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Characterization of Nigerian breast cancer reveals
prevalent homologous recombination deficiency
and aggressive molecular features
Jason J. Pitt et al.#

Racial/ethnic disparities in breast cancer mortality continue to widen but genomic studies

rarely interrogate breast cancer in diverse populations. Through genome, exome, and RNA

sequencing, we examined the molecular features of breast cancers using 194 patients from

Nigeria and 1037 patients from The Cancer Genome Atlas (TCGA). Relative to Black and

White cohorts in TCGA, Nigerian HR+ /HER2− tumors are characterized by increased

homologous recombination deficiency signature, pervasive TP53 mutations, and greater

structural variation—indicating aggressive biology. GATA3 mutations are also more frequent

in Nigerians regardless of subtype. Higher proportions of APOBEC-mediated substitutions

strongly associate with PIK3CA and CDH1mutations, which are underrepresented in Nigerians

and Blacks. PLK2, KDM6A, and B2M are also identified as previously unreported significantly

mutated genes in breast cancer. This dataset provides novel insights into potential molecular

mechanisms underlying outcome disparities and lay a foundation for deployment of precision

therapeutics in underserved populations.
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B
reast cancer is a heterogeneous disease comprising distinct
subtypes. Both global burden and severity of the disease
vary widely across populations, with women of African

ancestry being diagnosed at a younger age, having more clinically
aggressive disease and advanced stage at diagnosis, as well as
having higher mortality rates than age-matched women of Eur-
opean or Asian ancestry1–4. Molecular and genetic characteristics
strongly influence breast cancer prognosis and treatment, with
HER2 amplification (human epidermal growth factor receptor 2
[ERBB2]) and hormone receptor (HR; estrogen receptor [ER] and
progesterone receptor [PR]) expression being the best examples.

Recent large sequencing studies, for instance the International
Cancer Genome Consortium (ICGC) and The Cancer Genome
Atlas (TCGA), have refined our knowledge of the genomic
landscape and pathogenesis of breast cancer, have provided
insight into tumor evolution and mechanisms of drug resistance,
and have laid a pathway to deployment of precision ther-
apeutics5–15. Moreover, these large public datasets have also
enhanced our understanding on the divergent mutation accretion
processes; most notably in breast cancer, studies have shown high
APOBEC (apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like)-related mutagenesis, especially in HER2+
tumors16, whereas BRCA1/2 mutations are strongly associated
with signatures depicting DNA repair deficiency17.

The cases used to elucidate the genetic basis of breast cancer
have been overwhelmingly from women of European ancestry,
which reiterates the need for data from underrepresented ethni-
cities18–20. Moreover, paucity of data from African countries
potentially widens the knowledge gap that contributes to global
disparities in breast cancer outcomes. To get a comprehensive
understanding of the genetic architecture of breast cancer in West
Africans, the founder population of a large proportion of Black
women in the United States, we conducted whole-genome
sequencing (WGS), whole-exome sequencing (WES), and tran-
scriptome sequencing (RNA sequencing (RNA-seq)) on 194
tumors from Nigerian patients and performed a comparative
analysis with Black women of African ancestry and White women
of European ancestry from the United States in TCGA. In com-
parison with the TCGA cohorts, we observe that HR+ /HER2−
Nigerians are enriched for molecular characteristics associated
with aggressive biology. To the best of our knowledge, combined
with African American patients in TCGA, this is the largest breast
cancer genomics study on tumors from women of African
ancestry to date.

Results
Study populations. The Nigerian cohort comprised 194 breast
cancer patients: 40 with WGS data, 129 with WES data, and 103
with RNA-seq data (Supplementary Fig. 1). Of the 1097 TCGA
breast cancer patients with either WES (n= 1035) or WGS (n=
84), 1030 were assigned without ambiguity to 3 ancestral race
groups (Black, ≥ 50% African; White, ≥ 90% European; Asian, ≥
90% Asian ancestry) and the other 67 had mixed racial back-
ground (Supplementary Data 1a–e). DNA sequencing data from
all samples was uniformly processed using the SwiftSeq workflow
(manuscript in preparation). Patient clinical and pathologic
characteristics are shown in Supplementary Tables 1–5. Nigerians
were much younger and had more advanced stage at diagnosis
than patients in the TCGA cohort, reflecting population structure
and lack of screening in the country.

Mutation landscape of Nigerians compared with Americans.
Congruous with previous studies including the Surveillance
Epidemiology End Results dataset2,21, we observed a strong
enrichment of HR−/HER2− (i.e., triple-negative for ER/PR/

HER2; 43% in Nigerian vs. 33% in Black and 13% in White) and
HR−/HER2+ (25 vs. 6 and 2%) subtypes in the Nigerian cohort
(Fig. 1a). PAM50 subtyping revealed a similar enrichment of
Basal-like (32 vs. 35 and 15%) and HER2 enriched (29 vs. 9 and
5%) in Nigerian women (Fig. 1b).

