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ABSTRACT 

For characterization of negative exponential distribution one needs any arbitrary non-constant function only in place of 
approaches such as identical distributions, absolute continuity, constant regression of order statistics, continuity and li- 
near regression of order statistics, non-degeneracy etc. available in the literature. Path breaking different approach for 
characterization of negative exponential distribution through expectation of non-constant function of random variable is 
obtained. An example is given for illustrative purpose. 
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1. Introduction 

Knowing characterizing property may provide unexpec- 
tedly accurate information about distributions and one 
can recognize a class of distributions before any statisti- 
cal inference is made. This feature of characterization of 
probability distributions is peculiar to characterizing pro- 
perty and attracted attention of both theoretician and ap- 
plied workers but there is no general theory of it. 

Various approaches were used for characterization of 
negative exponential distribution. Among many other peo- 
ple, Fisz [1], Tanis [2], Rogers [3] and Fergusion [4] us- 
ed properties of identical distributions, absolute continui- 
ty, constant regression of adjacent order statistics, linear 
regression of adjacent order statistics of random variables 
and characterized negative exponential distribution. Us- 
ing independent and non-degenerate random variables 
Fergusion ([5,6]) and Crawford [7] characterized nega- 
tive exponential distribution. Linear regression of two 
adjacent record values used by Nagaraja ([8,9],) were 
different from two conditional expectations, conditioned 
on a non-adjacent order statistics used by Khan [10] to 
characterize negative exponential distribution. 

In this research note Section 2 is devoted for charac- 
terization based on identity of distribution and equality of 
expectation function randomly variable for a negative ex- 
ponential distribution with probability density function 
(pdf). 
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where a b      are known as constants, e x  is 
positive absolute continuous function and e is every- 
where differentiable function. Since derivative of e  is 
positive, the range is truncated by   from left e 0b  . 

2. Characterization 

Theorem 2.1 Let X  be a random variable with distri- 
bution function F . Assume that is continuous on the 
interval 

F

 ,a b , where a b    . Let  X  and 
 g X  be two distinct differentiable and intregrable func- 

tions of X on the interval  ,a b  where  
and moreover 

a b   
 g X  be non constant. Then 

       d dE g X X g X g         (2.1) 

is the necessary and sufficient condition for pdf  ;f x   
of F  to be  ;f x   defined in (1.1). 

Proof Given  ;f x   defined in (1.1), for necessity 
of (2.1) if  X  is such that    g E X     where 
 g   is differentiable function then 

     ; d
b

g X f x x


             (2.2) 

Differentiating with respect to   on both sides of 
(2.2), replacing X  for   and simplifying one gets 
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which establishes necessity of (2.1). Conversely given 
(2.1), let  ;k x   be such that 

       d d ;
b

dg g x g x x k x x


         (2.4) 

which can be rewritten as 
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which reduces to 
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Hence 

  ; e de dxk x x    .          (2.7) 

Since ex  is increasing integrable and differentiable 
function on the interval  with  the fol- 
lowing identity holds 

 ,a b 0e b 

    e d e d d
b xg g x x x


    



.       (2.8) 

Differentiating  e x g x  with respect to x and sim- 
plifying (2.8) after taking de dx x  as one factor, (2.8) 
reduces to 

     ; d
b

g x k x x


    ,          (2.9) 

where  X  is a function of X  only derived in (2.3) 
and  ;k x   is a function of x  and   only derived in 
(2.7). 

Since ex  be increasing integrable and differentiable 
function on the interval   where  
and since 

,a b a b    
de dx x  is positive intregrable function on 

the interval  where  with  ,a b a b     e 0b   
and integrating (2.7) over the interval  on both 
sides, one gets (2.7) as 

 ,b

   ; e de d ;xk x x a x b            (2.10) 

and 

 1 ;
b
k x x


  d . 

Substituting de dx x  in  ;k x   derived in (2.10), 
 ;k x   reduces to  ;f x   defined in (1.1) which 

establishes sufficiency of (2.1). 
Remark 2.1 Using  X  derived in (2.3), the 
 ; f x   given in (1.1) can be determined by 

         d dM X g x x x g X       (2.11) 

and pdf is given by 

      ; d df x T x x T           (2.12) 

where  T x  is decreasing function for  
with 

a b    
 T b 0  such that it satisfies 

    d log dM X T X    X .       (2.13) 

Illustrative Example: Using method described in the 
remark characterization of negative exponential distribu- 
tion through survival function      e tg F       is 
illustrated. 

   e t Xg X    

         d d e et X t XX g X g X X     0      

         d dM X g X X f X g X 1     

    d log e d 1X X M X   
 

  e XT X    

   ; e ;xf x a   x b     

3. Conclusion 

To characterize pdf defined in (1.1) one needs any arbi- 
trary non-constant function of X  which should only be 
differentiable and integrable. 
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