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Abstract

Background: Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population
level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-
existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone
(AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of
ginger (Zingiber officinale) growing in the Malaysian rainforest.

Results: By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the

sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-
degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella

community.

(Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of
AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy
compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to
inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate
virulence factor production in both human and plant pathogens.

Conclusions: Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range
of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial

Background

Bacteria employ sophisticated cell-to-cell communica-
tion networks which instigate population-wide beha-
vioural changes in response to environment stimuli.
Such population-dependent adaptive behaviour results
in altered gene expression in response to the production
and sensing of chemical information in the form of dif-
fusible signal molecules, commonly referred to as
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autoinducers. The process, whereby an increase in the
concentration of signal molecule(s) in the extracellular
milieu reflects cell population density is called ‘quorum
sensing’ (QS). At a threshold concentration of the QS
signal molecule (when the population is considered to
be ‘quorate’), the target genes are induced or repressed.
In different bacterial genera, these may include genes
which code for the production of secondary metabolites,
plasmid transfer, motility, virulence, and biofilm devel-
opment (for reviews see [1,2]).

In many Gram-negative bacteria, QS depends on the
actions of N-acylhomoserine lactone (AHL) signal

© 2011 Chan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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molecules [1,2]. These consist of a homoserine lactone
ring linked via a saturated or unsaturated acyl chain
(generally between 4 and 18 carbons) and without or
with a keto or hydroxy substituent at the C3-position
(for reviews see [1,2]). AHL biosynthesis primarily
depends on the actions of enzymes belonging to the
LuxI or LuxM protein families while the response to an
AHL is usually driven by the interaction between the
signal molecule and a member of the LuxR protein
family of response regulators [1,2].

Since QS controls a range of biological functions asso-
ciated with virulence and as the emergence of multi-
antibiotic resistant bacterial strains is in the ascendency,
there is increasing pressure to discover novel therapeutic
approaches to combat bacterial infections [3,4]. Inter-
rupting QS may represent one such method which has
the added advantage that the targets are not normally
essential for bacterial survival and therefore are not sub-
ject to the same selective pressures observed for conven-
tional growth inhibitory antimicrobials [3-6].

Quorum quenching (QQ) refers to the process in
which QS is disrupted. QQ can be achieved in several
ways such as through the enzymatic destruction of QS
signal molecules, the development of antibodies to QS
signal molecules or via agents which block QS. In this
context both the QS signal synthase and sensor or
response regulator proteins are the primary targets [3-6].

Under alkaline conditions AHLs are rapidly inacti-
vated by pH-dependent lactonolysis in which the homo-
serine lactone ring is hydrolysed to the ring open form
(i.e. the corresponding N-acylhomoserine compound) in
a reaction which can be reversed by acidification [7,8].
This reaction can also be driven enzymatically by lacto-
nases such as AiiA, AttM, AiiB [9,10] and AhID [11].
There is also a second class of AHL-degrading enzymes
which are amidases/acylases such as AiiD [12] and
PvdQ [13] which cleave the AHL amide bond releasing
homoserine lactone and the corresponding fatty acid.

The ability to inactivate AHLs enzymatically is shared
by diverse bacteria belonging to the a-Proteobacteria
including Agrobacterium, Sphingomonas, Sphingopyxis
and Bosea, the B-Proteobacteria such as Variovorax, Ral-
stonia and Comamonas, the y-Proteobacteria including
Pseudomonas and Acinetobacter, Firmicutes such as
Bacillus and Actinobacteria such as Rhodococcus as well
as the Streptomyces sp. (reviewed by Uroz et al [6]).

Since QS often controls virulence in both plant and ani-
mal pathogens [1,2], QQ bacteria have potential as biocon-
trol agents which protect plants from pathogens while
novel AHL-inactivating enzymes may have utility as thera-
peutic agents [6]. Consequently, we have been exploring
novel rhizosphere environments for bacterial communities
displaying both AHL-dependent QS and AHL-degrading
activities. Since both beneficial rhizosphere bacteria and
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pathogens may use the same or very similar AHLs, it is
important that QQ directed toward the latter do not per-
turb the former [6]. Hence the identification of strains
expressing highly specific QQ enzymes would have signifi-
cant utility. Here we focus on the AHL-inactivating activ-
ities of a community of bacteria associated with the roots
of Zingiber officinale (ginger) growing in the Malaysian
rainforest. Three AHL-inactivating bacteria belonging to
the genera Acinetobacter, Burkholderia and Klebsiella
were identified and isolated using an enrichment assay
employing N-(3-oxohexanoyl)homoserine lactone (3-oxo-
C6-HSL) as the sole nitrogen and carbon source. While
the Acinetobacter and Klebsiella strains both exhibited
broad spectrum lactonase activity, the Burkholderia strain
reduced 3-oxo-AHLs to the corresponding 3-hydroxy
compounds. The Acinetobacter and Burkholderia strains
both possessed AHL-producing and AHL-inactivating
activities and in co-culture experiments we show that all
three ginger rhizosphere isolates are capable of reducing
the production of key P. aeruginosa QS-dependent viru-
lence determinants and Erwinia carotovora-mediated tis-
sue damage in a potato tuber infection model.

Results

Selection of QQ bacteria from ginger rhizosphere

To enrich for rhizosphere-associated bacteria with AHL-
degrading capabilities, a ginger rhizosphere suspension
was used to inoculate a basal medium containing 3-oxo-
C6-HSL as the sole source of carbon and nitrogen [14].
Bacterial growth was evident within 48 h but only in the
samples containing 3-0x0-C6-HSL (data not shown).
The enrichment culture was plated onto solidified basal
KG medium [14] containing 3-oxo0-C6-HSL which was
passaged for single colonies which were subcultured on
LB agar. Seven ginger rhizosphere-associated bacteria
with four distinctive morphotypes (GG1, GG2, GGS3,
GG4, GG5, GGp and Sel4) were chosen for further
study.