Across all 1164 individuals—both TCGA and Nigerians—with
WES data, we identified 25 genes that were significantly mutated
above background (MutSigCV, Q < 0.05). Three of these genes
(PLK2, KDM6A, and B2M; Supplementary Methods; Supplemen-
tary Fig. 2) had little or no previous evidence of harboring
mutations that drive breast carcinogenesis. A fourth gene, GPS2,
was also identified by Bailey et al.22 while this manuscript was
under review. Notably, mutations in PLK2 (Fisher’s exact, P=
0.05) and KDM6A (P= 0.06) were enriched within HER2+
patients. Combined with previously reported significantly
mutated genes in breast cancer13,23, this resulted in 44 driver
genes. These genes, along with those recurrently affected by copy
number changes6 (Supplementary Table 6), were used for gene-
centric comparisons by race/ethnicity.

Consistent with the aggressive subtype composition in
Nigerians, we found an enrichment of TP53 alterations (62 vs.
46 and 29%; Fisher’s exact, Benjamini–Hochberg [BH] P <
0.0001) as well as a lower prevalence of PIK3CA mutations (17 vs.
20 and 36%; BH P < 0.0001) (Fig. 1c). Combined BRCA1 germline
and somatic variants were also enriched in the Nigerian cohort
(11.6 vs. 7.0 and 4.0%; BH P= 0.03). CDH1 mutation was rare in
Nigerians (0.8 vs. 6.4 and 16.2%; BH P < 0.0001), whereas GATA3
alterations were more common in this population (17.1 vs. 10.0%
and 9.5%; BH P= 0.24).

When comparing recurrently gained or lost regions as
identified by GISTIC2 (Supplementary Fig. 3; Supplementary
Methods), we found that all high confidence peaks identified in
the Nigerian cohort had corresponding peaks within 10Mb in the
combined TCGA cohort. In line with immunohistochemistry
(IHC) and PAM50, the ERBB2 locus (17q12) was enriched in
Nigerians (amplified in 24 vs. 12 and 10%; BH P= 0.002), as was
its wide neighboring peak at 17q23.1 (TBX2 locus, BH P= 0.1)
(Fig. 1d).

Within IHC subtypes, significantly mutated genes and copy
number peaks generally displayed similar proportions across
ethnicities (Fig. 1e, f), suggesting that most mutation frequency
differences reflects subtype differences across ethnicities. Within
the HR+ /HER2− subtype, however, there were more TP53 and
GATA3 mutations, and fewer PIK3CA and CDH1 mutations in
Nigerians, compared with TCGA Blacks and Whites (all P <
0.05). These results are not strongly influenced by age
(Supplementary Methods) and suggest that HR+ /HER2−
breast cancers in Nigerian women have genomic lesions
consistent with more aggressive disease.

Mutation signatures across subtypes and driver mutations. We
next extracted breast cancer mutational signatures in the 122
WGS and 500 WES samples from Nigerian and TCGA cohorts
harboring 100 or more mutations (Supplementary Methods). Of
the nine independently identified signatures, signatures A
(APOBEC C > T), B (APOBEC C > G), C (Aging), H (Signature
8), and I (homologous recombination deficiency [HRD]) closely
matched to previously identified breast cancer signatures (Sup-
plementary Figs. 4 and 5A). Given that these five signatures had
high correlation between exomes and genomes (Supplementary
Fig. 5b), we examined those in subsequent analyses. Combined,
they explain the vast majority of mutations regardless of race/
ethnicity (Fig. 2a) or subtype (Fig. 2b).

We observed increased contributions from APOBEC C > T
(Mann–Whitney U [MWU], P= 3.5 × 10−9) and APOBEC C > G
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(P= 0.044) signatures in HR+ tumors compared with HR−
tumors, which is consistent with previous findings24,25. On
average, the HRD signature was more active in HR− tumors (P
= 2.2 × 10−15) (Supplementary Fig. 6a–d). Consistent with
previous work16, HER2+ tumors had the highest contributions
from APOBEC C > T and C > G signatures (P= 1.6 × 10−8 and P
= 9.1 × 10−4, respectively) (Fig. 2b; Supplementary Fig. 6e, f).
Similarly, we recapitulated the known aging signature associa-
tions (Supplementary Methods) and confirmed higher HRD
contributions in individuals harboring deleterious germline or
somatic BRCA1/2 mutations (P= 6.2 × 10−7)17.

