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Characterization of natural illuminants in
forests and the use of digital video

data to reconstruct illuminant spectra
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We describe illumination spectra in forests and show that they can be accurately recovered from recorded digi-
tal video images. Natural illuminant spectra of 238 samples measured in temperate forests were character-
ized by principal-component analysis. The spectra can be accurately approximated by the mean and the first
two principal components. Compared with illumination under open skies, the loci of forest illuminants are
displaced toward the green region in the chromaticity plots, and unlike open sky illumination they cannot be
characterized by correlated color temperature. We show that it is possible to recover illuminant spectra ac-
curately from digital video images by a linear least-squares-fit estimation technique. The use of digital video
data in spectral analysis provides a promising new approach to the studies of the spatial and temporal varia-
tion of illumination in natural scenes and the understanding of color vision in natural environments. © 2000
Optical Society of America [S0740-3232(00)02410-8]
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1. INTRODUCTION
The spectral distribution of daylight has been well char-
acterized by Judd et al.1 Their analyses, based on a com-
posite data set of daylight spectra (total of 622 samples
from Rochester, N.Y.; Enfield, England; and Ottawa,
Canada), show that only two characteristic vectors (eigen-
vectors, or principal components) and the mean spectrum
are sufficient to reconstruct the spectral distribution of
daylight. Their results have inspired the application of
principal-component analysis (PCA) to characterize re-
flectance spectra.2–5 Judd et al.1 also demonstrated that
the spectral distribution of daylight is fairly well charac-
terized by correlated color temperature, which led the
CIE to assign D55, D65, and D75 (correlated color tem-
peratures 5503, 6504, and 7504 K, respectively) as stan-
dard daylight spectra.6 Although the daylight spectra
analyzed by Judd et al.1 are very common light sources in
natural environments, these spectra represent light only
under open sky. In forests, as this light travels through
layers of leaves, its spectrum would be altered.7 Animals
live in forests, so the illuminants they encounter vary
with time and location. To understand physiological
mechanisms of color vision and color constancy, one must
study the spectral properties of illuminants in natural
habitats such as forests. In the first part of this study,
we measured 238 illuminant spectra in temperate forests
0740-3232/2000/101713-09$15.00 ©
and characterized these spectra using the methods of
Judd et al.1 We used these data to compare the spectral
properties of daylight and forest light.

To study the spatial variation of illumination, one must
measure all illuminant spectra within a given field of
view simultaneously. However, it is not practical to put
an array of spectroradiometers on the floors of forests and
to record thousands of spectra at one time. We relied on
recent developments in charge-coupled devices (CCD) to
reconstruct the required illuminant spectra. In the sec-
ond part of this study we illustrate a new method to re-
construct the illuminant spectra from many locations
within an image using the red/green/blue (RGB) values of
single pixels within images of a white cardboard sheet ac-
quired by a digital video (DV) camera in forests.

2. METHODS
A. Collection of Illuminant Spectra
Natural illuminant spectra of a total of 238 samples were
collected in the temperate forests of several state parks of
Maryland (including Patapsco, Greenbelt, and Cunning-
ham) in July and August of 1999. Illuminant spectra
were measured at different times of the day (from sunrise
to sunset), at various locations (including forest shade,
woodland shade, small gaps, and large gaps; see Ref. 7 for
2000 Optical Society of America
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details), and under different weather conditions (sunny
and cloudy days). Measurements were made with an
Ocean Optics S2000 spectroradiometer calibrated with
a standard light source (LS1CAL, Ocean Optics). The
S2000 has spectral resolution of 3 nm (the full width
at half-maximum). The optic fiber used was 200 mm
in diameter and 15 m in length. Light was collected with
a cosine collector (Ocean Optics) in front of the optic fiber.
All illuminant spectra were measured in quantum units
between 400 and 700 nm, smoothed with a Gaussian filter
(standard deviation 2 nm) and sampled at 1-nm in-
tervals. All data are available at the following web site:
http://umbc7.umbc.edu/;cronin/forest–illuminant.html.