The ginger rhizosphere strains were identified by 16S
rDNA sequencing and analysis of the aligned sequences
(1498 nucleotides) was performed by web-based similar-
ity searches against the GenBank database. The strains
were identified as Acinetobacter spp. (GG2 and GG3),
Burkholderia spp. (GG1 and GG4), Klebsiella sp. (GG5
and Sel4) and Microbacterium sp. (GGp). Since the 16S
rDNA sequence data indicated that GG1, GG3 and GG5
are very closely related to GG4, GG2 and Sel4 respec-
tively, we chose to focus on GG2, GG4 and Sel4. GGp
was also omitted from further investigation. The GG2
16S rDNA sequence showed 99% identity with Acineto-
bacter spp. and clustered phylogenetically with Acineto-
bacter calcoaceticus [GenBank Accession Number
EF432578] and a poorly characterized Acinetobacter sp.
[GenBank Accession Number DQ366106]). The GG4
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16S rDNA shared 99% sequence identity with Burkhol-
deria cepacia PRE5 [GenBank Accession Number
AY946011) while Sel4 is most closely related to Kleb-
siella species PN2 [GenBank Accession Number
AY946011]. The accession numbers for the 16S rDNA
sequences of Acinetobacter sp. (GG2) [GenBank:
GQ245971], Burkholderia sp. (GG4) [GenBank:
HQ728437] and Klebsiella sp. (Sel4) [GenBank:
HQ728438] have been deposited with GenBank.

The 3-oxo-C6-HSL-inactivating activity of each strain
was assessed, and Figure 1 shows the lack of any resi-
dual 3-0x0-C6-HSL after incubation with GG2 or with

E. coli DH5a

Acinetobacter GG2

Oh  24h pH2

24h
E. coli DH5a

Klebsiella Sel4

Burkholderia GG4

E. coli DH5a

Oh 24h

pH2
24h

Figure 1 3-ox0-C6-HSL degradation by Acinetobacter GG2,
Burkholderia GG4 and Klebsiella Se14 quorum quenching
bacteria isolated from the ginger rhizosphere. Each rhizosphere
bacterium or E. coli DH5a. was incubated with 3-oxo-C6-HSL for 0,
24 h after which the cell culture supernatants were either spotted
directly onto paper disks or acidified to pH 2 for 24 h to recyclize
any ring opened 3-oxo-C6-HSL before spotting onto paper disks.
These were placed on an agar plate overlaid with C. violaceum
CV026 and incubated. A purple halo indicates the presence of
3-ox0-Co-HSL.
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Seld for 24 h. However, 3-oxo-C6-HSL was still
detected after incubation with GG4 cells for 24 h
(Figure 1).

Characterization of QQ Activities of Acinetobacter GG2,
Burkholderia GG4 and Klebsiella Se14

To determine the range of AHLs inactivated by each of
the three ginger rhizosphere isolates, whole cells resus-
pended in PBS buffer were incubated for up to 96 h
with a range of AHLs differing in acyl chain length (C4-
C14), the presence or absence of a C3 substituent (oxo
or hydroxy) or with a series of 3-hydroxy-C14-HSLs
with a double bond at either C9, C10, C11 or C13
(Table 1). After incubation, any remaining AHLs were
detected using the appropriate AHL biosensor as
described in the Methods section and compared with
Escherichia coli DH50. and PBS as negative controls.
The data obtained are summarized in Table 1. Using
biosensor assays Klebsiella Sel4 inactivated all of the
AHLs tested while Acinetobacter GG2 showed broad
activity but was most effective against the long chain

Table 1 AHLs degraded by GG2 and Se14
Types of AHL tested

AHL-degradation pattern

GG2 Sel4
C4-HSL + ++ +
C5-HSL + + ++ +
C6-HSL ++ ++ +
C7-HSL ++ +++
C8-HSL ++ +++
C9-HSL ++ + ++ +
C10-HSL ++ + ++ +
C11-HSL ++ + ++ +
C12-HSL +++ +++
C14-HSL ++ + +++
3-hydroxy-C4-HSL ++ +++
3-hydroxy-C6-HSL ++ ++ +
3-hydroxy-C8-HSL ++ ++ +
3-hydroxy-C10-HSL +++ ++ +
3-hydroxy-C12-HSL +++ ++ +
3-hydroxy-C14-HSL +++ +++
3-0x0-C8-HSL ++ ++ +
3-ox0-C10-HSL ++ ++ +
3-ox0-C12-HSL ++ +++
3-oxo-C14-HSL ++ +++
A°-3-hydroxy-C14-HSL +++ +++
A'°-3-hydroxy-C14-HSL o+ T
A"'-3-hydroxy-C14-HSL +++ 4+
A"*-3-hydroxy-C14-HSL + 4+ + 4+

Degradation of AHLs by GG2 and Se14. Degradation of AHL: + ; “: weak; ++
D: moderate; + + + : significant. Insets denote the digital image of AHLs
detected using the biosensors E. coli [pSB401] and/or E. coli [pSB1075];
evaluated according to the reduction in bioluminescence. All experiments
took into account the detection limit of the biosensors used for each AHL-
degradation assay.
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unsubstituted or 3-hydroxy substituted saturated or
unsaturated acyl chain-AHLs (Table 1). Burkholderia
GG4 exhibited no apparent activity against the AHLs
using these biosensor assays (data not shown).