TP53 mutations were associated with higher HRD contribu-
tions (MWU, P= 2.1 × 10−13), higher missense mutation burden
(P= 6.5 × 10−45), and increased copy number segmentation
(P= 2.0 × 10−43) (Fig. 3a; Supplementary Methods). In contrast,
CDH1 or PIK3CA mutations—which frequently co-occur (P=
3.8 × 10−8)—were associated with lower HRD contributions
(CDH1 P= 5.2 × 10−11; PIK3CA P= 2.1 × 10−17) in addition to
higher contributions from APOBEC C > T (P= 3.0 × 10−9; P=
3.8 × 10−17) and C > G (P= 1.7 × 10−4; P= 2.1 × 10−6) (Fig. 3a).
Importantly, these significant associations persisted even when
considering only HR+ /HER2− tumors (Fig. 3b). These findings
suggest a consistent interplay between driver mutations and the
relative activity of mutational processes.

Mutation signatures across race and ethnicity. Signature 8
demonstrated substantial contribution differences between
cohorts. This effect was the most pronounced in HR−/HER2−
tumors, where Nigerians and Blacks (P= 4.4 × 10−6), Nigerians
and Whites (P= 4.6 × 10−12), as well as Blacks and Whites (P=
0.023) were significantly different from one another (Fig. 4a).
Notably, Whites presented with remarkably higher signature 8 in
HR−/HER2− (mean= 20.6%) compared with HR+ /HER2−
(mean= 12.2%) tumors (P= 3.4 × 10−7), which was recapitu-
lated using WGS data (P= 6.9 × 10−3) (Supplementary Fig. 8a,
b). These subtype differences were not observed for either
Nigerians or Blacks.

In the HR+ /HER2− subtype, the APOBEC C > T signature
displayed differences by race/ethnicity with Nigerian and Black
cohorts having lower APOBEC C > T contributions compared with
Whites (MWU, P < 0.05). In the HR−/HER2− subtype, Nigerians
had increased APOBEC C >G signature relative to the Black and
White cohorts (P < 0.05) (Supplementary Fig. 7a, b). Strikingly,
HR+/HER2− Nigerian tumors had higher HRD signature
contributions compared with both Black (P= 1.8 × 10−4) and
White (P= 1.6 × 10−4) cohorts (Fig. 4b). This finding was
confirmed using data from WGS (Supplementary Fig. 8c).
Structural variants (SVs) are more prevalent in tumor types with
HRD defects such as ovarian and basal-like breast cancers13,26. In
this same set of genomes, Nigerians had more SVs than both Black
(MWU, P= 0.03) and White cohorts (P= 2.8 × 10−4). Similar
with the HRD signature, SVs counts in HR+/HER2− Nigerians
(~551 SVs per genome) were reminiscent of HR−/HER2− (~626
SVs per genome) (Fig. 4c). Differences between Nigerians and
Whites in HRD signature and SVs (both P < 2.0 × 10−3) extended
to HER2+ cases as well (Fig. 4b, c). Taken together, multiple lines
of evidence suggest that HR+/HER2− Nigerians have increased
HRD and genomic complexity compared with the Black andWhite
cohorts. Furthermore, genome data suggests a potentially more
granular stratification by African ancestry.

We postulated that increased HRD in HR+/HER2− Niger-
ians may be explained by increased prevalence of TP53 mutations
as well as fewer PIK3CA and CDH1 mutations—although not
necessarily causatively. Using multivariate modeling (Supplemen-
tary Methods), we investigated the effect of race/ethnicity on
HRD adjusting for age and missense burden, as well as mutation
status in TP53, BRCA1/2, PIK3CA, and CDH1. Although many of
these factors have significant, independent effects, they cannot
entirely account for the racial/ethnic HRD disparities seen across
HR+/HER2− tumors.

HRD-APOBEC signature balance. Several threads of evidence
suggest a possible interplay between the HRD and APOBEC
signature contributions, particularly in HR+/HER2− breast
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cancers: (1) we identified racial/ethnic differences in mutation
prevalence for TP53, CDH1, and PIK3CA; (2) we found associa-
tions between these mutations and mutation signatures (Fig. 3a);
and (3) consistent with differential mutation status, HRD activity
was increased in Nigerians, whereas APOBEC C > T displayed
reduced activity in Nigerians and Blacks compared with Whites
(Supplementary Fig. 7a). Furthermore, within this subtype, HRD
had a notable negative correlation with both the APOBEC C > T
(ρ=− 0.56, permutation test P < 0.0001; Supplementary Meth-
ods) and APOBEC C > G (ρ=− 0.30, P < 0.0001) signatures.
Integrating these findings, we postulated that a balance of HRD
and APOBEC signature contributions exists and can be dis-
criminated—if not dictated—by mutations in BRCA1/2 (germline
and somatic), TP53, PIK3CA, and CDH1. For each tumor, we
combined APOBEC C > T and C > G contributions, and plotted
them against that of HRD (Fig. 5a). Tumors were partitioned
based on the presence of CDH1 or PIK3CA mutations (CDH1/
PIK3CA), TP53 or BRCA1/2 mutations (TP53/BRCA1/BRCA2),
mutations from both aforementioned categories (Both), or
mutations in neither of the aforementioned categories (Neither).
APOBEC contributions were significantly higher in CDH1/
PIK3CA compared with the TP53/BRCA1/BRCA2 (Dunn’s test,
P= 1.8 × 10−6) and Neither (P= 7.2 × 10−9) groups. Tumors
harboring mutations from both groups (Both) had lower APO-
BEC contributions than CDH1/PIK3CA (P= 0.11), yet higher
than TP53/BRCA1/BRCA2 (P= 5.0 × 10−3) (Fig. 5b). In contrast,
TP53/BRCA1/BRCA2 had significantly higher HRD contributions
than all other groups (P CDH1/PIK3CA= 9.9 × 10−15; Both=
1.6 × 10−4; Neither= 2.1 × 10−4), whereas CDH1/PIK3CA had
significantly lower contributions than all other groups (P Both=
3.5 × 10−3; Neither= 1.2 × 10−3) (Fig. 5c). These findings were
similar when considering all samples simultaneously (Supple-
mentary Fig. 9a–c).

