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Begomoviruses (family Geminiviridae) are whitefly-transmitted, plant-infecting single-

stranded DNA viruses that cause crop losses throughout the warmer parts of the

World. Sweepoviruses are a phylogenetically distinct group of begomoviruses that infect

plants of the family Convolvulaceae, including sweet potato (Ipomoea batatas). Two

classes of subviral molecules are often associated with begomoviruses, particularly in

the Old World; the betasatellites and the alphasatellites. An analysis of sweet potato and

Ipomoea indica samples from Spain and Merremia dissecta samples from Venezuela

identified small non-coding subviral molecules in association with several distinct

sweepoviruses. The sequences of 18 clones were obtained and found to be structurally

similar to tomato leaf curl virus-satellite (ToLCV-sat, the first DNA satellite identified in

association with a begomovirus), with a region with significant sequence identity to the

conserved region of betasatellites, an A-rich sequence, a predicted stem–loop structure

containing the nonanucleotide TAATATTAC, and a second predicted stem–loop. These

sweepovirus-associated satellites join an increasing number of ToLCV-sat-like non-

coding satellites identified recently. Although sharing some features with betasatellites,

evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from

betasatellites and should be considered a separate class of satellites, for which the

collective name deltasatellites is proposed.

Keywords: Begomovirus, deltasatellites, DNA satellites, Geminiviridae, Ipomoea, Merremia, sweepoviruses,

sweet potato

INTRODUCTION

Conventional satellites are subviral agents which lack genes that encode functions needed for

replication, depending instead for their multiplication on the co-infection of a host cell with a
helper virus (Briddon et al., 2012). Two major classes of satellites may be distinguished, satellite
viruses that encode a structural protein that encapsidates their genome, and satellite nucleic acids
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that encode either non-structural proteins, or are non-coding,

and are encapsidated by the coat protein (CP) of helper viruses.
The genetic material of satellites is distinct from that of the

genome of their helper viruses. Replication of the satellites
interferes with the replication of the helper virus and may affect

disease symptoms, ranging from attenuation to exacerbation
depending on the satellite, the helper virus and the host plant

(Hull, 2002; Simon et al., 2004).
Viruses of the genus Begomovirus (family Geminiviridae) have

circular single-stranded DNA genomes composed of one or two
components each of ∼2.7 kb. They are transmitted exclusively

by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) and
cause important diseases of dicotyledonous crops worldwide

(Navas-Castillo et al., 2011). The sweepoviruses constitute
a monophyletic group of begomoviruses which have been

identified infecting sweet potato (Ipomoea batatas) and other
species of the family Convolvulaceae. Typical of monopartite
begomoviruses originating from the Old World (OW), the

genomes of sweepoviruses encode two genes (the CP and
V2) in the virion-sense and four [the replication associated

protein (Rep), the transcriptional activator protein (TrAP),
the replication-enhancer protein (REn) and the C4 protein]

in the complementary-sense. Virion- and complementary-sense
genes diverge from an intergenic region (IR) that contains

a predicted stem–loop structure with the conserved (between
most geminiviruses) nonanucleotide sequence TAATATTAC

forming part of the loop. The IR also contains repeated short
sequence motifs (known as iterons) surrounding the TATA

box of the Rep promoter that are Rep binding sites and,
together with the stem–loop structure, form the origin of

virion-sense DNA replication (ori). The sweepoviruses cluster
as a branch in the begomovirus phylogenetic tree below the

divergence between the OW and New World (NW) branches,
corresponding to the major clades in the genus (Lozano et al.,

2009).
Two classes of circular single-stranded DNA molecules

have been described in association with geminiviruses, the

alphasatellites and the betasatellites (Briddon and Stanley, 2006;
Zhou, 2013). The alphasatellites (previously known as DNA-1;

Briddon et al., 2004) are not strict satellites, since they are capable
of autonomous-replication in plant cells, but are dependent

on their helper begomoviruses for movement within plants
and insect transmission between plants (Mansoor et al., 1999;

Saunders and Stanley, 1999). Alphasatellites are widespread in
the OW and usually occur in association with monopartite

begomoviruses and betasatellites. Alphasatellites have also been
identified in the NW in association with bipartite begomoviruses

and in the absence of betasatellites (Paprotka et al., 2010b; Romay
et al., 2010). Recently an alphasatellite and a betasatellite were

shown to be associated with a mastrevirus (genus Mastrevirus,
family Geminiviridae) in wheat, the first time either of these

components has been identified in a monocot (Kumar et al.,
2014).