B. Collection of Illuminant Images
A white cardboard square (20 3 20 cm, code 3X.32, Cres-
cent Cardboard Co.) was held at a 45° angle, 75 cm above
the forest floor. Images of this square, which represent
the distribution of the illuminants falling on it, were re-
corded by a Sony DV camera (DCR-VX1000) at the same
height as the white cardboard. To make sure that the il-
luminant spectra measured by the S2000 and the illumi-
nant images recorded by the DV camera corresponded, we
mounted the cosine collector in the center of white card-
board at the same angle (45° vertically) and collected data
sets simultaneously. We also chose locations in which
the illuminant was distributed as evenly as possible over
the surface of the cardboard, as visualized by eye. The
reflectance spectrum of the white cardboard was mea-
sured with an Ocean Optics S2000 spectroradiometer
with reference to a 100% diffuse white reflectance stan-
dard (Spectralon, Labsphere). The reflectance of the
white cardboard is generally flat across the spectral
range, except for the very short wavelength end [Fig. 1(a),
solid curve]. The angular reflectance function of the
white cardboard was examined by setting a light source
at 90° of elevation and measuring the reflectance between
90° and 10° of elevation. The surface of the white card-
board is reasonably uniform and approximately Lamber-
tian [Fig. 1(b)]. The spectral sensitivity functions of all
three CCD chips (RGB) of the DV camera were measured
in the laboratory with a monochromator and a calibrated
Ocean Optics S2000 spectroradiometer [Fig. 1(a), dashed
curves]. The DV camera was set up as follows: shutter
speed, 1/125 s; white balance, outdoor mode. Apertures
tested were f1.8, f2.8, f4, f5.6, f8, and f11. We minimized
any potential nonlinearity of the CCD for the extremes of
the intensity range by analyzing only the image whose
minimum and maximum intensities in all three channels
were greater than 30 levels but less than 220 levels, of a
possible total of 256 levels.

C. Principal-Component Analysis
The method of principal-component analysis (PCA) fol-
lows that of Judd et al.1 Illuminant spectra were nor-
malized to their spectral values at 560 nm. Then the
mean spectrum was subtracted from all the spectra, and a
set of orthonormal principal components was found with
Simonds’s algorithm.8 The spectra were approximated
as
SN~l! 5 S0~l! 1 (
i51

N

M iV i~l!, (1)

where l denotes wavelength, SN(l) is the approximated
illuminant spectrum with use of N principal components,
S0(l) is the mean spectrum, M i is the scalar multiple or
weight for the ith PC, and V i(l) is the ith PC or basis
function.

For each spectrum, the error of approximation was cal-
culated as

Er 5 AE
400

700

@S~l! 2 SN~l!#2dl/L, (2)

where Er is the root-mean-square error, S(l) is the actual
measurement of the illuminant spectrum, SN(l) is the
approximated spectrum, and L is the length of the inter-
val over which the integration is performed (300 nm in
this study).

D. Reconstruction of Illuminant Spectra
The method of reconstruction of illuminant spectra is
modified from that used by Vorobyev9 and Vorobyev
et al.10 for reconstruction of reflectance spectra. Here we
reconstructed illumination spectra from the DV camera
measurements using a least-squares procedure. This

Fig. 1. (a) Normalized spectral sensitivity functions of RGB
channels of our Sony DCR-VX1000 DV camera (dashed curves),
together with the reflectance spectrum of the white cardboard
(solid curve) used as a standard in this study. (b) Angular re-
flectance function of the white cardboard. The light source was
set at 90° elevation, and reflectance was measured between 90°
and 10° elevation. This plot gives reflectance at a wavelength of
550 nm, but the curve is similar for all other wavelengths.
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Fig. 2. Chromaticities of 238 natural illuminants measured in forests. The chromaticity diagram is based on CIE (1931) color match-
ing functions. (a) The overall chromaticity diagram. All illuminant spectra lie near the center of the diagram. The loci are con-
strained by a triangle with vertices at (0.250, 0.270), (0.325, 0.380), and (0.375, 0.360). (b) The central portion of the chromaticity dia-
gram. The solid curve indicates the approximate loci of daylight spectra derived from Judd et al.1 (y 5 2.870x –3.000x2 –0.275). The
dotted curve represents the quadratic regression line (y 5 4.226x –5.411x2 –0.458) that approximates loci of our forest illuminant spec-
tra.
method is based on direct estimation of the spectra rather
than on the estimation of the principal components.
Each RGB triplet from the average of the central 50
3 50 pixels of the white cardboard image (excluding the
central area occupied by the cosine collector of the S2000)
was normalized to its R value. Consequently, the data
obtained with the DV camera are described by a two-
dimensional vector (G/R, B/R), denoted q. Each illumi-
nant spectrum (ranging from 400 to 700 nm, at 1 nm in-
tervals) corresponding to each RGB triplet was
normalized to its spectral value at l560 . Thus the illumi-
nant is described by a 301-dimensional vector, denoted z.
Our goal was to find a linear transformation B̄ that maps
the two-dimensional vector q onto the 301-dimensional
vector z such that the mean error is minimal. Using vec-
tor notation we can rewrite the equation for the mean er-
ror [Eq. (2)] as