The signature patterns for the Neither group most closely
resembled those of TP53/BRCA1/BRCA2 (Fig. 5a–c), suggesting
that there may be other mechanisms, such as inactivation of other
homologous recombination genes27 or BRCA1/2 methylation28,
which promote increased HRD activity. When looking at the
proportion of these mutational groups across HR+/HER2−
samples (including those without signature estimates), the groups
with the highest HRD and lowest APOBEC—TP53/BRCA1/
BRCA2 and Neither—encompassed 70.3% Nigerians and 66.3%
Blacks but only 47.7% of Whites (χ2-test, P= 1.2 × 10−3) (Fig. 5d).
This suggests that individuals with African ancestry are more
likely to fall within mutational groups associated with increased
HRD and lower APOBEC contributions. Consistent with this
assertion, the HR+/HER2− Black cohort had greater copy
number segmentation (MWU, P= 0.022), more structural
variation (Dunn’s test, P= 0.028), and increased HRD in WGS
(Dunn’s test, P= 0.015) compared with Whites (Fig. 4b;
Supplementary Fig. 8c). Throughout African ancestry tumors,
prevalent aggressive and limited favorable molecular features
could in part explain known racial/ethnic mortality disparities
within the HR+/HER2− subtype29. This has significant clinical
implications, because HRD tumors are more likely to be sensitive
to platinum-based chemotherapy, PARP (poly (ADP-ribose)
polymerase) inhibition, and immunotherapy28.

Infiltrating immune cell inference by RNA signatures. Given
the high HRD signature activity and the fact that DNA repair
gene alterations have been linked to checkpoint inhibitor efficacy,
we next investigated gene expression signatures related to
immune cell infiltration, or immune signatures, with RNA-seq
(Fig. 6a and Supplementary Table 7). Most immune signatures—
B-cell, Cytotoxic T cell, Fibroblast, Interferon (IFN)-γ, Type I
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IFN, and Proliferation—displayed statistically significant differ-
ences across PAM50 subtypes (analysis of variance, all P < 0.0001;
Supplementary Methods). Racial differences adjusted for
PAM50 subtype, however, were modest (Fig. 6b and Supple-
mentary Fig. 1,0). The Cytotoxic cell signature (P= 0.004) was
lower in Nigerians in all subtypes but Basal, whereas the Fibro-
blast signature (P= 0.01) was consistently highest in Nigerians.
Type I IFN signature scores (P= 0.01) were enriched in Luminal
subtypes for both Nigerians and Blacks, which potentially indi-
cates that tumors from these racial groups would respond better
to immunotherapy30. Lastly, macrophage infiltration in Nigerians
was highest in the Basal subtype, similar to what has been
reported in other studies, including one in a small subset of
Nigerian patients31,32.

We next tested these immune signatures for association with
potential predictors of response to immunotherapy. We con-
sidered the combined APOBEC C > T and C > G, and the HRD
mutation signatures as the two independent mutational processes
generating putative neoantigens, as well as mutation burden and
chromosomal instability (CIN)33–35. APOBEC mutation signa-
ture contribution was positively correlated with mutation burden
(ρ= 0.35, Spearman’s rank correlation, BH P < 0.0001). Con-
sistent with recent reports, we found APOBEC contribution being
further associated with increased T-cell infiltration (ρ= 0.25, BH
P < 0.0001) and CIN being positively correlated with mutation
burden (ρ= 0.28, BH P < 0.0001), while negatively correlated
with T-cell infiltration (ρ=− 0.08, BH P < 0.01)34,35. The same
trends were observed in the Nigerian and TCGA cohorts

separately with similar effect sizes (Fig. 6c, d), although, in the
former, most were not significant after multiple testing correction
potentially due to the smaller sample size (Fig. 6a).

