions much more similar to disordered proteins than to ordered proteins.33 The current
analysis shows that MoRF interfaces generally have compositions that are very different from
the compositions of the overall surfaces of monomers (Figure 3), where MoRFs are generally
enriched in residues that are typically buried within structured proteins and depleted in residues
that are typically exposed. These compositional results seemingly conflict with the high degree
of surface exposure of MoRF interface residues (Figures 4E and F), which is likely an indication
of a high propensity of these segments to form complexes and thereby bury these residues.
This is supported by the observed high propensity toward both surface exposure (Figure 4L)
and interface participation (Figure 4M) of MoRF interface residues.

A notable aspect of the compositional profiles of MoRF interfaces is the discrepancy in proline
composition between α-MoRFs and β- and ι-MoRFs. That is, α-MoRFs are depleted in proline
whereas β- and ι-MoRFs are enriched in proline, relative to monomer surfaces. This is
particularly notable since proline in β- and ι-MoRF interfaces is the only significant enrichment
seen for any highly exposed residue type. The likely explanation for this differential
composition in proline is the final structure of the bound MoRFs. Proline is only very rarely
found in α-helices, usually producing a pronounced bend in the helical axis and so is generally
considered a helix-breaking residue. α-MoRFs should therefore be depleted in proline, since
the presence of this residue would bias the unbound conformational ensemble away from the
bound, helical conformation, and could even prevent the α-MoRF from attaining the correct
conformation for binding. The enrichment in proline in the other two MoRF types could be
rationalized in two complementary ways. First, proline may help maintain disorder in the
MoRF when in the unbound state and can be present since it does not necessarily interfere with
the bound conformation of the β- or ι-MoRF. Second, proline may be useful in biasing the
conformational ensemble of the unbound MoRF away from helical conformations, which
would enrich the conformational ensemble in conformations similar to the bound
conformation. Therefore, proline may play a large role in the modulation of affinity in β- and
ι-MoRFs.

Another notable aspect of the compositional profile analysis is the ubiquitous enrichment of
methionine across all MoRF types and also across their partners. Methionine is of particular
interest in protein recognition because it plays a large role in non-specific hydrophobic
interactions that may lead to generalized partner recognition. The promiscuity and importance
in molecular recognition of methionine is thought to arise from its unbranched side chain, it
greater-than-expected flexibility, and the polarizability of sulfur, which leads to increased
strength of van der Waals forces.77 The high content of methionine in MoRF partners may
indicate that these partners recognize multiple, different MoRFs. Current work is focused on
examination of multiple recognitions in MoRF sequences, and the roles of methionine in these
MoRF-partner interactions will be investigated.

Relative entropy analysis revealed that, in general, the compositions of interface types are very
different from each other and different from the compositions of monomer surface residues,
with a few exceptions. Homodimers seem to be an exception to this in that they are neither
significantly different from the four other interface types nor from monomeric surfaces, which
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suggest that homodimer interfaces are general in a way that other interface types are not. The
most surprising result of this analysis is the similarity between the compositions of the
interfaces of each MoRF type and the interfaces of their respective partners. Specifically, the
interfaces of α- and β-MoRFs are not significantly different from the interfaces of their
respective partners, and the interfaces of ι-MoRFs, although found to be significantly different
from the interfaces of their partners, have compositions close to those of their partners, as
indicated by the small observed relative entropy between them. In the latter case, the statistical
significance may be due in considerable measure to the larger number of ι-MoRF examples,
since p-values are generally inversely proportional to sample size. This compositional
symmetry is not observed between the compositions of large and small protomers of
heterocomplexes. There is no immediately obvious explanation for this compositional
symmetry between MoRFs and their partners, and further insights are required. However, this
observation may prove useful for the ultimate goal of predicting MoRF-partner interactions.

