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Mesenchymal stem cells (MSCs) are multipotent cells capable of di	erentiating into multiple cell lineages and contributing to
tissue repair and regeneration. Characterization of the physiological function ofMSCs has been largely hampered by lack of unique
markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate 
lament protein expressed in the early stages of
development. Increasing studies have shown a particular association between Nestin andMSCs. Nestin could characterize a subset
of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells
(HSCs). Nestin expressing (Nes+) MSCs also play a role in the progression of various diseases. However, Nes+ cells were reported
to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population
comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the
progress of the research onNestin, particularly the function of Nes+ cells in bonemarrow, and discuss the feasibility of using Nestin
as a speci
c marker for MSCs.

1. Introduction

Adult stem cells as early stage and undi	erentiated cells
are capable of developing into various types of cells and
preserve the potential for regenerating or repairing damaged
tissues [1]. More and more stem cells in di	erent tissues
have been recognized including neural stem cells (NSCs)
[2], HSCs [3], dental pulp stem cells (DPSCs) [4, 5], and
other tissue stem cells. During embryonic development,
three germ layers (mesoderm, endoderm, and ectoderm)
exist and make up the entire body through di	erentiating
into di	erent lineages [6]. Mesoderm as cells of the middle
layer in the embryo will develop into bone, muscle, blood,
kidneys, connective tissue, and other related structures [7].
MSCs and HSCs are thought to be derived from mesoderm
[8]. MSCs are an example of multipotent stem cells de
ned
as nonhematopoietic, plastic-adherent, colony-forming cells
and have the capacity to self-renew and di	erentiate into
osteoblastic, chondrocytic, and adipocytic cells [9–11]. In
1991, the presence of MSCs in bone marrow was discovered
by Caplan [12]. �erea�er, MSCs were successively isolated

from many other tissues and organs, such as heart [13],
lung [14], umbilical cord tissue [15], peripheral blood [16],
adipose tissue [17], andmuscle [18].�e umbilical cord tissue
contains the youngest, most primitiveMSCs that have a great
value for clinical application [19]. Although many markers
have been reported to identify MSCs, no single marker is
unique and generally accepted (Table 1). �us, their location,
origination, and physiological functions in vivo have not
been fully characterized. Nestin is an intermediate 
lament
protein originally described as a NSCs marker that appeared
during development of the central nervous system (CNS) and
has been downregulated once Nes+ cells di	erentiate into
neurons or glial cells [20–22]. Lendahl et al. 
rst discovered
this gene speci
cally expressed in neuroepithelial stem cells
distinguishing from the di	erentiated cells in the neural tube.
�en Nestin was found to be expressed not only in NSCs,
but also in many other types of cells including endothelial
cells [23], cancer cells [24], 
broblasts [25], and other tissues
such as tooth bud, testes, hair follicle sheath, skin, pancreas,
and newly formed blood vessels [26–29]. Several studies
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Table 1: Heterozygous cell population of MSC surface markers.

Surface antigen Cell types

Stro-1 Endothelial cells [51, 52]

Sca-1 (stem cell
antigen-1)

HSCs [53], cancer stem cells (CSCs)
[54]

CD13 (aminopeptidase
N)

CSCs [55], myeloid cells [56]

CD29 (integrin beta-1) NSCs [57], CSCs [58]

CD44 T cells [59], CSCs [60, 61]

CD73 (NT5E)
Endothelial cells [62], lymphocytes
[63]

CD90 (�y-1) T cells [64]

CD105 (endoglin)
HSCs [65], endothelial cells [66],
macrophages [67]

CD106 (VCAM-0031) Endothelial cells [68]

CD146 (MCAM)
T cells [69], pericytes [70], endothelial
cells [71]

CD166 (ALCAM) Epithelial cells [72, 73]

CD271 (LNGFR) NSCs [74], CSCs [75]

PDGFR� (CD140a) Fibroblasts [76], smooth muscle cells
[77]

Leptin R Adipocytes [78]

have shown that cells that expressed the Nestin-GFP (Nes-
GFP) transgene behave functionally as MSCs and are closely
associated with HSC quiescence and maintenance in bone
marrow [30–32]. A recent study, however, reported that Nes+

cells could mark both endothelial and nonendothelial cells
during endochondral ossi
cation [33]. Some research groups
also claimed that Nestin was expressed in EPCs of di	erent
tissues [34]. Considering this complicated situation, in this
review, we will analyze recent research evidence regarding
Nestin as a marker of MSCs and discuss the speci
c function
of Nes+ cells in bone marrow.