Betasatellites (previously known as DNA-β) have so far only
been identified in the OW and are usually, but not exclusively,

associated with monopartite begomoviruses (Saunders et al.,
2000; Briddon et al., 2001). They are also half the size

of begomovirus components (∼1360 nt) and contain three

conserved regions: an A-rich sequence, a sequence conserved
between all betasatellites known as the satellite conserved region

(SCR) and a single gene in the complementary-sense that encodes
a small protein (∼118 amino acids) known as βC1. Betasatellites

increase the accumulation of their helper begomoviruses and
enhance the symptoms induced in some host plants (Briddon

et al., 2003; Zhou et al., 2003), likely due to the suppressor of RNA
interference activity of the βC1 protein (Cui et al., 2005; Yang

et al., 2011). The only sequence similarity between betasatellites
and their helper begomoviruses is the nonanucleotide sequence

TAATATTAC within the stem–loop structure forming part of
the SCR. Betasatellites and alphasatellites are promiscuous with

respect to helper virus in that they may be maintained in plants
by several, but possibly not all, geminiviruses (Saunders et al.,

2002a,b, 2008; Briddon et al., 2003).
The first DNA satellite was identified in association with a

plant virus in tomato plants infected with the OW monopartite

begomovirus tomato leaf curl virus (ToLCV) originating from
Australia (Dry et al., 1997). ToLCV-sat is 682 nt, about one

quarter the size of a begomovirus genome/genomic component,
is non-coding and has no significance sequence similarity

with the helper virus. The satellite contains a predicted stem–
loop structure containing the geminivirus-like nonanucleotide

sequence TAATATTAC, a sequence with similarity to the SCR
of betasatellites, an A-rich sequence and a second predicted

stem–loop structure that contains a sequence identical to the
predicted iteron sequence of ToLCVwithin the loop. In common

with betasatellites, ToLCV-sat depends upon a helper virus for
replication and, based upon sequence and structural similarities

with betasatellites, it is believed that ToLCV-sat originated as a
defective betasatellite (Saunders et al., 2000).

A novel class of DNA satellites has recently been identified in
association with begomoviruses infecting malvaceous plants in

Cuba (Fiallo-Olivé et al., 2012). These satellites are approximately
one quarter the size of a begomovirus genome/genomic
component and have all the features of ToLCV-sat; containing

a stem–loop structure with the nonanucleotide TAATATTAC
forming part of the loop, an A-rich region and are non-

coding. They also contain a putative second predicted stem–loop
structure situated close to begomovirus iteron-like sequences and

a TATA motif, and a short region with sequence identity to the
SCR of betasatellites. Similar satellites have also been identified

using vector-enabled metagenomics (VEM) in B. tabaci adults
collected in Florida (Ng et al., 2011).

Although an increasing number of sweepovirus species have
been described in the last few years infecting sweet potato crops

worldwide (Luan et al., 2007; Lozano et al., 2009; Albuquerque
et al., 2011, 2012;Wasswa et al., 2011), only recently have satellites

been shown in association with a sweepovirus. Geetanjali et al.
(2013) showed the association of croton yellow vein mosaic

betasatellite and papaya leaf curl betasatellite with sweet potato
leaf curl virus (SPLCV) infecting Ipomoea purpurea in India.

The study presented here has identified ToLCV-sat-like DNA
satellites in association with sweepoviruses originating from

Spain and Venezuela. On the basis of these findings it is
proposed that the small non-coding DNA satellites associated
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with begomoviruses be considered a class of satellites distinct

from betasatellites.

MATERIALS AND METHODS

Plant Material and DNA Extraction
Leaf samples from 25 sweet potato (I. batatas) and three

Ipomoea indica plants collected in Spain, previously shown to
be infected with sweepoviruses, were analyzed (Table 1). Total

nucleic acids were extracted from 0.1 g leaf tissue following
the protocol of Crespi et al. (1991). Also, one sample of

Merremia dissecta collected in Sucre, Venezuela, showing typical
begomovirus symptoms that included leaf mosaic was analyzed
after DNA extraction from dried leaf material using a CTAB-

based purification method (Haible et al., 2006).

Amplification and Cloning of Subviral
DNA Molecules
A pair of primers previously designed to amplify the full-length

genomic components of all sweepoviruses identified in Spain

(MA369 5′-GGGAATGCTGTCCCAATTGCTGC-3′, MA370 5′-

AGTGTAAGGCACGATAGCTGTCTC-3′; Lozano et al., 2009)
was used to amplify and clone a chimeric molecule (pBG9)

from sample B32. A pair of abutting primers was designed
to the non-viral sequence of pBG9 to PCR amplify putative

circular subviral DNA molecules associated to the sweepoviruses
present in the 28 sweet potato and I. indica samples:
MA465 (5′-CCTTAGCTTCGCACGTAGCTA-3′) and MA466

(5′-CTGCTTAGCGTAGCGGTTTGG-3′). PCR was carried out
with Expand High Fidelity DNA polymerase (Roche Diagnostics,