Since natural AHLs are in the L-configuration, we
sought to determine whether the AHL inactivating
activities observed were stereospecific. After incubation
of GG2 and Sel4 whole cells with the D-isomer of
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3-0x0-C6-HSL (3-0x0-C6-D-HSL), the reaction mixture
was extracted and analysed by HPLC rather than using
the AHL biosensors which do not respond to D-isomers.
For GG2 and Sel4 the peak corresponding to 3-oxo-C6-
D-HSL was reduced after 3 h incubation and effectively
absent after 24 h. The data for Acinetobacter strain GG2
are shown in Figure 2A. Similar results were obtained
for Sel4 (data not shown) indicating that AHL

0.70 Oh
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0.50 3h

AU 0.40

0.30
0.20
0.10 24 h
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Figure 2 HPLC analysis of the degradation of 3-oxo-C6-D-HSL after incubation with Acinetobacter GG2 and Burkholderia GG4. (A) The
D-isomer of 3-oxo-C6-HSL was incubated for O- (blue line), 3- (black line) and 24 h (grey line) with GG2, the culture supernatant extracted with
ethyl acetate and subjected to HPLC analysis. The data show the disappearance of the AHL peak at 5.0 min after 24 h incubation. (B) When
incubated with GG4 over a period from 0- (red line), 3- (blue line) and 24 h (black line), the 3-oxo-C6-D-HSL peak is replaced by a new peak at
about 4.3 min which co-migrates with 3-hydroxy-C6-HSL. The controls used were synthetic 3-oxo-C6-D-HSL, 3-hydroxy-C6-D-HSL (green line) and
PBS buffer incubated with GG4 for 24 h to ensure no 3-hydroxy-C6-HSL production by GG4 (purple line). (C) MS showing the presence of 3-oxo-
C6-HSL at 0 h (upper panel; m/z 214.2 [M+H]) and 3-hydroxy-C6-HSL after 24 h (lower panel; m/z 216.2 [M+H]) when 3-oxo-C6-L-HSL was
incubated with GG4.
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inactivation by these two ginger rhizosphere bacteria is
not stereospecific. Although the biosensor assays did not
demonstrate any AHL inactivation for Burkholderia
GG4, HPLC analysis revealed that the peak correspond-
ing to 3-0x0-C6-D-HSL was reduced with the concomi-
tant appearance of a new peak (Figure 2B) suggesting
that GG4 was capable of modifying AHLs.

Identification of the AHL degradation products

To determine whether Acinetobacter strain GG2 inacti-
vated AHLs through cleavage of the acyl chain or via
lactonolysis or both, 3-oxo-C6-HSL was first incubated
with GG2 cells for 24 h. The cells were removed and
the supernatant was collected, acidified to pH 2 and
incubated for a further 24 h. This results in the pH-
mediated re-cyclization of any ring opened compound
present [8] which was subsequently detected using the
C. violaceum CV026 AHL biosensor [15]. Figure 1
shows that while no 3-oxo-C6-HSL was detected in the
supernatant after 24 h incubation with GG2, it could be
recovered by acidification indicating that GG2 possesses
lactonase activity. To investigate whether GG2 also exhi-
bits amidase activity a cell-free GG2 24 h culture super-
natant grown in the presence of 3-oxo-C6-HSL was
treated with dansyl chloride which reacts with the
exposed free amine of the homoserine lactone ring fol-
lowing release of the AHL acyl chain [16]. No dansy-
lated homoserine lactone was detected indicating that
GG2 does not exhibit acylase activity (data not shown).

Similar acidification experiments to those described
above for Acinetobacter GG2 were carried out for Kleb-
siella Sel4. These showed that Sel4 also possesses a lac-
tonase. Since Klebsiella pneumoniae has previously been
reported [11] to possess a homologue of the Arthrobac-
ter lactonase gene ahlD termed ahlK, we used primers
based on ahlK to determine whether the gene was also
present in Sel4. A single PCR product was obtained and
sequenced and found to be identical to the ahlK gene
(data not shown). When Sel4 ahlK was expressed in E.
coli DH5a, AHL biosensor assays revealed that there
was a reduction in bioluminescence consistent with a
decrease in 3-o0xo-C6-HSL when compared to the vector
control. Upon acidification of the supernatant AHL bio-
sensor activity could be restored thus confirming that
AhIK has lactonase activity (data not shown).

When Burkholderia strain GG4 was incubated with
3-0x0-C6-D-HSL for 3 h and examined by HPLC, we
noted the appearance of a new peak (retention time
4.3 min) that was absent when either GG2 or Sel4 was
incubated with the same D-isomer (retention time
4.8 min) (Figure 2B). Similar results were obtained fol-
lowing incubation of the natural L-isomer of 3-oxo-C6-
HSL with GG4 and the new peak was found to co-mi-
grate with the L-isomer of 3-hydroxy-C6-HSL (data not
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shown) suggesting that GG4 has oxido-reductase activity
towards 3-oxo-AHLs. To confirm the oxido-reductase
activity of GG4, 3-oxo0-C6-L-HSL incubated with GG4
for 0 h and 24 h was analysed by mass spectrometry
and the appearance of 3-hydroxy-C6-HSL was con-
firmed by detection of the precursor ion (m/z 216.2 ([M
+H])) and fragment ions of m/z 198.0 ([M+H-H,O0])
and 102.0 (Figure 2C) which are characteristic of 3-
hydroxy-AHLs which readily lose a water molecule and
the homoserine lactone moiety respectively [17,18].