2. Basics of Nestin

Nestin is de
ned as a class VI intermediate 
lament pro-
tein [20]. Intermediate 
laments are major components in
cytoskeleton same as microtubules and micro
laments [35].
Based on their molecular structure, these proteins can be
grouped into six main types (I–VI). Types I and II are acidic
and basic keratin which can be subdivided into two groups:
epithelial keratins and trichocytic keratins. Type III includes
desmin, peripherin, vimentin, and glial 
brillary acidic pro-
tein (GFAP), which can form homo- or heteropolymeric
proteins. Type IV contains four components: �-internexin,
neuro
laments, synemin, and syncoilin. Type V is mainly
nuclear lamins [36–38]. Nestin is the only protein in mam-
mals comprised of type VI intermediate 
laments with 1618
amino acids and a molecular weight of 176 kDa [39]. A short
N-terminus and an unusually long C-terminus in Nestin
structure result in complex binding to an array of structural
proteins. N-terminus is known to be integrant for 
lament

protein assembly [40]. �e short N-terminus of Nestin
leads to preferential intermediate 
laments formation with
heterodimers and heterotetramers rather than homodimers.
�e long C-terminal portionmay function as links or bridges
between intermediate 
laments and microtubules [41, 42].
�e expression of Nestin was reported to be upregulated
in most mitotic cells and downregulated in all cells upon
di	erentiation. �e reason may be that Nestin is reorganized

during mitosis by cdc2-mediated �r316 phosphorylation
[43].

3. Nestin in MSCs

Mesenchymal stem cells (MSCs) are multipotent cells capa-
ble of di	erentiating into multiple cell lineages such as
osteoblasts, adipocytes, chondrocytes, and tenocytes [44].
�e precise standardized protocols for isolation and expan-
sion of these cells are still missing due to the lack of
accepted unique marker. Sca1, Stro-1, CD73, CD90, CD105,
and many other markers claimed speci
c for MSCs before
are eventually proven to be unspeci
c [45]. Tondreau’s group
initially reported that BM-derived MSCs expressed Nestin
before di	erentiation in vitro [46]. Wiese et al. showed
that Nestin was enriched in ES-derived progenitor cells
that could develop into neuroectodermal, endodermal, and
mesodermal lineages [28]. �erea�er, Méndez-Ferrer et al.
presented abundant evidence to con
rm that bone marrow
MSCs could be identi
ed by Nestin [31]. �ey found Nes+

MSCs in the bone marrow contained all of the mesenchymal
progenitor activity (
broblastic colony-forming units, CFU-
Fs) and had the potential of self-renewal and trilineage di	er-
entiation.Nes+MSCs colocalizedwithHSCs supportingHSC
maintenance and homing [47, 48]. Because of its intracellular
expression in cells, the isolation of Nes+ MSCs for culture or
even clinical therapy is still a challenge. �erefore, Pinho et
al. suggested to combine cell surface proteins platelet-derived
growth factor receptor-� (PDGFR-�), CD51 (also called
ITGAV) for identifying Nes+ MSCs [49]. �ey validated that
PDGFR-�, CD51, and Nestin were coexpressed on CD146+

cells which represented a subtype of MSCs in humans [50]
and on a large cluster of perivascular stromal cells in mice.
�ese cells in the bone marrow represented most MSCs
that were essential for HSCs expansion. Notably, researchers
found distinct Nes+MSCs distributed on distinct vessels [30].
Based on cell �uorescence intensity and cellular morphology,