Interface Geometric and Physiochemical Features—In terms of geometric properties,
MoRFs were significantly different from their partners and other types of interfaces. Although
MoRF interfaces generally involved a relatively small number of residues, MoRF interfaces
were the same size or larger than other interface types, which was due to the larger solvent
exposure of the interface residues prior to association. This is also true for the molecules as a
whole, as indicated by the larger ASA per residue of MoRF monomers (average of 119±26
Å2) relative to other datasets (average of 55±8 Å2). These observations are consistent with
previous results33, 78 with the conclusion that intrinsically disordered proteins in general -
and MoRFs in particular - are characterized by large functional sites, where the entire MoRF
molecule could be considered as a single binding site.

In addition, the large extent of solvent exposure of interface residues is consistent with previous
observations suggesting the MoRFs are disordered in the absence of binding partners. That is,
a structure without a significant amount of self-buried surface area cannot maintain a specific
three-dimensional structure, since it lacks the non-covalent interactions that are required to
maintain a structure. These observations support the general hypothesis that intrinsic disorder
is a prevalent mediator of protein interactions27 and the idea that intrinsic disorder is required
for efficient protein interactions.79 That is, an interaction mediated by an intrinsically
disordered region requires far fewer amino acids overall to form a binding site as compared to
an interaction mediated by an intrinsically ordered protein. This enables a disordered protein
to have far more interaction partners than an ordered protein of similar size.79

Previous observations had caused us to speculate whether the surface of the partner proteins
was the driving force behind the MoRF-partner interactions. Extreme cases of such one-sided
interactions are antibody-antigen complexes, where the antibody is tailored to the antigen, and
the antigen gives little or no indication of it propensity for the interaction. The physiochemical
properties indicate, however, that the MoRF interface residues are generally as, or even more,
interaction prone than other interface types. We therefore conclude that MoRFs are generally
not passive in their interactions with partners. This conclusion provides support for the idea
that MoRFs, since they are linear sequence elements,80 should generally be predictable from
sequence and predictability may not be limited to a particular sub-class of MoRFs.32

One of the indicators of the interaction-prone nature of MoRFs, their relatively high
hydrophobicity, deserves more scrutiny. Firstly, IDPs are generally highly hydrophilic81 and
the high hydrophobicity of MoRF interfaces suggests that MoRF sequences evolved in such a
way that a high fraction of the hydrophobic residues partition into the interface. This idea has
several implications for the identification of MoRFs from sequence and the identification of
MoRF interaction sites on their partners. The partitioning of hydrophobic residues into the
MoRF interface is likely a functional basis of the previously developed α-MoRF predictor,
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32 which predicted the location of MoRFs in a given sequence by locating short predictions
of order within longer predictions of disorder. Similarly, MoRF interaction sites on the surfaces
of partner proteins may be identifiable in part by looking for highly hydrophobic surface
patches.

Secondly, previous studies have indicated that transient protein interfaces are significantly
more polar than interior of globular proteins9, 16, 17. This higher polarity of protein interfaces
is thought to grant specificity to protein interactions, since polar interactions are much more
sensitive to atomic details than van der Waals interactions or the hydrophobic effect. The higher
hydrophobicity of the interior of globular proteins is necessary to drive protein folding and
maintain a globular structure. In these terms, the high hydrophobicity of MoRF interfaces
suggests that the hydrophobic interactions are necessary to induce folding in MoRFs upon
binding to their partners and that MoRF-partner interactions may be less specific than other
protein-protein interactions.

Classification

We have found that all examined interface types are distinguishable to a high degree of
accuracy, which suggests that it may be possible to predict interfaces based on known surfaces
– in the case of ordered proteins – or sequence – in the case of disordered proteins. Sequence-
based predictors may be applicable in the case of disordered proteins since their interface sites
are generally contiguous in terms of sequence or at least involve a supermajority of residues
in a contiguous stretch of sequence. Therefore a potential interface for an intrinsically
disordered protein is any contiguous stretch of sequence, and interface-forming subsequences
within generalized regions of disorder may be distinguished by particular sets of
physiochemical potentials.