Discussion
To date, this study is the largest genomic analysis of breast cancer
among women of African ancestry. Aggressive molecular sub-
types were found to be more prevalent in Nigerian patients,
which has been consistently documented in breast tumors across
West Africa2. The extent to which this disparity represents dis-
parate biology, environmental influences, or a combination
thereof remains unknown. Recently, ER expression was demon-
strated to be a heritable trait in breast cancer36, suggesting that
genetically influenced basal expression levels may contribute to
subtype differentiation. Given that genetic background associates
with phenotypes relevant to breast cancer, it is reasonable to
postulate that patterns of somatic mutations may differ across
genetically distinct populations. Here we have shown that
regardless of subtype, aggressive molecular features are prevalent
in breast tumors from Nigerian women.

Including Nigerian samples along with TCGA allowed us to
identify PLK2, KDM6A, and B2M as novel significantly mutated
genes in breast cancer, with the former two enriched in the HER2
+ subtype. PLK2 is a cell cycle regulator and presumed tumor
suppressor, whereas KDM6A is a chromatin modifier frequently
mutated in other cancer types (e.g., pancreatic, esophageal, and
bladder)37–40. B2M inactivation was recently reported to be a
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recurrent event in lung cancer and potentially affects response to
anti-PD-1/anti-PD-L1 therapies41. Further studies to characterize
the role for these genes in HER2+ tumors specifically and breast
cancer in general are warranted.

The mutational landscape and signature patterns differed
across racial/ethnic populations. In particular, the relatively
younger Nigerian patients had more TP53 and GATA3 mutations
than Blacks in TCGA, whereas both African ancestry groups had
higher prevalence of these mutations than Whites. The fre-
quencies of prognostically favorable PIK3CA and CDH1 muta-
tions were lower in women of African ancestry than in Whites,
which may reflect differences in breast cancer risk factors across
populations. Even when restricting to ER+/HER2− breast
cancer, tumors from Nigerian women were characterized by
canonically aggressive molecular features, such as higher con-
tributions from the HRD mutational signature, TP53 mutations,
and increased structural variation. Along with more pervasive HR
negativity and HER2 positivity, the aggressive features of HR+
tumors provide biological insight to why breast cancers in the
unscreened and relatively younger female populations of West
Africa are often fatal42. This study lays the foundation for a more
concerted effort to reduce global disparities in cancer outcomes
by first closing the knowledge gaps. Given the genomic landscape,
Nigerian women would benefit from increased access to geno-
mically tailored clinical trials and more effective treatments such
as HER2-targeted therapy and PARP inhibition for HER2+ and
HRD-deficient tumors, respectively28.

There are certain limitations to this study including the rela-
tively small sample size of Nigerian tumors and the fact that both
TCGA and this study used convenient samples ascertained in
Hospitals and may not reflect population rates. Nonetheless, this

study underscores the need to include diverse populations when
identifying and pursuing novel therapeutic targets18. It is possible
that genetic and environmental factors not only drive subtype
differentiation but also dictate evolutionary dynamics of a tumor.
This latter assertion could help explain the observed mutational
differences between racial/ethnic groups, a pattern which has also
been noted comparing Black and Whites with colorectal cancer in
the United States43. Similarly, strong associations between driver
mutations and mutation signature contributions (e.g., PIK3CA
and APOBEC signatures) pose a causality dilemma suited for
further biological and epidemiological investigations. Overall, our
results justify the need for future studies integrating germline and
somatic genetics, as well as environmental factors, in order to
better understand the root causes of disparities in breast cancer
outcomes and develop more effective interventions to achieve
health equity.