two distinct types of Nes-GFP+ cells (Nes-GFPbright and Nes-

GFPdim) were identi
ed and characterized. Both of them
showed the mesenchymal progenitor activities. Although the

number of Nes-GFPbright cells was much lower than Nes-
GFPdim cells in bone marrow, Nes-GFPbright cells contained
most CFU-Fs and higher expression of genes which associ-
ated with the HSC niche. By contrast, DNA replication and

cell cycle pathwayswere signi
cantly enriched inNes-GFPdim

cells. Another fundamental di	erence between these two
subtypes was their physiological location that Nes-GFPbright

cells attached along arterioles, while Nes-GFPdim cells were
associated with sinusoids.
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4. Nestin in HSCs Maintenance

An important role of bonemarrowNes+MSCswas regulating
HSCs tra�c under homeostasis. �ese rare stromal cells
helped to support the “niche” which formed by MSCs and
HSCs in the bone marrow. Nes+MSCs were innervated sym-
pathetic nerve 
bers and highly enriched in the keymolecules
of HSC maintenance, such as cytokines chemokine ligand
12 (CXCL12), stem cell factor (SCF), and Kit ligand (Kitl)

[79]. NG2+ Nes-GFPbright pericytes which were quiescent
and chemoresistant ensheathed the arterioles for promoting
HSC maintenance and retention within the bone marrow.
In addition, Nes-GFPdim cells which largely overlap with
perivascular LepR+ stromal cells contribute to adipocyte and
bone regeneration but are easily destroyed a�er chemother-
apy [30, 32].

Conditional knockout or deletable animal models were
widely used to eliminate key factors fromniche cells for inves-
tigating the regulators of HSCs maintenance [80]. Méndez-
Ferrer et al. performed selective ablation of Nes+ cells by
using Cre-recombinase-inducible diphtheria toxin receptor
lines and found that the number of bone marrow CD150+
CD48− LSK cells decreased rapidly. Moreover, the homing of
hematopoietic progenitor to bone marrowmarkedly reduced
[31]. Nes-GFP+ cells were shown to express high levels of SCF;
however, deletion of SCF in another Nestin transgenic line
(Nes-Cre mice), in which Cre recombinase was also driven
by both promoter and intronic enhancer of Nestin gene, had
no e	ect onHSC function [49, 80, 81].�e authors speculated
that the reduction of SCF might be compensated by the non-
targeted Nes+ and lineage cells because the recombination
e�ciencies among Nes-Cre+ cells in this model were quite
low.

Altogether, these results clearly demonstrated that nestin+

MSCs as niche cells were essential for maintaining and
mobilizing HSCs.

5. Nestin in Osteogenesis

In mammals, skeletal MSCs were suggested to di	erentiate
into osteolineage cells and then participated in bone forma-
tion and HSCs maintenance. Nes-GFP cells and Nes-Cre-
ERT2 linage cells exhibited mesenchymal stem/progenitor
activities and contributed to osteogenesis in entire life.
However, these cells showed di	erent potential in di	erent
developmental stage. GFP-expressing osteoblasts and osteo-
cytes were not detectable a�er a 1-month chase in adult

Nes-Cre-ERT2 lines due to a slow turnover of the skeleton.
�ey only can be observed a�er 8 months of lineage tracing
[31]. Ono et al. tracked cell fates by using several triple-
transgenic mice and showed that Nes+ cells in embryonic
and postnatal bones were heterogeneous populations [33, 82].
Nestin expression in osteoblasts, endothelial lineages, and
pericytes was detectable in the developing bonemarrow.Nes-
GFP+ MSCs had an active role in endochondral ossi
cation.
Another study conducted by Isern’s group con
rmed Nes+

cells preserved MSC activity throughout life and re
ned a
quiescent subset of Nes+ cells derived from neural crest that
preferably conservedMSC activity for helping to establish the

HSC niche rather than contributing to endochondrogenesis
[83].

�ese 
ndings indicated that Nes+ MSCs possibly are
more relevant to the endochondral ossi
cation during devel-
opment rather than the skeletal remodeling process in adult,
whichmeans Nes+ cells perform speci
c function in di	erent
stages of life.