Er2 5 ^uz 2 B̄ qu2& 5 ^~z 2 B̄ q! • ~z 2 B̄ q!&, (3)

where the dot denotes the inner product, i.e., the sum or
the integral of the products of components of two vectors,
and ^...& denotes the average over the illuminant spectra
and division by the length of the interval L over which the
integration is performed. Equation (3) defines an error of
approximation as a function of a matrix B̄. In general, a
minimum (or a maximum) of a function can be found from
the condition that the first derivative of a function is
equal to zero. This method is well known for functions of
scalar variables. The same method is also valid in the
case of functions of matrices.11 For the sake of simplicity
we subtract from each illuminant spectrum the mean il-
luminant spectrum taken over all data z0 and from each
DV camera measurement the mean value, q0 . We de-
note z 2 z0 as zc and q 2 q0 as qc; then Eq. (3) can be
rewritten as

Er2 5 ^zc
• zc 2 2B̄qc

• zc 1 B̄qc
• B̄qc&. (4)
To find a derivative of Er2, we rewrite Eq. (4) in matrix
notation using common properties of the inner product:

Er2 5 Tr~^zc 3 zc& 2 ^qc 3 zc&TB̄T

2 B̄^qc 3 zc& 1 B̄^qc 3 qc&B̄T!, (5)

where Tr denotes the trace (i.e., the sum of diagonal en-
tries of a square matrix), index T denotes the transpose,
3 denotes a direct product of the vectors (i.e., ^qc 3 qc& is
a matrix with the elements ^qi

cqk
c&; ^zc 3 zc& is a function

of two variables, l1 and l2 , given by ^zc(l1)zc(l2)&; ^qc

3 zc& is given by 2 functions ^qi
czc(l)&). The rules of dif-

ferentiating functions of matrixes are similar to those for
functions of scalars.11 An application of these rules gives

d~Er2!/dB̄T 5 2@2^qc 3 zc&T 1 B̄^qc 3 qc&#. (6)

To find a solution of the equation d(Er2)/dB̄T 5 0, we
multiply Eq. (6) on the right-hand side by ^qc

3 qc&21. This gives the following expression for the
transformation matrix B̄:

B̄ 5 ^qc 3 zc&T^qc 3 qc&21. (7)

Thus the approximated illuminant spectrum, zapprox , can
be written as

zapprox 5 B̄qc 1 z0 , (8)

where the matrix B̄ is given by Eq. (7).

3. RESULTS
A. Characterization of Forest Illuminant Spectra
The chromaticity loci of 238 natural illuminant spectra
measured in forests are plotted in the CIE 1931 chroma-
ticity diagram (Fig. 2). The loci are constrained by a tri-
angle with vertices at (0.250, 0.270), (0.325, 0.380), and
(0.375, 0.360) [Fig. 2(a)]. The loci of 622 daylight spectra
used by Judd et al.1 in their Fig. 2 lie nicely on the curve
given by y 5 2.870x 2 3.000x2 2 0.275 [solid curve in
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Fig. 2(b) here]. On the basis of this observation, Judd
et al.1 proposed that daylight could be described with only
one parameter, namely the color temperature. In com-
parison with the loci of the daylight spectra,1 the loci of
our forest illuminant spectra tend to trail off toward the
green side of this diagram [Fig. 2(b)]. Quadratic regres-
sion reveals that the dependence between the coordinates
of the chromaticity diagram is given by y 5 4.226x
2 5.411x2 2 0.458 [dotted curve in Fig. 2(b)], which dif-
fers markedly from the curve on which the daylight spec-

Fig. 3. PCA of 238 forest illuminant spectra. (a) The first four
characteristic vectors (principal components) derived from all il-
luminant spectra measured in forests. Vector 1 (V1, solid curve)
explains 65.07% of the total variance, vector 2 (V2, dashed curve)
explains 31.88% of the total variance, vector 3 (V3, dotted–
dashed curve) explains 1.47% of the total variance, and vector 4
(V4, dotted curve) explains 1.03% of the total variance. (b) The
mean spectrum of 238 forest illuminant spectra.
tra lie. It is important to note that loci of many forest
illuminants, especially of those having greenish colors,
deviate from the curve given by regression. Thus colors
of forest illuminants cannot be described accurately by
only one parameter.