Methods
Biospecimen collection and pathological assessment. This study was embedded
within the Nigerian Breast Cancer Study (NBCS) and approved by the Institutional
Review Board of all participating institutions. Patient ascertainment and details of
the study have been previously published2,44,45. In collaboration with Novartis,
NBCS was extended to Lagos State University Teaching Hospital (LASUTH). A
grand total of 493 subjects were recruited from University College Hospital, Ibadan
(UCH; n= 284) and LASUTH (n= 209) between February 2013 and September
2015. Each patient gave written informed consent before participation in the study.
Six biopsy cores and peripheral blood were collected from each patient. Two biopsy
cores were used for routine formalin fixation for clinical diagnosis and the
remaining four cores were preserved in PAXgene Tissue containers (Qiagen, CA)
for subsequent genomic material extraction. In addition, 27 mastectomy tissues
were preserved in RNAlater. Complete pathology assessment was done central by
study pathologists. Tumor burden was assessed based on cellularity, histology type,
and morphological quality of tissue using TCGA best practices, and only tissues
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containing 60% or more tumor cellularity were used for WGS. For WES, tissues
containing 30% or more tumor cellularity were used. IHC on ER, PR, and HER2
were performed centrally in Nigeria and further reviewed in the United States.
Cases with discordant results were again reviewed and resolved by the study
pathologists. IHC scoring variables for Allred scoring algorithm were captured
according to the 2013 ASCO/CAP standard reporting guidelines. Briefly, for ER
and PR testing, immunoreactive tumor cells < 1% was recorded as negative and
those with ≥ 1% were reported positive. All the positive ER and PR cases were
graded in percentages stained cells and further scored in line with the Allred
scoring system. Percentage of tumor staining for HER2 test were also reported
along with a score of 0 and 1+ as negative, 2+ as equivocal, and 3+ as positive
case. In addition, genomic copy number calls of HER2 and chromosome 17 ploidy
were used as alternative to HER2 fluorescent in situ hybridization test. Overall,
IHC calls were corroborated ESR1, PGR, and ERBB2 expression using RNA-seq
(Supplementary Fig. 1,1a–c).

Sample selection and genomic material extraction. Breast tumors were selected
for sequencing following the TCGA guidelines6. Tumor samples containing > 60%
tumor cellularity were selected for DNA extraction using PAXgene Tissue DNA kit
(Qiagen). Gentra Puregene Blood Kit (Qiagen) was used to extract genomic DNA
from blood. Extracted DNA were quality controlled for its purity, quantity, and
integrity. Identity of the extracted DNA were tested using AmpFlSTR Identifiler
PCR Amplification Kit (Thermo Fisher Scientific). Samples that match > 80% of
the short tandem repeat profiles between tumor and germline DNA were con-
sidered authentic. RNA was extracted from PAXgene fixed tissues using the
PAXgene Tissue RNA kit (Qiagen). RNA integrity (RIN) was determined for all
samples by the RIN score given by the TapeStation (Agilent) read out. RNA
samples that had RIN scores of 4 and above were included in downstream
sequencing analysis.

Next-generation sequencing data generation. WES and RNA-seq were carried
out at the Novartis Next Generation Diagnostics facility. Exome enrichment was
performed on libraries (prepared by Illumina TruSeq Nano DNA Library Prep Kit)
passing QC using Agilent SureSelect XT Human All Exon V4 baits and SureSelect
XT capture enrichment reagents. Passing captured libraries are combined in
equimolar pools with other captured libraries of compatible adapter barcodes.
These pools were normalized with concentration and were sequenced on the
Illumina HiSeq 2500 sequencer. Tumor samples had an average coverage depth of
139 × (63 × to 265 ×), normals 52 × (19 ×–205 ×; Supplementary Data 2a). WGS
was performed at the University of Chicago High-throughput Genome Analysis
Core (HGAC) and at the New York Genome Center (NYGC). Libraries were
prepared using the Illumina Truseq DNA PCR-free Library Preparation Kit.
Libraries were sequenced on an Illumina HiSeq 2000 sequencer at HGAC using
2 × 100bp paired-end format and HiSeq × sequencer (v2.5 chemistry) at NYGC
using 2 × 150 bp cycles. Mean coverage depth tumor was at 98.5 × and normal was
at 34.2 × (Supplementary Data 2b). For RNA-seq, total RNA were constructed into
poly-A selected Illumina-compatible cDNA libraries using the Illumina TruSeq
RNA Sample Prep kit. Passing cDNA libraries were combined in equimolar pools
with other libraries of compatible adapter barcodes and later sequenced on the
Illumina HiSeq 2500 sequencer. Average number of mapped reads per sample was
97 million (ranging from 36 to 232 million).

Alignment of DNA sequence to reference genome. For both exomes and gen-
omes, reads were aligned to GRCh37 from GATK data bundle version 2.8 ([https://
software.broadinstitute.org/gatk/]) using BWA-MEM (v0.7.12; [http://bio-bwa.
sourceforge.net/])46. Duplicate reads were removed using PicardTools MarkDu-
plicates (v1.119; [https://broadinstitute.github.io/picard/]). Using a custom Flui-
digm SNP panel, we confirmed that whole-exome BAM files matched the library
DNA, to identify sample swaps in the sequencing lab or bioinformatics pipelines.