6. Nestin in Angiogenesis

Due to the speci
c location of MSCs, researchers proposed a
close association between MSCs and blood vessels. �ere is
a putative concept that MSCs are likely to be an important
inducer of angiogenesis by releasing angiogenic growth
factors rather than directly di	erentiating into endothelial
lineages, although some groups have successfully stimulated
MSCs into endothelial cells in vitro [84–87]. Endothelial cells
were commonly thought to be derived from EPCs that are
distinct but contactable with MSCs [88]. Nestin has been
reported to be expressed on both perivascular and endothelial
cells during angiogenesis in several tissues by far. On the
one hand, Klein et al. identi
ed that Nes+ MSCs supported
the tumor vessel maturation by di	erentiating into pericytes
and smoothmuscle cells through tumor-cell-secreted factors.
�ese cells could be recruited to stabilize the tumor blood
vessels angiogenesis by blocking vascular endothelial growth
factor (VEGF) [89]. On the other hand, Nestin was consid-
ered as a novel early EPCs marker. Growing lines of evidence
presented in di	erent tissues such as brain [90], pancreas
[91], and heart [92] have shown that Nestin is expressed
in vascular EPCs and further closely associated with neo-
vascularization. Early in 2002, Sugawara et al. detected a
high expression of Nestin in proliferating endothelial cells
in vitro [93]. �ey loaded physiologic levels of shear stress
to endothelial cells and found a dramatic decrease in Nestin
expression suggesting that Nestin could be a speci
c marker
for proliferating endothelial cells in gliomas. Nestin was also
reported to be expressed in tumor development including
neurocytomas [94], pancreatic tumors [91], osteosarcomas
[95], and gastrointestinal tumors [96, 97] and normally used
as an angiogenesis marker in these tumors. However, based
on the possibility that Nestin is expressed on both MSCs and
EPCs, researchers should cautiously identify the real role of
Nestin in order to instruct the translational and therapeutic
study.

In the bone marrow, MSCs were shown to reside around
blood vessels and capably di	erentiate into perivascular cells
including pericytes and smooth muscle cells for stabilizing
the neovasculature [98, 99]. Suzuki et al. assessed Nestin
expression in bone marrow derived EPCs in vitro and con-
cluded that Nestin was only expressed in proliferating EPCs,
not in mature endothelial cells due to the downregulation
at the transition of maturation [23]. Although the two
studies mentioned above showed Nestin was expressed on
endothelial cells in developing bone, more in vivo studies
are needed to investigate the contribution of Nes+ cells as
EPCs to angiogenesis during bone development and remod-
eling. Recently, Petrini et al. hypothesized the presence of
mesodermal progenitor cells (MPCs) which are Nes+ CD31+
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cell population in bone marrow. It is an interesting and
reasonable hypothesis but still needs more evidence for the
existence of MPCs and deeper investigation of their origin
and physiological function [100–102].

Taken together, these studies suggested Nes+ cells may
participate in angiogenesis as a heterogeneous cell popu-
lation comprising MSCs and EPCs. Nes+ MSCs will form
perivascular cells with Nes+ EPCs contributing to endothelial
cells thereby and subsequently building blood vessel walls
together.