To characterize the spectral properties of natural illu-
minants in forests, we used PCA, also termed character-
istic vector analysis, which is identical to the method
Judd et al.1 used to analyze their daylight spectra. The
spectra were approximated by a sum of mean and princi-
pal components (Fig. 3). The accuracy of the approxima-
tion [Eq. (2)], depending on the number of components
used, is given in Table 1. As for Judd et al.,1 the forest
illuminant spectra can be well approximated by two char-
acteristic vectors (Fig. 4 and Table 1).

B. Relation between Scalar Multiples and Chromaticity
Coordinates
In the case of forest light, the spectrum of illumination
can be predicted from its chromaticity coordinates (x, y),
because forest illuminants can be approximated with high
accuracy by two parameters, M1 and M2 (Fig. 4). To find
a map of M1 and M2 onto (x, y), and of (x, y) onto M1 and
M2 , we use the method described by Judd et al.1 Any
spectrum reconstructed from a mean and two scalar mul-
tiples is computed as [see Eq. (1)]

Sapprox~l! 5 S0~l! 1 M1V1~l! 1 M2V2~l!, (9)

and the tristimulus value X of the spectrum can be writ-
ten as

X 5 E
400

700

Sapprox~l!x~l!dl

5 E
400

700

@S0~l! 1 M1V1~l! 1 M2V2~l!#x~l!dl, (10)

where the x(l) is one of the color matching functions of
the 1931 CIE standard observer for colorimetry.6 Note
that we performed PCA with spectra recorded in quan-
tum units. Thus the color matching functions were con-
verted from energy units into quantum units. Since the
scalar multiples M1 and M2 are constants independent of
Table 1. Errors of the Estimation of Forest Illuminant Spectra Based on the Different Linear
Combinations of the Mean Spectrum and the First Four Principal Components of Forest Illuminants

and of Judd et al.a Daylight Spectra

Number of
PC’s Used

Meanb 1 Quartile Median 3 Quartile

Forest Judd Forest Judd Forest Judd Forest Judd

Mean Only 0.1371 0.1606 0.0641 0.0931 0.1119 0.1443 0.1555 0.1846
1 0.0815 0.1210 0.0302 0.0543 0.0509 0.0857 0.0888 0.1334
2 0.0208 0.0569 0.0125 0.0259 0.0156 0.0339 0.0220 0.0632
3 0.0149 0.0398 0.0087 0.0225 0.0118 0.0270 0.0155 0.0422
4 0.0082 0.0388 0.0047 0.0208 0.0061 0.0271 0.0082 0.0402

a Ref. 1
b ‘‘Mean’’ is the average root-mean-square difference of the spectra.
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Fig. 4. Approximation of forest illuminant spectra. Solid curves, illuminant spectrum measured by the S2000 spectroradiometer nor-
malized to the spectral value at 560 nm. Dotted–dashed curves, reconstructed illuminant spectrum based on the linear combination of
the first two principal components and the mean spectrum. Dashed curves, forest illuminant spectra approximated with the first two
PCs of Judd et al.1 Dotted curves, illuminant spectrum reconstructed from the RGB values in the DV images of the white cardboard
square. The spectrum is selected to represent a typical forest spectrum from one of four classes: (a) sunlight, (b) skylight, (c) green
light shining through leaves, (d) a mixture of skylight and green light.
wavelength for any reconstructed curve, the expression
for X can be rewritten as

X 5 X0 1 M1 X1 1 M2 X2 , (11a)

where X0 is the X-tristimulus value of the mean spec-
trum, and X1 and X2 are the X-tristimulus values of the
two characteristic vectors; for example, X1 5 *400