Calling somatic single nucleotide variants. Single-nucleotide variants (SNVs)
were called using both MuTect (v1.1.7; [http://archive.broadinstitute.org/cancer/
cga/mutect])47 and Strelka (v1.0.13; [https://sites.google.com/site/
strelkasomaticvariantcaller/])48 with default parameters, except Strelka’s depth
filter was not used for exomes (isSkipDepthFilters= 1). Variants were called on the
entirety of the genome in order to detect and retain any high-quality off-target
calls. Any variant call that did not meet ‘PASS’ criteria for either algorithm was
discarded. For a given tumor-normal pair, only SNVs called by both MuTect and
Strelka were retained. Furthermore, using 1088 blood germline exomes (959 TCGA
BRCA; 129 Nigerian), we constructed a panel of normal samples. For a given
normal sample, a site needed to be covered by a minimum of ten reads to be
included. Any SNV that was supported by 5% or more of reads (MAPQ (MAPping
Quality) ≥ 20; Base quality ≥ 20) in two or more samples was removed. SNVs were
later annotated with Oncotator ([http://archive.broadinstitute.org/cancer/cga/
oncotator])49 and those that met the required criteria ("COSMIC_n_o-
verlapping_mutation > 1" AND "1000gp3_AF ≤ 0.005" AND "ExAC_AF ≤ 0.005")
were considered likely to be somatic and were retained. This panel of normal
process was also repeated for genomes (normal sample n= 124). All subsequent

SNV calls were annotated by Variant Effect Predictor (VEP) (v79; [http://useast.
ensembl.org/info/docs/tools/vep/index.html])50.

Calling somatic insertions and deletions (indels). Small indels were called using
Scalpel (v0.5.3; [http://scalpel.sourceforge.net/]) in somatic mode51,52. Variants were
only called in known genic regions as defined by Broad.human.exome.b37.interval.
bed from the GATK data bundle version 2.8. To minimize the number of false-
positive calls, we employed the two-pass option. Default Scalpel filters were imple-
mented, which required a minimum alternative allele count of four in the tumor, no
alternative allele present in the normal, and a minimum tumor variant allele fre-
quency of 5%. In addition, indel calls located in repetitive genomic regions (via
DustMasker; [https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/
app/dustmasker/]) or found in the 1000 Genomes Project Phase 3 release ([http://
www.internationalgenome.org/]) were removed53,54. Finally, we implemented a
pseudo panel of normals by aggregating all putative indel calls that failed Scalpel filters
due to ‘HighVafNormal’ or ‘HighAltCountNormal’. Any indel that failed in two or
more samples was filtered. The remaining calls were annotated using VEP.

Calling germline SNVs and indels. For both exomes and genomes, reads were
aligned to GRCh37 from GATK data bundle version 2.8. Duplicate reads were
removed using PicardTools MarkDuplicates (v1.119). Both SNVs and indels were
called using Platypus (v0.7.9.1; [http://www.well.ox.ac.uk/platypus]) in single-
sample mode55. Only variants passing the Platypus ‘PASS’ filter were considered
for downstream analysis. The resulting set of variants were annotated using VEP.
All variants with an ExAC56 allele frequency ≥ 0.05 were discarded. Remaining
variants were considered deleterious if they were annotated as HIGH impact by
VEP or a missense variant with a CADD57 score > 25.

Calling copy number alterations. Allele-specific copy number in whole-exome
data was called using PureCN (v1.7.16; [http://bioconductor.org/packages/
PureCN/])58. Alternative purity and ploidy solutions were considered (Supple-
mentary Fig. 3a–d). Genes were called amplified if the median exon copy number
was ≥ 6 for focal gains ( < 3Mb) or ≥ 7 for non-focal gains. Genes with median
exon copy number of 0 were called lost. Non-focal amplifications of tumor sup-
pressor genes were excluded59. As Affymetrix Genome-Wide Human SNP Array
6.0 data were available for the TCGA cohort, copy number calling was performed
using ASCAT ([https://www.crick.ac.uk/peter-van-loo/software/ASCAT]; Supple-
mentary Methods). Amplifications and deletions were called exactly as in the
exome data. GISTIC (v2.0.22; [http://archive.broadinstitute.org/cancer/cga/gistic])
60 was used to identify significantly gained or lost genomic regions in the Nigerian
cohort. TCGA GISTIC2 results were obtained from the BROAD FireBrowse portal
([http://firebrowse.org/]). CIN was defined as the fraction of the genome with copy
number alteration. Details are provided in the Supplementary Methods.

Calling SVs in WGS. SVs (deletions, duplications, and inversions) were called with
both Delly (v0.6.1; [https://github.com/dellytools/delly]61 and Lumpy Express
(v0.2.10; [https://github.com/arq5x/lumpy-sv])62. A panel of normal samples was
constructed by taking all Delly SVs calls made in at least one (n= 124) normal
sample, regardless of “PASS” or “LowQual” in the FILTER field. Any SV found
within the panel of normals was removed from the analysis. All Delly SVs passing
the aforementioned filters were queried within the matched Lumpy calls. Delly SVs
corroborated by a Lumpy call (same SV type and breakpoints within 500 bp [up or
downstream]) were retained. These consensus SVs were filtered if a breakpoint
(from either Delly or Lumpy) fell within a repetitive genomic region according to
DustMasker. Lastly, inversions were required to have split read evidence (at least
one read) from both Delly and Lumpy.