Similar results were obtained on incubation of GG4
with the L-isomers of 3-oxo-C4-HSL or 3-oxo-C8-HSL
in that new HPLC peaks co-eluting with 3-hydroxy-C4-
HSL and 3-hydroxy-C8-HSL synthetic standards, respec-
tively, were observed after incubation for 6 h (data not
shown). This oxido-reductase activity was only apparent
when 3-oxo-AHLs were incubated with GG4 whole cells
but not cell lysates (data not shown).

Acinetobacter GG2 and Burkholderia GG4 produce AHLs
Since some but not all Acinetobacter and Burkholderia
strains have previously been reported to produce AHLs,
we wondered whether QQ and QS activities co-exist in
GG2, GG4 and Sel4. To determine whether any of the
three ginger rhizosphere strains produced AHLs, they
were first cross-streaked against each of three different
AHL biosensors namely C. violaceum CV026, E. coli
[pSB401] and E. coli [pSB1075], and the plates examined
over time for the induction of violacein or biolumines-
cence (data not shown). GG2 induced bioluminescence
in E. coli [pSB1075] indicating that it was producing long
chain AHLs, GG4 activated both CV026 and E. coli
[pSB401] indicative of short chain AHL production while
Sel4 failed to activate any of the three AHL biosensors.

To identify unequivocally the AHLs produced by GG2,
spent culture supernatant extracts were analysed by
liquid chromatography (LC) coupled to hybrid quadru-
ple-linear ion trap mass spectrometry (LC-MS/MS),
which revealed the presence of 3-oxo-C12-HSL and
3-hydroxy-C12-HSL by comparison of their retention
times, precursor and principal fragment ions with syn-
thetic standards. Figure 3 shows the fragmentation pat-
terns for 3-oxo-C12-HSL (precursor ion m/z 298.2 [M
+H]; fragment ions m/z 197.2, 102.0 (Figure 3A and
Figure 3C) and 3-hydroxy-C12-HSL (precursor ion m/z
282.2 [M-H,O]; fragment ions m/z 181.2, 102.1)
(Figure 3B and Figure 3D). The mass spectra of the
extracted AHLs were similar to the corresponding syn-
thetic compounds. Quantitative analysis by LC-MS/MS
of the AHLs produced by GG2 over a 24 h period
revealed that 3-hydroxy-C12-HSL was the most abun-
dant AHL produced by GG2 which attains a maximum
level after 12 h growth, but is almost undetectable after
24 h (data not shown).
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LC-MS/MS analysis of GG4 supernatants confirmed
the presence of 3-0xo-C6-HSL (precursor ion m/z
214.2 [M+H]; fragment ions m/z 113.0, 102.0); C8-HSL
(precursor ion m/z 228.2 [M+H]; fragment ions m/z
109.1, 102.0), 3-hydroxy-C8-HSL (precursor ion m/z
226.2 [M-H,0]; fragment ions m/z 125.1, 102.0) and
C9-HSL (precursor ion m/z 242.2 [M-H,0]; fragment
ions m/z 142.2, 102.1) (Additional File 1). The mass
spectra of the extracted AHLs were indistinguishable

from the corresponding synthetic compounds (Addi-
tional File 1).

QQ biocontrol activity of the ginger rhizosphere isolates

To determine whether any of the three ginger rhizo-
sphere bacterial isolates were capable of quenching viru-
lence factor production in human (P. aeruginosa) and
plant (Er. carotovora) pathogens which utilize different
AHLs, we undertook co-culture experiments. Figure 4A
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Figure 4 Quenching of elastase production and lecA expression in P. aeruginosa by ginger rhizosphere strains. (A) Elastase production
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Sel4 at a starting inoculum ratio of 1:1 for 24 h. The data are presented as RLU/OD to account for any differences in growth.

shows that Acinetobacter GG2 and Burkholderia GG4
both reduced elastase production approximately two-
fold when compared to the P. aeruginosa PAO1 control
whereas the Klebsiella strain Sel4 was the most effec-
tive, reducing elastase levels about 16-fold. None of the
QQ bacteria inhibited the growth of P. aeruginosa
which reached a similar viable count in co-culture as
was attained in monoculture (data not shown). GG2 and

Sel4 both effectively reduced the expression of lecA in
P. aeruginosa although GG4 had comparatively little
effect (Figure 4B).

The QQ potential of GG2, GG4 and Sel4 for attenu-
ating the 3-oxo-C6-HSL-dependent pectinolytic activity
of Er. carotovora was assessed in planta using a potato
tuber infection model after viable count experiments
confirmed that none of the strains affected the growth
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of Er. carotovora in co-culture experiments (data not
shown). Er. carotovora causes substantial tissue necrosis
when injected into the potato tuber but when co-cul-
tured with any of the three ginger rhizosphere isolates,
maceration of the potato tissue by the phytopathogen
was greatly reduced (Figure 5).