700V1(l)
• x(l)d l. Analogous expressions are valid for Y and Z
components:

Y 5 Y0 1 M1Y1 1 M2Y2 , (11b)
Z 5 Z0 1 M1Z1 1 M2Z2 . (11c)

The connection between scalar multiples M1 and M2 , and
chromaticity coordinates (x, y) follows directly from Eqs.
(11) and from definitions: x 5 X/(X 1 Y 1 Z), y
5 Y/(X 1 Y 1 Z). A convenient form of connection, for
X 1 Y 1 Z abbreviated as S, is
x 5
X0 /S0 1 M1X1 /S0 1 M2X2 /S0

1 1 M1S1 /S0 1 M2S2 /S0
,

y 5
Y0 /S0 1 M1Y1 /S0 1 M2Y2 /S0

1 1 M1S1 /S0 1 M2S2 /S0
. (12)

To find the scalar multiples M1 and M2 required to yield
a reconstructed spectrum of an illuminant having any ar-
bitrarily chosen values x and y of chromaticity coordi-
nates, it is necessary to solve for M1 and M2 from Eqs.
(12). This solution is given by the following equations:
M1 5
X0Y2 2 X2Y0 1 ~Y0S2 2 Y2S0!x 1 ~X2S0 2 X0S2!y

X2Y1 2 X1Y2 1 ~Y2S1 2 Y1S2!x 1 ~X1S2 2 X2S1!y
,

M2 5
X1Y0 2 X0Y1 1 ~Y1S0 2 Y0S1!x 1 ~X0S1 2 X1S0!y

X2Y1 2 X1Y2 1 ~Y2S1 2 Y1S2!x 1 ~X1S2 2 X2S1!y
. (13)
The tristimulus values of mean and of the first two
characteristic vectors have been calculated and found
to be as follows: X0 5 95.8557, Y0 5 102.154,
Z0 5 113.802, X1 5 0.796038, Y1 5 1.18499, Z1
5 12.1479, X2 5 3.91398, Y2 5 2.70927, Z2 5 3.26635.
Substitution of these tristimulus values into Eqs. (12) and
(13) yields
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x 5
0.30742 1 0.00255M1 1 0.01255M2

1.00000 1 0.04531M1 1 0.03172M2
,

y 5
0.32276 1 0.00380M1 1 0.00869M2

1.00000 1 0.04531M1 1 0.03172M2
, (14)

M1 5
2140.1297 1 165.4801x 1 272.4502y

2.4813 1 26.5600x 2 47.4278y
,

M2 5
232.2696 2 1073.8x 1 1106.1y

2.4813 1 26.5600x 2 47.4278y
. (15)

C. Comparison between Forest Illuminant Spectra and
Standard Daylight Spectra
To quantify the differences between our forest illuminant
spectra and the standard daylight spectra of Judd et al.,1

we consider two methods: (i) comparison of the span of
the subspaces of principal components derived from both
sets of illuminant spectra and (ii) comparison of the accu-
racy of forest illuminant spectra approximated by princi-
pal components of Judd et al.1 with the accuracy of our
approximations.

It is important to note that Judd et al.1 used energy
units in describing their daylight spectra, whereas we
used quantum units in describing our forest illuminant
spectra. Because visual processing starts with photon
detection, the use of quantum units has direct benefits in
vision research.12,13 To make the results comparable, we
converted our forest illuminant spectra into energy units
and repeated the PCA (Fig. 5). Furthermore, Judd et al.1

analyzed their daylight spectra in the spectral range from
300 to 830 nm. Thus their principal components are not
orthogonal in the spectral range used in the present study
(400–700 nm). We orthogonalized the principal compo-
nents of their standard daylight spectra using a Gramm–
Schmidt algorithm11 (Fig. 5). This method leaves the
first principal component invariant. Then a function
that is orthogonal to the first principal component can be
found as a linear combination of the first and second prin-
cipal components. This procedure is repeated for further
principal components. For any given number of basis
functions, the Gramm–Schmidt algorithm does not alter
the space spanned by these basis functions; rather, it only
changes the coordinate system.