Further development and elaboration of the models of protein interfaces developed in this study
will be focused on identification of interface sites on protein surfaces. The identification of
interaction prone surface patches has been pursued by several researchers.10, 82 The current
analysis suggests that an improvement in surface patch prediction may be achieved by the
prediction of types of interaction sites, rather than general interaction sites. Segregation of
interface types might lower the variance of the feature distribution of interface sites, which
would aid in the identification of novel sites from protein surfaces. Such analysis is limited to
the partners of MoRFs and other interface types – since MoRFs are disordered in the absence
of their partners – and is further limited to only those partners that undergo, at most, only small
changes upon MoRF binding.

Binding Induced Structural Alterations of MoRF Partners

The structural changes undergone by MoRF partners vary widely, from small scale movements
to large scale movements and from partial folding to partial unfolding. Previous observations
provide some rationale for this wide variety of structural alterations. In previous studies,
complexes with ΔASA values in the range of 1200–2000 Å2 have been found to undergo only
minor structural alterations during complex formation, whereas formation of complexes with
ΔASA values of 2000–4660 Å2 is generally accompanied by large structural alterations.13 In
comparison, 42% of α-MoRF, 42% of β-MoRF, and 22% of ι-MoRF complexes have ΔASA
values in excess of 2000 Å2. This suggests that the interaction of a MoRF with its partner is
quite likely to be accompanied by a significant conformational change in the partner. The
bound-unbound MoRF partner pairs examined in detail herein support this idea. The prevalence
of structural changes during complex formation has crucial implications for the prediction of
MoRF-partner interactions. Also, comparing these structural changes with those induced by
tethering83 would be quite interesting. This comparison would provide insight regarding
natural versus artificial structural changes upon binding.
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Implications for the Prediction of Protein Interactions

This work has identified several difficulties that must be overcome for successful prediction
of MoRF-partner interactions, as well as identified several potential avenues for predictor
development. Typically, partner prediction has been limited to genome-based methods – such
as Rosetta Stone84, gene neighborhood85, or correlated co-evolution86 – which are quite
effective in detecting well conserved protein-protein interactions. However, given that
intrinsically disordered regions can evolve at an accelerated rate87 and that modulation of
protein interactions seems prevalent in higher organisms,27 these methods might not be
generally applicable for the prediction of MoRF-partner interactions. Our future efforts will
be focused on identifying MoRF regions and regions likely to bind to MoRFs from sequence
and known structure. Knowledge of these may be used to supplement interacting pair prediction
using interaction site information.

Prediction of MoRF interactions must necessarily consider that MoRFs are disordered in the
unbound state, and so unbound structures will not be available for surface analysis. Previously,
a subset of MoRFs have been predicted from sequence,32 and results of the compositional and
physiochemical feature analysis suggest that other types of MoRFs will also be amenable to
this strategy. The relatively large number of MoRF examples in the current dataset should
allow for the development of more sophisticated sequence-based MoRF predictors.

For partners, initial efforts will be focused on prediction of surfaces that interact with MoRFs,
similar to previous efforts in prediction of interaction prone surface patches.10, 82 The largest
hurdle that must be overcome in the prediction of MoRF binding surfaces is the conformational
changes of MoRF binding partners. A subset of partners may be amenable to approaches using
rigid body assumptions, but our examination of bound and unbound partners suggests that the
majority of MoRF partners likely undergo significant structural alterations on binding to
MoRFs. An initial approach to this problem may be to consider structural alterations as discrete
classes, such as (1) displacements and (2) partial induction of order. In the first case, surfaces
can be examined after computationally removing a portion of the structure, for example the
fourth α-helix of Bcl-XL, which is displaced by the MoRF of Bim. This approach will require
development of a efficient search strategy, possibly through local sequence similarity of MoRF
and partner. In the second case, a strategy similar to that proposed for MoRF prediction may
be applicable. That is, disordered regions, or highly flexible regions, of the three dimensional
structure could be treated as sequence and examined for compatibility with MoRF binding.