Estimating genetic ancestry of study population. We estimated the ancestry of
breast cancer patients from TCGA using principal component analysis as practiced
by TCGA Analysis Working Group36. According to the estimated proportion of
ancestry, patients were grouped into genomic Black ( ≥ 50% African ancestry),
genomic White ( ≥ 90% European ancestry), and genomic Asian ( ≥ 90% Asian
ancestry). All Nigerian patients were assumed to be 100% African with little to no
admixture with other populations63.

Significantly mutated genes. To detect significantly mutated genes we used
MutSigCV (v1.4; [http://software.broadinstitute.org/cancer/software/genepattern/
modules/docs/MutSigCV])23,64. SNV and indel variant call formats from 1164
individuals were annotated with Oncotator using the oncotator_v1_ds_Jan262014
database. MutSigCV was then invoked with default parameters on the Oncotator
generated MAF file. To reduce common false positives, we allowed only a single
non-silent indel within a given gene per sample. Finally, for any gene to be called
significantly mutated, we required it to have more than two individuals harboring
non-silent mutations across the entire dataset.

Mutation signatures in WES and WGS. The Bioconductor ([https://
bioconductor.org/]) package SomaticSignatures ([https://bioconductor.org/
packages/SomaticSignatures/])65 was used to estimate somatic mutational
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signatures. The ability to reliably call mutation signatures depends on sufficient
numbers of mutations. To this point, we used all high-quality exome SNVs,
regardless of whether they are coding or non-coding. Any sample containing at
least 100 SNVs was included for downstream assessment. In addition, in order to
stimulate more accurate signature estimates, 122 WGS tumor-normal pairs were
also included in addition to 500 WES pairs (Supplementary Data 1c). To account
for variable mutation counts across samples, we used SomaticSignatures to nor-
malize the mutation matrix before performing non-negative matrix factorization.
We elected to estimate 9 signatures (Supplementary Fig. 4), as that was (1) con-
sistent with the number of signatures identified previously in breast cancer ([http://
cancer.sanger.ac.uk/cosmic/signatures]) and (2) as 9 signatures explained ~99% of
variance when using 122 genomes alone. Using matrix algebra on the resulting
exposure and mutation matrices, we calculated the relative contribution of
the nine signatures on each sample. Contributions represent the proportion of
mutations assigned to given mutation signature within each tumor (Supplementary
Methods). Exomes were used for all mutation signature analyses unless explicitly
stated.

RNA-seq analysis and immune signatures. Gene expression measurements were
uniformly calculated using Omicsoft ArraySuite® software ([http://www.omicsoft.
com/array-studio])66 for Nigerian and TCGA samples. The RNA-seq reads passing
quality control were aligned to the Human B37 genome. Read counts for the UCSC
gene models were calculated by the software. The gene counts were upper quartile
normalized with the edgeR Bioconductor/R package ([https://bioconductor.org/
packages/edgeR/])67 and batch normalized using ComBat as implemented in the sva
package ([https://bioconductor.org/packages/sva/])68. Transcripts per million
expression values were calculated based on the normalized counts. PAM50 classi-
fication was carried out using the pbcmc package ([https://bioconductor.org/
packages/pbcmc/])69 using the robust parameter. Nigerian PAM50 classifications
were consistent with IHC calls (Supplementary Fig. 1,2). To characterize the
immune and stromal microenvironment of these tumors, we assessed the expression
of several pre-specified sets of immune and stromal cell gene expression markers
(Supplementary Table 7). Gene signature scores were calculated using the GSVA R/
Bioconductor package ([https://www.bioconductor.org/packages/GSVA/])70.

Statistical methods. All statistical calculations were completed in in R. Names of
the performed tests are provided in the text and all P-values are two-sided. Non-
parametric tests were used when the underlying data types often lacked normality
(e.g., mutation signature contributions). All boxplots throughout the manuscript
are Tukey’s style.

Code availability. SwiftSeq is available at [https://github.com/PittGenomics/
SwiftSeq]

URLs. COSMiC, http://cancer.sanger.ac.uk/cosmic; Gene Ontology Consortium,
[http://www.geneontology.org/]; ICGC, [https://www.genome.gov/10001688/];
SwiftSeq, [https://github.com/PittGenomics/SwiftSeq]; TCGA, [https://
cancergenome.nih.gov/]

Data availability
Raw TCGA data used in this analysis were downloaded from TCGA Data Portal or

Cancer Genomics Hub, and their UUIDs are listed in Supplementary Data 1f–h. Access

to the harmonized variant calls that support the findings of this study are available on

request from the corresponding author (O.I.O). The raw sequencing data from Nigerian

cases is available through dbGaP under Study Accession phs001687.v1.p1.
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