Fig. 5. Comparison of the first two principal components of our
238 forest illuminant spectra (in energy units) and 622 daylight
spectra of Judd et al.1 (in energy units).
Let Fn be a subspace defined by n basis functions of our
forest illuminant spectra, and Dn be the subspace of n ba-
sis functions of the standard daylight spectra of Judd
et al.1 The fact that the basis functions of the two sub-
spaces differ substantially does not necessarily mean that
the two subspaces are different. If the basis functions of
Fn can be represented as a linear combination of those of
Dn , then the two subspaces are identical. Thus the in-
spection of basis functions themselves does not allow us to
conclude whether the two subspaces are different. To
compare the subspaces rather than their basis functions,
we use the following method.

Generally, the larger the distance between vectors
in these subspaces, the more different the subspaces
are. The distance between the vectors depends on their
length and orientation. To quantify the distance be-
tween subspaces, we consider a distance d of a unit vector
in Fn, a to its projection onto Dn, aD. If a belongs to
both subspaces Fn and Dn , then a 5 aD and d 5 0. If a
is orthogonal to aD , then d 5 1. The magnitude of the
maximum of d over the orientations of a, dmax , gives the
measure of the difference between Fn and Dn . In the
case of two planes (two-dimensional subspaces of a three-
dimensional space), dmax is equal to the sine of the angle
between the planes. The method for finding dmax is given
in Appendix A. Note that the value of dmax does not de-
pend on whether the distance between the vector in Fn
and its projection onto Dn or between the vector in Dn and
its projection onto Fn is considered (see Appendix A).
Table 2 gives the results of the comparison. The first
components are similar to each other, and the subspaces
given by two and by three components differ by 0.54 and
by 0.4 of the maximum value of 1, respectively. When
four-dimensional subspaces are compared, the distance
approaches 1. This result indicates that the subspaces of
the two sets of illuminant spectra differ significantly.

The alternative way to compare our forest illuminant
spectra and the daylight spectra of Judd et al.1 is to ex-
amine the accuracy of approximated forest illuminant
spectra by using the principal components of Judd et al.1

derived from their daylight spectra. If both sets of spec-
tra were similar, one would expect that the approxima-
tion of forest illuminant spectra using the principal com-
ponents of Judd et al.1 will give a fairly high accuracy.
We illustrate the differences in the accuracy of recon-
struction by two sets of principal components, using four
typical forest illuminant spectra. They were selected to
represent direct sunlight [Fig. 4(a)], skylight from a clear
blue sky [Fig. 4(b)], green light shining through leaves
[Fig. 4(c)], and a mixture of skylight and green light [Fig.
4(d)]. Sunlight and clear blue sky can be approximated
nicely by the first two principal components of Judd et al.1

Table 2. Distances between the Subspaces
Spanned by Basis Functions of Forest Illuminant

Spectra and Judd et al.a Daylight Spectrab

Number of Basis Functions Used 1 2 3 4

Distance 0.1779 0.5494 0.4049 0.9060

a Ref. 1.
b See Appendix A for details.
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(Fig. 4, upper row). However, if the spectra have a
550-nm hump (Fig. 4, lower row), corresponding to the fil-
tering effects of leaves, then the approximation using the
first two principal components of Judd et al.1 fails to re-
construct the illuminant spectra. The error of approxi-
mation for all 238 forest illuminant spectra by the princi-
pal components of Judd et al.1 is given in Table 1.

D. Reconstruction of Forest Illuminant Spectra From
the RGB Values
We find that it is possible to map accurately the lower-
dimensional RGB values of the white cardboard images to
the higher-dimensional spectra of the illuminants. This
is because (i) natural illuminants in forests are nicely fit-
ted with two characteristic vectors and the mean spec-
trum (Table 1 and Fig. 4); (ii) the spectral sensitivity func-
tions of the three CCD chips of the DV camera have
broadband sensitivities, with lmax at 450, 520, and 585
nm for B, G, and R channels, respectively [Fig. 1(a),
dashed curves]; and (iii) the reflectance spectrum of the
white cardboard is reasonably flat across the visible range
[Fig. 1(a), solid curve]. Also, reflectance from the white
cardboard represents all illumination falling on each
point of its surface reasonably accurately because its sur-
face is approximately Lambertian [Fig. 1(b)].