7. Nestin in Diseases

Ever sinceNestin was discovered, it seems that Nes+ cells play
an important role in a lot of pathological changes or tissue
repairing during disease progress [103]. Numerous studies
have indicated that Nes+ bone marrow MSCs participate in
many bone diseases’ development, including osteoarthritis
and acute myelogenous leukemia (AML) [104, 105]. Zhen et
al. found large quantities of activeTGF-�1were released to the
marrow during subchondral bone resorption and recruited
Nes+ MSCs to form marrow osteoid islets and induced
angiogenesis [104]. Knockout of TGF-� type II receptor
(T�RII) in Nes+ MSCs reduced osteoarthritis development
a�er ACLT surgery compared with sham-operated mice,
which con
rmed that Nes+ MSCs were the target cell popu-
lation of TGF-� signaling. In the meantime, Hanoun’s group
showed that AML cells remodeled the bone marrow niche
through abnormally inducing osteoblastic di	erentiation of
bone marrow Nes-GFP+ cells with a block of osteoblastic
maturation and consequently a	ecting healthy HSCs [105].
�e study by Arranz et al. 
rst analyzed Nestin expression
in bone marrow samples from myeloproliferative neoplasms
(MPNs) patients and discovered that Nestin+ MSCs might
play a role in MPN. �ey engineered an associated mutation
in Janus kinase 2 (JAK2) in HSCs and detected damage of the
bone marrow niche through Nestin+MSCs reduction, which
further drive HSCs into neoplasia. Deletion of Nes+ MSCs
caused a dramatic expansion of HSCs due to a reduction of
CXCL12. It resulted in an indication ofMPNswith an increase
of hematopoietic progenitors in bone marrow, peripheral
blood, and spleen, which was reversed by treatment with a
�-adrenergic agonist [106, 107].

Coincidentally, Nes+MSCs are not only involved in bone
diseases progress, but also committed to other tissues injuries.
Gao et al. investigated the role of MSCs in airway in�am-
mation and lung regeneration and found that the increase
of Nes+ MSCs in airway might be the main cause of asthma
[108]. High levels of TGF�1 released from allergen-activated
epithelium caused an excessive recruitment of Nes+ MSCs to
the lungs. Furthermore, mobilization of Nes+MSCs also par-
ticipates in tissue repair and remodeling. Wan et al. showed
that injured vessels would release growth factors to induce
the migration of Nes+ MSCs which thereby contributed
to vessel repair [109]. Nes+ MSCs were recruited to the
injured parts from peripheral blood and di	erentiated into
either endothelial cells ormyo
broblastic cells for subsequent
repairing. However, whether these Nes+MSCs are mobilized
from bone marrow needs further investigation.

Taken together, these studies suggested that Nestin could
mark a subset of bonemarrowMSCs that contribute to HSCs
maintenance and tissue growth and regeneration.

8. The Controversy of Nestin

In contrast to the 
ndings above, other scientists working
on bone marrow MSCs raised doubts about whether Nestin
could be a reliable marker for MSCs. Wong’s group detected
the expression of Nestin in equine, canine, and human bone
marrow derived MSCs, respectively, during osteogenesis in
vitro. �ey drew a conclusion that Nestin expression was
maintained during osteogenic di	erentiation and, therefore,
it is not a selective marker for MSCs [110]. By usingWnt1-Cre
transgenic model and clonal analyses, Wislet-Gendebien et
al. observed that Nes+ cells in the bone marrow were a mixed
population containing neural crest stem cells (NCSCs) and
MSCs [111]. MSCs could di	erentiate into functional neural
cells under appropriate culture conditions by activating Wnt
signaling pathway. A recent study by Zhou’s group proposed
that LepR could be a more speci
c marker for bone marrow
MSCs because 94% of adult bone marrow CFU-Fs were
formed by LepR+ cells [112]. �ey emerged and overlapped

with SCF-GFP+, CXCL12-DsRedhigh, and Nes-GFPdim cell
population at the postnatal stage and then participated
in most osteogenesis and adipogenesis in the adult bone
marrow. �e CFU-Fs and lineage tracing data showed Nes-
Cre-ER expressing cells were not a signi
cant source of bone
in vivo althoughMéndez-Ferrer’s group suggested previously
that Nestin-CreER-expressing cells in the adult bone marrow
could di	erentiate into osteoblasts and chondrocytes [31].
Furthermore, they found PDGFRa cells were derived from
adult bone marrow cells that could be marked by LepR.
LepR+ cells included Sca-1− and Sca-1+ cells. PDGFRa+Sca-
1+ cells, which are PaS cells, were highly e�cient CFU-F-
forming cells [49]. Conversely, PDGFRa+Sca-1− cells were a
subgroup of the CAR cells. �ere was only a small portion of
the PaS, CAR, and LepR+ cells that overlapped with the Nes-

GFPdim cells. Gremlin 1 could be identi
ed as a type of stem
cells with bone, cartilage, and reticular stromal potential.
Grem1+ cells and LepR+ cells were shown to be distinct from

Nes-GFPbright cells, but they expressed low levels of Nestin
[113].