Mannheim, Germany) using the program: denaturation for 2min
at 94◦C; 10 cycles of denaturation for 15 s at 94◦C, hybridization

for 30 s at 50◦C and extension for 90 s at 72◦C; 20 cycles of
denaturation for 15 s at 94◦C, hybridization for 30 s at 50◦C and

extension for 90 s at 72◦C, adding 5 s of extension per cycle;
followed by a final extension step of 7 min at 72◦C. The DNA

fragments amplified by PCR were purified using the High Pure
PCR Product Purification Kit (Roche Diagnostics) and cloned in

pGEM-T Easy Vector (Promega, Madison, WI, USA).
DNA extracted from the M. dissecta sample was amplified

by rolling-circle amplification (RCA) with ϕ29 DNA

TABLE 1 | Sweet potato (Ipomoea batatas), I. indica and Merremia dissecta samples analyzed in this work.

Host Origin Year Sample Presence of DNA satellites Presence of begomoviruses

I. batatas Málaga (ESa) 2002 B0 − SPLCVd,f

Málaga (ES) 2002 B2 − SPLCVf

Málaga (ES) 2002 B3 + SPLCVf

Málaga (ES) 2002 B5 − SPLCVf

Málaga (ES) 2002 B6 − SPLCVf

Málaga (ES) 2002 B9 − SPLCVf

Málaga (ES) 2002 B10 − SPLCVf

Málaga (ES) 2002 B11 − SPLCVf

Málaga (ES) 2002 B12 + SPLCVf

Málaga (ES) 2002 B13 − SPLCVf

Málaga (ES) 2002 B16 + SPLCVf

Málaga (ES) 2002 B17 − SPLCVf

Málaga (ES) 2002 B18 − SPLCVf

Málaga (ES) 2002 B19 − SPLCVf

Málaga (ES) 2006 270906/1d − SPLCVg

Málaga (ES) 2006 270906/4b − SPLCVg

Málaga (ES) 2006 270906/5b − SPLCVg

Málaga (ES) 2006 270906/5c − SPLCVg

Málaga (ES) 2006 270906/6b − SPLCVg

Málaga (ES) 2006 270906/6d − SPLCVg

Tenerife (CIb, ES) 2002 B25 − SPLCVf

Tenerife (CI, ES) 2002 B29 − SPLCVf

Lanzarote (CI, ES) 2002 B32 + SPLCV, SPLCCaVe,h

Lanzarote (CI, ES) 2002 B33 − SPLCVf

Lanzarote (CI, ES) 2002 B34 + SPLCVf

I. indica Málaga (ES) 2006 270906/3c + SPLCVg

Málaga (ES) 2006 270906/3d + SPLCVg

Málaga (ES) 2006 270906/3f − SPLCVg

M. dissecta Sucre (VEc) 2009 1764 + SPLCVi

aES, Spain; bCI, Canary Islands; cVE, Venezuela; dSPLCV, sweet potato leaf curl virus; eSPLCCaV, sweet potato leaf curl Canary virus; fLozano, 2007; gTrenado, 2009;
hLozano et al., 2009; iThis work.
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polymerase using the TempliPhi DNA Amplification Kit

(GE Healthcare, Little Chalfont, UK). The RCA product
was digested with EcoRI and cloned in an EcoRI digested,

covalently closed pGEM-T-Easy Vector (Promega). Also, a
BamHI fragment of 586 bp corresponding to a partial sequence

of a sweepovirus genome was cloned in pBSK+ after RCA
from the same sample. A pair of abutting primers (MA1402

5′-catgGAGCTCTGTACGGAGTTAATCCGTATATTC-3′,
MA1403 5′-catgGAGCTCGAACCCTAGGGTTCCTGGC-3′;

SacI restriction site present in the sweepovirus genome used
for subsequent cloning is underlined and nucleotides added to

facilitate SacI digestion are in lower case letters) was designed
based on this sequence to amplify by PCR the complete

sweepovirus genome present in this sample. PCR was carried
out with BioTaq DNA polymerase (Bioline, London, UK) using

the program: denaturation for 2 min at 94◦C; 30 cycles of
denaturation for 1 min at 94◦C, hybridization for 1 min at 55◦C,
and extension for 3 min at 72◦C; followed by a final extension

step of 5 min at 72◦C. The ∼2.8 kbp DNA fragment amplified
from the M. dissecta sample using the RCA product as the

template, was digested with SacI and cloned in a covalently
closed pGEM-T-Easy Vector (Promega).

The possible presence of alphasatellites and betasatellites
in samples was examined by PCR using primers

DNA101/DNA102, UN101/UN102, and beta01/beta02
as previously reported (Briddon et al., 2002; Bull et al.,

2003).