With Eq. (7), we computed the transformation matrix B̄
by using 238 RGB triplets of images of the white card-
board paired with 238 illuminant spectra. To recon-
struct each illuminant spectrum from the RGB triplet,
Eq. (8) was used. Figure 3(b) shows the mean illuminant
spectrum, z0 ; Fig. 6 shows the two vectors of transforma-
tion matrix, B̄; and the values for q0 are 1.0873 and
0.9880 for G/R and B/R, respectively. Overall, the ap-
proximated illuminant spectra (Fig. 4, dotted curves) fit-

Fig. 6. Two vectors of the transformation matrix B̄. Vector B1
(solid curve) corresponds to the G/R value, and vector B2 (dashed
curve) corresponds to the B/R value in Eq. (8) (see text for de-
tails).

Table 3. Errors of the Estimation of Forest
Illuminant Spectra Based on the Direct
Transformation of RGB Values Derived

in This Study

Meana 1 Quartile Median 3 Quartile

0.0599 0.0301 0.0428 0.0582

a ‘‘Mean’’ is the average root-mean-square difference of the spectra.
ted by a linear least-squares-fit estimation are very close
to the measured spectra (Fig. 4, solid curves). This ap-
proximation is accurate for all 238 forest illuminant spec-
tra. The error of the estimation of forest illuminant spec-
tra based on the direct transformation of RGB values
derived in this study is shown in Table 3.

Reconstruction from the camera data is inevitably less
accurate than reconstruction from the principal compo-
nents. Two factors limit the accuracy of reconstruction.
First, the measurements are noisy. Second, the spectral
sensitivities of the RGB channels are not ideally fitted to
the principal components (i.e., they also receive inputs
from the principal components of higher orders). It is in-
teresting to compare a two-dimensional subspace defined
by a transformation matrix B̄ with the subspace of the
first two principal components of forest illuminants. If
the subspace of B̄ is similar to the subspace of the first
two principal components, we can conclude that the sen-
sitivities of camera do not receive significant input from
the higher-order components. Calculations show that
the distance between the subspaces is only 0.044 of the
maximum value of 1, which indicates that the sensitivi-
ties of camera are well suited for the measurements of il-
luminant spectra.

4. DISCUSSION
Illumination in forests is potentially more complex than
that in open terrains.7 In addition to regions illuminated
by direct sunlight or in the shadow of opaque objects,
many regions in forests are illuminated by light filtered
through foliage. The illumination spectrum depends,
therefore, on the physical structure of the forest (whether
it is a rainforest or temperate woodland), on the species of
trees present and the time of year, and on the location in
the forest. Endler7 recognized the importance of varia-
tions in illumination to forest biology. He collected di-
verse light spectra in forests worldwide and defined five
different categories of spectra: forest shade, woodland
shade, small gaps, large gaps, and dawn/dusk. Our 238
forest illuminant spectra can readily be assigned to En-
dler’s categories. By doing PCA on these forest illumi-
nant spectra, we can proceed to describe the spectral
properties of illuminants in forests and to compare them
with the spectral properties of daylight characterized ear-
lier by Judd et al.1

In general, forest illuminant spectra, like the daylight
spectra of Judd et al.,1 can be accurately approximated
with only two characteristic vectors and the mean spec-
trum (Fig. 4, dotted–dashed curves). There are two im-
portant differences between forest and daylight illumi-
nants. First, the chromaticity loci of forest illuminants
deviate to the green from the loci of daylights, and unlike
the daylight spectra the forest spectra cannot be accu-
rately described by one parameter. Second, low-
dimensional subspaces of forest spectra differ from those
of daylight, and as a result the accuracy of approximation
of forest spectra by principal components derived from
daylight spectra is poor compared with the accuracy of ap-
proximation of forest spectra by their own principal com-
ponents. These results point to a fundamental difference
between forest illuminants and skylight in open terrain.
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We also derived a formal connection between the scalar
multiples and the chromaticity coordinates of our forest
illuminant spectra, as Judd et al.1 did for their daylight
spectra. These expressions provide a convenient way to
access the forest illuminant spectra for colorimetric appli-
cation.