Discussion

In the present work, four bacterial morphotypes from
the same ginger rhizosphere bacterial community were

‘ T
’ " .

w
N ~ ’

Er. carotovora
GS101

I»

Er. carotovora
PNP22

Er. carotovora
GS101. co-cultured
with GG2

Er. carotovora
GS101. co-cultured
with GG4

Er. carotovora
GS101. co-cultured
with SE14

Saline

Figure 5 Quenching of the pectinolytic activity of Er.
carotovora by ginger rhizosphere strains. The ability of GG2, GG4
and Se14 to reduce Er. carotovora-mediated soft rot in potato tuber
tissues in co-culture was compared with the parent Erwinia strain in
monoculture and, as negative controls, either the AHL-negative Er.
carotovora mutant PNP22 or saline.
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isolated and identified as a consequence of their ability
to grow on an enrichment medium [14] containing 3-
0x0-C6-HSL as the sole carbon and nitrogen source.
BLAST search analyses of the 16S rDNA sequences
identified the strains as belonging to the genera Acineto-
bacter, Burkholderia, Klebsiella and Microbacterium. In
semi-quantitative whole cell assays, we evaluated the
AHL-inactivating spectrum of the three Gram-negative
isolates. The broadest range of activity was noted for
Klebsiella strain Sel4 which inactivated each of the 24
structurally diverse AHLs evaluated including the D-iso-
mer of 3-0xo-C6-HSL. Similarly Acinetobacter strain
GG2 exhibited a broad spectrum of activity but was less
effective against short chain AHLs. In contrast, Burkhol-
deria GG4 was inactive against the unsubstituted AHLs
but was active against the 3-oxo-AHLs. Although AHL-
degrading activity has not previously been characterized
in the genus Burkholderia, a soil isolate from this genus
capable of growing on AHLs as the sole nitrogen but
not carbon source was reported by Yang et al [19]. This
differs from Burkholderia strain GG4 which did not
grow on 3-ox0-C6-HSL as a source of both carbon and
nitrogen and probably came through the enrichment
process as a consequence of AHL turnover by the other
bacteria in the ginger rhizosphere community. Neverthe-
less, when GG4 was incubated with 3-oxo-C6-HSL in
PBS buffer, GG4 reduced this AHL to the corresponding
3-hydroxy compound. Similar results were obtained for
3-0x0-C4-HSL and 3-oxo-C8-HSL as well as the D-iso-
mer of 3-oxo-C6-HSL indicating that the activity was
not AHL chain length dependent or stereospecific. This
simple reduction of a 3-oxo-AHL to the corresponding
3-hydroxy compound is likely to impact on QQ. For
example, in Er. carotovora where carbapenem antibiotic
biosynthesis and exoenzyme production are regulated by
3-0x0-C6-HSL, the corresponding 3-hydroxy compound
has only 1% of the activity of the 3-oxo-AHL [20]. For
P. aeruginosa, the 3-hydroxy-C12-HSL was approxi-
mately 8-fold less active than the 3-oxo compound [21].
These data suggest that simple modification of the 3-
oxo moiety is likely to substantially reduce the activity
of 3-oxo-AHLs and to contribute to the QQ activity
within a bacterial community. A similar oxido-reductase
activity has been observed for a strain of Rhodococcus
erythropolis isolated from the tobacco rhizosphere [22].
In contrast to Burkholderia strain GG4, this Gram posi-
tive bacterium (R. erythropolis) was unable to reduce 3-
0x0-C6-HSL and required an AHL acyl chain of at least
eight carbons [22]. However in common with GG4, the
activity was only observed on incubation of 3-oxo-AHLs
with whole, live bacterial cells as cell lysates were inac-
tive [22].

For Klebsiella and Acinetobacter, AHL-inactivating
activity has previously been noted by Park et al [11] and
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Kang et al [23], respectively. For the former, an AHL-
degrading enzyme (AhIK) related to AhlD from Arthro-
bacter has been cloned and sequenced and by homology
suggested to be a lactonase [11]. Here we have shown
that the same gene is conserved in the Klebsiella ginger
rhizosphere isolate Sel4 and have demonstrated that the
recombinant enzyme expressed in E. coli is indeed a lac-
tonase with very broad AHL-inactivating activity includ-
ing both short and long chain AHLs (with saturated or
unsaturated acyl side chains of 4 to 14 carbons). These
include N-(3-hydroxy-7-cis-tetradecanoyl)homoserine
lactone (3-hydroxy-C,4.;-HSL), an AHL which was ori-
ginally termed the Rhizobium small bacteriocin [24]
because it inhibits the growth of Rhizobium legumino-
sarum strains which carry a ‘sensitivity locus’ on Sym
plasmids such as pRLJ1 [24]. 3-hydroxy-C;4.1-HSL is
also produced by soil bacteria such as Pseudomonas
fluorescens [17].

Acinetobacter GG2 also degraded a wide range of short
and long chain AHLs via a lactonase activity although
we were unable to identify the gene involved. Although
the mechanism of AHL degradation has not previously
been determined in this genus, an Acinetobacter strain
isolated from cucumber rhizosphere has been reported
to degrade both C6-HSL and N-octadecanoyl homoser-
ine lactone (C18-HSL) as well as the AHLs produced by
a biocontrol strain of Pseudomonas chlororaphis and a
phytopathogenic strain of Burkholderia glumae [23].
Interestingly, Acinetobacter GG2 not only degrades
AHLs but also produces AHLs which we identified as
3-hydroxy-C12-HSL (major) and C12-HSL (minor).
Previously Niu et al [25] showed that the human noso-
comial pathogen, Acinetobacter baumannii, produces
3-hydroxy-C12-HSL and C12-HSL via the LuxI
synthase, Abal, the expression of which is AHL depen-
dent. In A. baumannii, AHL-dependent QS appears to
contribute to biofilm development since abal mutants
were less biofilm proficient than the parent strain [25].

Acinetobacter strains isolated from contact lenses have
been reported not to produce any AHLs [26] whereas a
study of 43 Acinetobacter strains isolated from both hos-
pital patients and the environment and assayed using
AHL biosensors showed that most of the strains exam-
ined produced AHLs although these were not chemi-
cally characterized [27]. Furthermore a comparative
genome analysis of three different Acinetobacter strains
from three different environments revealed the presence
of a luxIR-type locus in a multidrug resistant clinical A.
baumannii isolate which was disrupted by an insertion
element in a sensitive strain isolated from human body
lice but completely absent from a soil isolate [28].