Apart from the relative concept for the expression level of
Nes-GFP leading to these discrepancies, di	erent constructs
of Nestin transgenic models resulted in di	erent cell types
labeling. Nes-GFP transgenic mice were widely used in
multiple tissue studies. �e initial aim for establishing this
model was to investigate the role of neural stem cells [114].
Mignone et al. combined the 5.8-kb promoter and the 1.8-kb
second intronic enhancer of the Nestin gene to launch the
transcription of the GFP protein for increasing the Nestin
gene expression in the brain, in spite of several reports
suggesting that expression of Nestin in the neuroepithelial
cells of the developing embryo is dependent on the presence
of a transcriptional enhancer that resides in the second intron
of the gene. �is resulted in brighter GFP signal for both
Nes+ endothelial cells and Nes+ perivascular cells under
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Figure 1: Representation of Nes+ cells in di	erent developmental phases. Nes+ cells may represent di	erent cell population at developmental
and adult stages. Nes+ cells contain both endothelial and nonendothelial cells in developing bone marrow and nonendothelial Nes+ cells
participate in endochondral ossi
cation as MSCs. In adult bone marrow, a small portion of Nes+ cells overlap with LepR+ cells which contain
most CFU-F cells while most Nes+ cells are vascular cells to help build blood vessel walls and maintain the niche for HSCs. �e relationship
between Nes+ cells and endothelial cells in adult is still unknown.

the microscope [83]. Nes-Cre-ERT2 mouse model generated
by Fishell’s group was used by several groups for lineage

tracing studies [115]. However, Nes-GFP and Nes-Cre-ERT2

lines had been reported to target di	erent cell populations.
Nes-GFP+ cells included both endothelial and mesenchymal

cell types during bone development whereas Nes-Cre-ERT2

were found to target endothelial cells preferentially [33]. �e

administration of tamoxifen in neonatal Nes-Cre-ERT2 mice
caused a higher recombination e�ciency than in adults [83].

Considering this complex situation, researchers should
carefully divide the Nestin+ cell types under microscope and
select appropriate Nestin transgenic mouse models to mark
MSCs.

9. Conclusion and Future Directions

Although MSCs have been extensively studied according to
their remarkable capacity and the enormous potential for
clinical application, there is still a mass of issues remaining
for characterization of these cells because of the lack of
standardized protocols for isolation and unique markers for
identi
cation. Observational and interventional studies in
animals and humans have shown that Nestin may be an
important marker for MSCs and Nes+ MSCs play important
roles in tissues growth and regeneration. Although Nes+

MSCs are quiescent in bone marrow, they preserve high
colony-forming-unit 
broblastic activity and trilineage dif-
ferentiation. Moreover, they are essential for HSC mainte-
nance and mobilization via forming a structurally unique
niche [47, 83, 116]. Furthermore, Nes+ cells represent di	erent
cell population at di	erent developmental phases (Figure 1).
�ey may hold the potential for angiogenesis in various
tissues.

So far the knowledge on signaling pathway of regulating
Nestin expression and the mechanism of mobilization and
di	erentiation of Nes+ cells is limited. �is leads to our
unclear understanding of Nestin. Although the treatments
targeting Nes+ cells showed an improvement in some disease
animalmodels,more lines of evidence are needed to elucidate
the real identities of Nes+ cells in this process. �e next step
should be to conduct comprehensive analyses for subdividing

Nes+ cell population according to their speci
c fate and func-
tion. Researchers should carefully select the animalmodels to
study the contribution of Nes+ cells in vivo considering that
the constructs in di	erent transgenic reporter lines of Nestin
are unlike. Nevertheless, there is no doubt that Nestin is one
of the best markers under steady state and with increasing
attention on Nestin, we will fully characterize this protein,
establish MSCs physiological and pathological function, and
thus clarify the pathogenesis of diseases in the future.
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