In the second part of this study we illustrated a method
to reconstruct illuminant spectra directly from the RGB
values of a white cardboard image acquired from the DV
camera. Linear methods of approximation of spectral
data are widely used, and different tasks require different
models.14,15 Marimont and Wandell15 developed a
method of linear approximation of reflectance spectra
that minimizes the reconstruction error of sensor re-
sponses. In this case it was assumed that the spectra
were known, and the goal was to develop the most eco-
nomical representation. To find the best linear model,
Marimont and Wandell used a least-squares method.
We also used a least-squares method, but our task was
different. We reconstructed the illuminant spectra,
given that the responses of the sensors were known.
Theoretically, the best possible linear approximation with
the minimal number of parameters is achieved by princi-
pal components. In reality, it is impossible to achieve the
same accuracy if spectra are reconstructed from a limited
number of measurements, because the measurements are
noisy and sensors are not ideally tuned to the set of spec-
tra. We showed that the functions used for reconstruc-
tion of the illuminant from the RGB data are close (but
not identical) to the subspace of the first two principal
components, which indicates that the spectral sensitivi-
ties of RGB channels of the DV camera are well suited for
the reconstruction of forest illuminations.

We used an empirical relation between the RGB data
and the illumination data and found a linear algorithm
that minimizes the error of approximation. This method
gives the best performance for the given sensitivities of
the RGB channels and the accuracy of measurements.
Previously, a similar algorithm of reconstruction had
been derived by theoretical calculations based on statis-
tics of spectra given by PCA and on the shapes of the
spectral sensitivities of spectral channels.9,10 Whereas
Vorobyev et al.9,10 approximated the spectra on absolute
scale, we considered the spectra normalized to unity at
560 nm. This implies that we had to exclude the inten-
sity domain from the measurements before using them for
approximation. We did this by dividing each of the RGB
triplet values by its R value. That is, a division (a non-
linear transformation) was applied both to the spectra
and to the RGB data before mapping of one data set to an-
other was found. Nevertheless, a linear transformation
accurately related the RGB data to spectra. This pro-
vides an economical method for measurements of spatial
and temporal variations of illumination.

APPENDIX A
Consider n-dimensional subspaces Fn and Dn . Let a be
a unity vector in the subspace Fn and aD be a projection of
a onto Dn . The distance d between a and aD is defined
as
d2 5 ia 2 aDi2 5 ~a 2 aD! • ~a 2 aD!

5 a2 2 2aD • a 1 aD
2. (A1)

From a definition of projection, it follows that aD • a
5 aD

2, and a2 5 1, because we defined a as a unity vec-
tor. Thus

d2 5 1 2 aD
2. (A2)

Our goal is to find a maximum of d over all possible ori-
entations of a. This maximum is reached when aD is
minimal.

We express a in the coordinate frame of orthonormal
basis vectors of Fn , un and express aD in the coordinate
frame of orthonormal basis vectors of Dn , vn :

a 5 (
k51

n

akuk , (A3)

where ak is a projection of a onto uk . Similarly,

aD 5 (
i51

n

aD
ivi , (A4)

where aD
i is a projection of a onto vi . Note that aD

i

5 avi . Substitution of Eq. (A3) into Eq. (A4) gives

aD 5 (
k51

n

(
i51

n

ak~uk • vi!vi . (A5)

Thus

aD
2 5 (

k51

n

(
i51

n

(
j51

n

ak~uk • vi!~uj • vi!a
j. (A6)

Let W be a matrix with the elements (uk • vi). Then we
can rewrite Eq. (A6) as

aD
2 5 a W WTa 5 a M a, (A7)

where index T denotes transpose and M 5 W WT. Be-
cause M is a symmetrical matrix, it can be transformed to
diagonal form by a rotation of the coordinate frame. In
this new coordinate system, Eq. (A7) can be rewritten as

aD
2 5 (

k51

n

~ ãk!2Lk , (A8)

where Lk denotes the eigenvalues of M and ãk denotes
the coordinates of vector a in the new coordinate frame.
Because a is a unity vector, S(ãk)2 5 1. It is easy to see
that aD

2 reaches its minimum when a is parallel to the
coordinate axes corresponding to the minimal of eigenval-
ues. In this case, one of ãk is equal to unity, while others
are equal to zero. Thus the minimum of aD

2,

~aD
2!min 5 Lmin , (A9)

where Lmin denotes the minimal eigenvalue of matrix M.
Substitution of Eq. (A9) into Eq. (A2) gives the following
expression for the maximal distance:



Chiao et al. Vol. 17, No. 10 /October 2000 /J. Opt. Soc. Am. A 1721
dmax 5 A~1 2 Lmin!. (A10)
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