In Acinetobacter GG2, 3-hydroxy-C12-HSL accumu-
lated in the growth medium reaching a maximal level
after 12 h before rapidly being degraded. This indicates
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GG?2 tightly controls its own AHL production and turn-
over and suggests that sustained expression (or repres-
sion) of the QS target genes is not required in stationary
phase. The coupling of AHL synthesis and degradation
in the same bacterium has previously been noted for
Agrobacterium tumefaciens which produces and
degrades 3-oxo-C8-HSL during early stationary phase
via a lactonase encoded by attM which is activated by
starvation signals and the stress alarmone (p)ppGpp
[29,30]. Similarly, a marine Shewanella strain which pro-
duces AHLs in late exponential phase degraded its long
chain AHLs in stationary phase via both lactonase and
acylase/amidase activities [31]. In polymicrobial biofilms,
this Shewanella isolate interfered with AHL production
in other bacteria and as a consequence, their ability to
enhance the settlement of algal zoospores was compro-
mised [31]. Here, we also found that the ginger rhizo-
sphere Burkholderia isolate GG4 is not only capable of
interfering with QS by reducing 3-oxo-AHLs to the cor-
responding 3-hydroxy compounds but also produces
AHLs including 3-oxo-C6-HSL, C9-HSL and 3-hydroxy-
C8-HSL. While most Burkholderia strains synthesize
C6-HSL and C8-HSL [32,33], 3-hydroxy-C8-HSL pro-
duction has only been confirmed in the pathogen, Bur-
kholderia mallei [32] and tentatively identified in the
environmental non-pathogenic Burkholderia xenovorans
[33]. In B. mallei, C8-HSL and 3-hydroxy-C8-HSL are
produced by two different AHL synthases (Bmall and
Bmal3) [32]. In Burkholderia GG4, it remains to be
established whether 3-hydroxy-C8-HSL is produced
directly via a LuxI-type synthase or is a consequence of
the reduction of 3-oxo-C8-HSL.

Bacteria such as GG2, GG4 and Sel4 which produce
and/or modify/degrade QS signals are likely to have a
major impact on the properties of polymicrobial bacter-
ial communities. Here we have shown that the ginger
rhizosphere isolates were each capable of reducing viru-
lence factor production in both P. aeruginosa and Er.
carotovora. However, GG4 was unable to down-regulate
lecA (which codes for the cytotoxic galactophilic lectin
A [34]) expression probably as a consequence of its
inability to reduce C4-HSL [35] in contrast to elastase
which is predominantly LasR/3-oxo-C12-HSL dependent
[36].

Conclusions

Three different QQ bacteria associated with the ginger
rhizosphere have been isolated and characterized as
belonging to the genera Acinetobacter (GG2), Burkhol-
deria (GG4) and Klebsiella (Sel4). GG2 and Sel4 exhib-
ited the broadest spectrum of AHL degrading activity
via lactonolysis while GG4 reduced 3-oxo-AHLs to the
corresponding 3-hydroxy compounds. In GG2 and GG4,
AHL-dependent QQ co-exists with AHL-dependent QS
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suggesting that these bacteria are likely to play a major
role in determining the QS-dependent phenotype of the
polymicrobial community from which they were iso-
lated. This was confirmed by co-culture experiments in
which all three rhizosphere bacteria attenuated virulence
factor production in both a human and a plant pathogen
without inhibiting growth of either pathogen.

Methods

Bacterial strains, growth media and culture conditions
The bacterial strains used in this study are listed in Table 2.
Bacteria were routinely grown in Luria Bertani (LB) med-
ium buffered when required with 50 mM 3-[N-morpho-
lino] propanesulfonic acid (MOPS) to pH 6.8 to prevent
alkaline hydrolysis of AHLs [8]. For the enrichment of QQ
bacteria from the ginger rhizosphere, KG medium supple-
mented with 3-0x0-C6-HSL (500 pg/ml) was used [14]. C.
violaceum CV026, Er. carotovora strains and the rhizo-
sphere isolates were grown at 28°C, E. coli and P. aerugi-
nosa strains at 37°C. When required, the E. coli growth
medium was supplemented with ampicillin (100 pg/ml)
and tetracycline (5 pg/ml). C. violaceum CV026 required
kanamycin (30 pg/ml) and chloramphenicol (30 pg/ml).

Enrichment procedures for bacteria degrading AHL from
ginger rhizosphere

Ginger roots were collected at the Rimba Ilmu, Univer-
sity of Malaya (Malaysia). Soil was removed by rinsing

Table 2 Strains used in the study
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thoroughly with sterile distilled water after which 1 g of
rhizosphere tissue was added to 10 ml of KG medium,
vortexed vigorously for 10 min, sonicated for 1 min and
finally vortexed for 1 min. After which, 2 ml of this sus-
pension was briefly centrifuged to remove root debris,
re-centrifuged at 13,000 x g (5 min) after which the pel-
let was washed and resuspended in 2 ml of KG medium
to give the final rhizosphere suspension. Then, 100 pl of
this suspension was inoculated into 3 ml of KG medium
containing 3-oxo0-C6-HSL (500 pg/ml) and the cells
were grown at 28°C with shaking at 220 rpm. After 48
h, a 5% (v/v) transfer was made to fresh, sterile KG
medium and subsequent transfers made at 48 h inter-
vals. After six enrichments the appropriately diluted cell
cultures were plated onto LB agar and KG medium sup-
plemented with 3-oxo-C6-HSL (50 uM) solidified with
1.5% (w/v) Bacto-Agar to isolate individual colonies.