Finally, the large size of MoRF-partner interfaces may facilitate prediction of interaction sites
and interaction partners. In protein interactions, attractive forces between individual residues
are weak and only through the accumulation of many weak interactions are protein complexes
formed. From a computational perspective, predicting one contact correctly is very difficult,
because a single contact contains very little information. But predicting a large set of contacts
between two partners at low resolution may be much easier, since there will be very few sets
of contacts that are cumulatively favorable. By this logic, larger interfaces should be more
amenable to prediction since there are fewer acceptable solutions.
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Figure 1. Examples of types of MoRFs

MoRFs (red ribbons) and partners (green surface) are shown (A) An α-MoRF, Proteinase
Inhibitor IA3, bound to Proteinase A (PDB entry 1DP5). (B) A β-MoRF, viral protein pVIc,
bound to Human Adenovirus 2 Proteinase (PDB entry 1AVP). (C) An ι-MoRF, Amphiphysin,
bound to α-adaptin C (PDB entry 1KY7). (D) A complex-MoRF, β-amyloid precursor protein
(βAPP), bound to the PTB domain of the neuron specific protein X11 (PDB entry 1X11).
Partner interfaces (grey surface) are also indicated.
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Figure 2. Illustration of interface ΔASA and identification of contact residues

Shown for the purpose of illustration is an ι-MoRF, Bowman-Birk type Trypsin Inhibitor,
(A, red surface) bound to Trypsinogen (A, green surface) taken from PDB entry 1G9I. ASA
is calculated for the complex (A) and the artificial monomers (B) separately to obtain ΔASA
of complex formation. ASA can be attributed to individual residues, thereby allowing
determination of residues involved in binding (B, grey surfaces).
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Figure 3. Compositional profiles of the interface residues of MoRFs

The interface composition (IC) profiles of (A) α-MoRF, (B) α-MoRF partner, (C) β-MoRF,
(D) β-MoRF partner, (E) ι-MoRF, (F) ι-MoRF partner, (G) small protomer from heterodimers,
(H) large protomer from heterodimers, (I) homodimer, and (J) antigen interfaces are shown
relative to surface residues of monomeric structures. Error bars give one standard deviation
estimated by 100,000 bootstrap iterations. Amino acids are arranged in the order of increasing
surface exposure, from the residues most buried in globular proteins on the left-hand side to
the most exposed ones on the right-hand side 47.
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Figure 4. Characterization of interface sizes and surface areas

Means and one standard deviation, estimated by 100,000 bootstrap iterations, are shown for
each of the datasets for all metrics: (A) number of interface residues, (B) ASA of interface
residues (C) proportion of residues involved in the interface, (D) proportion of ASA involved
in the interface, (E) RASA of interface residues, (F) total ASA per residue, (G) planarity,
(H) aromatic residue composition, (I) total and (J) net charge, (K) hydrophobicity, (L) surface
exposure, (M) interface propensity, and (N) flexibility. In addition, surface buried on complex
formation as mean ΔASA (O) are shown for all complex types.
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Figure 5. Examples of disorder-to-order transitions in β- and ι-MoRFs

The structures of MoRFs (red ribbons) bound to their respective partners (blue ribbons) are
shown. PONDR VL-XT predictions for the entire proteins in which these MoRFs are found
are also shown, where the position of the MoRFs in these sequences are indicated (red boxes).
(A) A β-MoRF example from p21 bound to PCNA (PDB entry 1AXC), where the position of
the CDK inhibitor domain is indicated (green box). (B) An ι-MoRF example from Nup2p bound
to karyopherin Kap60 (PDB entry 1UN0), where the positions of the FXF(G) repeat region
(blue box) and the Ran binding domain (yellow box) are indicated.
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Figure 6. Structural changes in partners

Ribbon representation MoRF partners shown unbound (blue ribbons) and bound (green
ribbons) to MoRFs (red ribbons). (A) Small scale structural alterations in CheY induced by
binding of the MoRF region of FliM (PDB entries: unbound - 1U8T and bound – 1F4V). (B)

Large scale structural alterations in calmodulin induced by binding to the MoRF of GAD (PDB
entries: unbound - 1CLL and bound - 1NWD). (C) Partial disorder-to-order transition in PCNA
induced by binding to the MoRF of FEN-1 (PDB entries: unbound - 1RWZ and bound - 1RXZ).
(D) Partial order-to-disorder transition in Bcl-xL induced by binding to the MoRF of Bim (PDB
entries: unbound - 1PQ0 and bound - 1PQ1)
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Table 1

Description of protein datasets.