DNA manipulation

Genomic DNA and plasmid extraction, manipulation
and competent cells were prepared using standard
methods [37]. Treatment of PCR mixtures without DNA
template was performed as previously described [38].
PCR mix (Promega, UK) was used to amplify 16S rDNA
with the universal primers 27F and 1525R (Table 3).
PCR conditions, cloning and sequencing of the PCR
products were carried out as previously described [14].
DNA sequences were analysed with the Lasergene

Strain Description Source/
reference
E. coli
DH5a recA endAl hsdR17 supE4 gyrA96 relAT A(lacZYA-argF)U169 (@80dlacZAM15) [37]
pSB1075 lasRlasl (P. aeruginosa PAO1):luxCDABE (Photorhabdus luminescens [ATCC 29999]) fusion in pUC18 [40]
Amp"®, AHL biosensor producing bioluminescence
pSB401 luxRlux!' (Photobacterium fischeri [ATCC 7744)):luxCDABE (Photorhabdus luminescens [ATCC 29999]) [40]

fusion; pACYC184-derived, Tet®, AHL biosensor producing bioluminescence

C. violaceum
CV026

Double mini-Tn5 mutant derived from ATCC 31532, Kan® Hg® cvil:-Tn5 xylE, plus spontaneous St AHL  [15]

biosensor, produces violacein pigment only in the presence of exogenous AHL

Er. carotovora

GS101 AHL producing Erwinia strain, pectinolytic positive [44]

PNP22 AHL-synthase mutant [44]

P. aeruginosa

PAO1 Prototroph Lab
collection

lecAzlux lecA:luxCDABE genomic reporter fusion in PAOT [35]

Ginger rhizosphere-

associated bacteria

Acinetobacter GG2 Ginger rhizosphere-associated bacterium This study

Burkholderia GG4 Ginger rhizosphere-associated bacterium This study

Klebsiella Se14 Ginger rhizosphere-associated bacterium This study
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Table 3 Oligonucleotide Primers

Name Sequence Reference
16S rDNA forward 5-AGAGTTTGATCMTGGCTCAG-3' [14]
primer 27F

16S rDNA reverse 5-AAGGAGGTGWTCCARCC-3" [14]
primer 1525R

5-CTGAATTCCTGAGTCAGGCTA-3' [11]
5-TTGAATTCTCAGCGAGGAATGAT-3" [11]

KF forward primer
KR reverse primer

computer package (DNAstar) in combination with the
BLAST programs available from NCBI http://www.ncbi.
nlm.nih.gov/ while phylogenetic analyses were per-
formed as previously described [14]. The ahlK gene was
amplified from Klebsiella Sel4 by PCR using the pri-
mers KF and KR (Table 3). A single band of 0.85 kb
was amplified and ligated to pGEM-T Easy and intro-
duced into E. coli DH5a. A positive clone exhibiting
QQ activity was sequenced.

Synthesis of AHLs and related compounds

AHLs including the D-isomer of 3-oxo-C6-HSL were
synthesized, purified and characterized as previously
described [20,39].

AHL-inactivation assays
GG2, GG4 and Sel4 were grown overnight at 28°C with
shaking (220 rpm) in LB medium to approximately 10°
cfu/ml, cells (100 ml) were collected by centrifugation,
washed and resuspended in 100 ml of PBS (100 mM,
pH 6.5). AHLs were evaporated to dryness in a suitable
tube and rehydrated with cell suspension providing a
final AHL concentration of 1 uM (for biosensor activa-
tion assays) or 50 uM (for HPLC analysis). The reaction
mixture was incubated for up to 24 h at 28°C with gen-
tle shaking. To stop the reaction, an equal volume of
ethyl acetate was added, after which the AHLs were
extracted with ethyl acetate. Any residual AHLs were
detected using the lux-based biosensors E. coli [pSB401]
or E. coli [pSB1075] for long and short chain AHLs,
respectively, [40] using a microtitre plate bioassay based
on that described by Reimmann et a/ [41]. Biolumines-
cence in the microtitre plate wells was visualized using
Luminograph LB980 photon video camera (Berthold).
To determine whether AHLs were being inactivated
by lactonolysis, i.e. by the formation of the correspond-
ing N-acylhomoserine compound, the method described
by Yates et al [8] was used. This is based on acidifica-
tion of the reaction mixture to pH 2 with HCI (10 mM)
to promote recyclization of the homoserine lactone ring.

HPLC analysis of AHLs and AHL-degradation products

HPLC analysis of AHLs and their degradation products
was performed as described before [17,20] on an analyti-
cal Cg reverse-phase preparative HPLC column

Page 11 of 13

(Kromasil C8; 250 x 4.6 mm) attached to a photodiode
array (PDA) system (Waters 996 PDA system operating
with a Millennium 2010 Chromatography Manager,
Waters, England) and eluted with acetonitrile/water iso-
cratic or gradient combinations as described before [17].

Identification of AHLs

AHLs were unequivocally identified by LC-MS/MS as
described before [17,42] using enhanced product trap
experiments (EPI) triggered by precursor ion scanning
between the m/z range 150-500 and in particular for the
fragment ion m/z 102 which is characteristic for the
homoserine lactone ring moiety. The EPI spectra (m/z
range 80-400) containing a fragment ion at m/z 102
were compared for the retention time and spectral prop-
erties to a series of corresponding synthetic AHL stan-
dards. The 3-hydroxy-AHLs were identified by
comparison with a synthetic standard based on the LC
retention times, the MS-MS fragmentation product ions
(IM+H-H,O] and m/z 102). 3-hydroxy-AHLs character-
istically lose a water molecule during MS fragmentation
generating a characteristic ion of [M-18] [17,43].