Dataset Number Average length (residues)

α-MoRFs 62 33±16
β-MoRFs 20 25±19
ι-MoRFs 176 24±17
α-MoRF partners 62 231±154
β-MoRF partners 20 198±98
ι-MoRF partners 176 245±117
Homodimers 16 185±103
Hetero-complex (large protomers) 16 290±118
Hetero-complex (small protomers) 18 79±34
Antibody-antigen complex 12 154±81
Monomeric proteins 650 284±176
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Table 3

Summary of selected parameters for each dataset.

Interface type Number of
selected
features

Top 5 features
Name p-value

α-MoRF 28 Lysine composition
Interface size (% residues)
Interface size (% ASA)
Tyrosine composition
Aromatic composition

9.83·10−13

2.92·10−08

2.12·10−07

1.23·10−06

1.90·10−06

β-MoRF 27 Interface size (% ASA)
Interface size (% residues)
Valine composition
Interface RASA
Interface ASA

5.19·10−16

1.01·10−09

1.08·10−08

6.68·10−08

2.23·10−06

ι-MoRF 27 Interface RASA
Interface size (% residues)
Interface size (% ASA)
Planarity
Interface size (# of residues)

1.77·10−79

1.41·10−76

8.22·10−54

5.64·10−20

1.01·10−19

α-partner 27 Interface size (% residues)
Interface size (% ASA)
Interface RASA
Planarity
Interface size (# of residues)

5.55·10−10

5.67·10−09

1.38·10−06

6.83·10−06

4.74·10−05

β-partner 26 Interface size (# of residues)
Planarity
Interface RASA
Interface size (% ASA)
Surface exposure

1.79·10−09

1.57·10−07

1.60·10−04

0.0127
0.0190

ι-partner 26 Interface size (% residues)
Interface RASA
Interface size (% ASA)
Aromatic composition
Tyrosine composition

8.02·10−49

5.24·10−46

9.39·10−46

2.86·10−16

5.15·10−13

Homodimers 16 Interface size (# of residues)
Interface size (absolute ASA)
Interface size (% residues)
Interface RASA
Interface size (% ASA)

0.0005
0.0012
0.0207
0.0756
0.1006

Hetero- complex
(large protomers)

23 Interface size (% residues)
Interface RASA
Interface size (% ASA)
Serine composition
Histidine composition

0.0003
0.0005
0.0015
0.0048
0.0055

Hetero- complex
(small protomers)

25 Cysteine composition
Aromatic compositions
Phenylalanine composition
Lysine composition
Hydrophobicity

0.0068
0.0188
0.0256
0.0271
0.0317

Antibodies 26 Hydrophobicity
Asparagine composition
Flexibility
Surface exposure
Interface propensity

8.56·10−08

1.14·10−07

9.51·10−06

1.88·10−04

0.0016
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Table 4

Results of OVA classification of interface types.
Interface type Sensitivity (%) Specificity (%) Accuracy (%)

α-MoRF 75.8±2.3 90.6±1.1 89.0±1.2
β-MoRF 57.9±5.6 94.8±1.1 93.6±1.4
ι-MoRF 77.8±1.3 86.5±0.9 83.8±1.0
α-partner 79.0±2.1 76.0±2.3 76.4±2.3
β-partner 73.7±4.5 88.5±2.3 88.0±2.4
ι-partner 91.5±0.6 74.7±1.4 79.8±1.2
Homodimers 40.0±6.2 88.2±2.7 87.0±2.9
Hetero-complex (large protomers) 62.5±5.9 85.5±3.1 84.9±3.2
Hetero-complex (small protomers) 55.6±5.8 92.5±1.6 91.3±1.9
Antibodies 83.3±4.0 94.7±1.5 94.4±1.5
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