P. aeruginosa QQ co-culture assays

The ability of ginger rhizosphere isolates to attenuate P.
aeruginosa QS-regulated virulence determinants (elas-
tase and lectin A) were determined by growing cultures
of P. aeruginosa PAO1, GG2, GG4 and Sel4 separately
at 28°C for 24 h with shaking (220 rpm), normalizing at
an ODggg of 1.0 followed by co-culturing at a 1:1 ratio.
Total viable cell counts were carried out to ensure that
neither organism significantly reduced the growth of the
other.

The elastolytic activity of P. aeruginosa was deter-
mined as described before using elastin-Congo red
(ECR) as substrate. Briefly, 100 pl of cell free bacterial
spent culture supernatants from both mono-culture and
co-culture experiments were added separately to 900 pl
ECR buffer (100 mM Tris [pH 7.5], 1 mM CaCl,)
containing 20 mg of ECR and incubated with shaking at
37°C for 3 h. Insoluble ECR was removed by centrifuga-
tion at 7,000 x g for 5 min. The absorbance of the
supernatant was determined at OD,95. The expression
of lecA was determined using a P. aeruginosa lecA::lux
reporter strain [35] in a 96-well microtitre plate using
an automated combined luminometer/spectrometer
(Anthos Labtech LUCYI). Briefly, 200 pl of a 1:500 dilu-
tion of an overnight culture of the P. aeruginosa lecA::
lux reporter and either GG2, GG4 or Sel4 (100 pl from
each culture in co-culture experiments, or 200 pl in
monoculture experiments) were loaded into the plate
wells and luminescence and OD,95 were determined
every 30 min for 24 h. Each co-culture experiment was
carried out in triplicate and repeated at least twice.


http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/

Chan et al. BMC Microbiology 2011, 11:51
http://www.biomedcentral.com/1471-2180/11/51

Quenching of the pectinolytic activity of Er. carotovora
Inhibition of the pectinolytic activity of Er. carotovora
was carried out with modification as described before
[44,45] using potato tubers. Tubers were washed, steri-
lized with 70% v/v ethanol, then extensively rinsed with
sterile water and finally dried under sterile conditions.
Bacterial cells were grown overnight at 28°C in LB,
washed, resuspended and diluted in sterile saline to
ODgoo of 1.0. Bacterial suspensions (Er. carotovora
GS101 or the Er. carotovora AHL-synthase mutant
PNP22 [44]) (negative controls), monocultures or co-
cultured with GG2, GG4 or Sel4 were introduced
directly into the tubers using a 200-pl tip fitted on a
micropipette. Tubers were incubated at 25°C, 90%
humidity for 3 days. The results of the inoculation were
assessed by visual inspection after slicing the tubers.

Additional material

Additional file 1: Mass spectra AHLs produced by GG4. Extracts from
spent culture supernatants of GG4 were analysed by mass spectrometry.
The peak ion at m/z 102 is characteristic of the homoserine lactone ring (A,
B, E and F). By comparison with the corresponding synthetic standards (C,
D, G and H) the precursor ion at m/z 214.2 and fragment ion at m/z 113.0
suggest the presence of 3-oxo-C6-HSL (A); the precursor ion at m/z 228.2
and fragment ion m/z 109.1 are indicative of C8-HSL (B); the precursor ion
at m/z 226.2 [M-H,0] and fragment ion m/z 125.1 are indicative of 3-
hydroxy-C8-HSL (E); the precursor ion at m/z 242.2 and fragment ion of m/z
142.2 are indicative of C9-HSL (F). AU: Absorbance unit.

Abbreviations

AHL: N-acylhomoserine lactones; 3-oxo-C6-HSL: N-(3-oxo-hexanoyl)
homoserine lactone; C4-HSL: N-butanoylhomoserine lactone; C5-HSL: N-
pentanoylhomoserine lactone; C6-HSL: N-hexanoyl homoserine lactone; C7-
HSL: N-heptanoylhomoserine lactone; C8-HSL: N-octanoylhomoserine
lactone; C9-HSL: N-nonanoylhomoserine lactone; C10-HSL: N-
decanoylhomoserine lactone; C11-HSL: N-undecanoylhomoserine lactone;
C12-HSL: N-dodecanoylhomoserine lactone; C14-HSL: N-
tetradecanoylhomoserine lactone; 3-hydroxy-C4-HSL: N-(3-hydroxybutanoyl)
homoserine lactone; 3-hydroxy-C6-HSL: N-(3-hydroxyhexanoyl)homoserine
lactone; 3-hydroxy-C8-HSL: N-(3-hydroxyoctanoyl)homoserine lactone; 3-
hydroxy-C10-HSL: N-(3-hydroxydecanoyl)homoserine lactone; 3-hydroxy-C12-
HSL: N-(3-hydroxydodecanoyl)homoserine lactone; 3-hydroxy-C14-HSL: N-(3-
hydroxytetradecanoyl)homoserine lactone; A%-3-hydroxy-C14-HSL: N-(3-
hydroxy-9-cis- tetradecanoyl)homoserine lactone; A'%-3-hydroxy-C14-HSL: N-
(3-hydroxy-10-cis-tetradecanoyl)homoserine lactone; A''-3-hydroxy-C14-HSL:
N-(3-hydroxy-11-cis-tetradecanoyl)homoserine lactone; A'*-3-hydroxy-C14-
HSL: N-(3-hydroxy-13-cis-tetradecanoyl)homoserine lactone; CFU: colony
forming units, QS: quorum sensing, QQ: quorum quenching;
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