Southern Blot Analysis
The presence of DNA satellites in one of the sweet potato

samples (B3) was assessed by Southern blot hybridization. Total
DNA (∼1 µg) was separated on 0.8% agarose gel electrophoresis

in Tris-acetic acid-EDTA buffer (TAE), transferred to a
positively charged nylon membrane (Roche Diagnostics) using

vacuum (GE Healthcare) and fixed with ultraviolet light
(Crosslinker RPN 2500, Amersham Life Science, Friburg,

Germany). DNA was then hybridized [65◦C in standard buffer
(Roche Diagnostics) with 50% formamide] with a digoxigenin-

labeled probe synthesized by PCR from clone pSBG53 (Table 2).
For this, the insert of pSBG53 was released by digestion

with EcoRI and amplified with primers MA465 and MA466.
DIG-dUTP was incorporated by using the PCR DIG Probe
Synthesis System Kit (Roche Diagnostics) according to the

manufacturer’s instructions. As a size control, Southern blot
analysis was also carried out with the same sample using a

probe corresponding to the coat protein gene of SPLCV, isolate
BG30 (Trenado et al., 2011). For this, DNA was analyzed

both undigested and digested with a restriction enzyme which
recognizes a unique site in the satellite (PstI) and SPLCV

(BamHI).

Sequencing and Bioinformatic Analysis
The sequences of the cloned inserts were obtained with an
automatic sequencer (Secugen, Madrid, Spain or Macrogen, Inc.,

Seoul, South Korea). SeqMan, part of the Lasergene sequence
analysis package (DNAStar, Inc., Madison, WI, USA), was used

to assemble the sequences. BLAST1 was used for sequence

similarity searches of the GenBank database. Sweepovirus and
satellite sequences were aligned with MUSCLE (Edgar, 2004)

and pairwise identity scores were calculated with the Species
Demarcation Tool (SDT) 5 (Muhire et al., 2014). MEGA 6

(Tamura et al., 2013) was used for phylogenetic inference by the
Neighbor–Joining method. The search for A-rich regions in the

satellite molecules was carried out using the online DNA base
composition analysis tool2. The sequences used in phylogenetic

analyses and their accession numbers in GenBank are shown in
Supplementary Table 1. The ToLCV-sat nucleotide sequence was

randomly shuffled and used as an outgroup3 (Stothard, 2000).

RESULTS

Detection of a Virus-Satellite Chimera in
a Sweet Potato Sample
During a survey for the presence of sweepoviruses in sweet
potato samples from Spain, using the abutting primers MA369

and MA370, a clone with an unexpected sequence was obtained
from sample B32 (collected in Lanzarote, Canary Islands,

in 2002; Lozano et al., 2009). The insert of this clone
(pBG9) was determined to be 2598 bp in length (acc. no.

EF591125) and a BLAST search showed significant identity
with available sequences of sweepoviruses for only about 70%

of the length (coordinates 2240-1451). This region contains
the V2 and CP genes, a truncated REn gene lacking the

first 71 nt, and the complete IR including the virus iterons,
thus allowing transreplication (Figure 1A). This fragment

1http://www.ncbi.nlm.nih.gov/
2http://molbiol-tools.ca/Jie_Zheng/dna.html
3http://www.bioinformatics.org/sms2/shuffle_dna.html

TABLE 2 | Sweepovirus-associated DNA satellites cloned in this work.

Clone Sample Size (nt) GenBank acc. no.

SBG32 B32 662 FJ914391

SBG51 B32 662 FJ914390

SBG52 B3 664 FJ914392

SBG53 B3 707 FJ914393

SBG54 B12 708 FJ914394

SBG55 B12 707 FJ914395

SBG56 B16 694 FJ914396

SBG57 B34 750 FJ914397

SBG58 B34 662 FJ914398

SBG59 B32 738 FJ914403

SBGB3-5 B3 633 FJ914404

SBGB3-6 B3 707 FJ914405

SI3C-3 270906/3c 694 FJ914399

SI3C-5 270906/3c 704 FJ914400

SI3D-11 270906/3d 705 FJ914401

SI3D-12 270906/3d 705 FJ914402

1764E13 1764 733 KF716173

1764E34 1764 733 KF716174
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FIGURE 1 | Schematic representation of the chimeric

sweepovirus-DNA satellite molecule identified in sweet potato sample

B32 (A) and representative deltasatellites (B). The virus genes/gene

fragments of the chimeric molecule are the V2 gene, coat protein (CP) gene

and replication-enhancer (REn) gene. Clones SBG51 and 1764E13 represent

DNA satellites associated with Ipomoea- and Merremia-infecting

sweepoviruses, respectively. ToLCV-sat and 177H1 are small DNA satellites

that have been described previously (Dry et al., 1997; Fiallo-Olivé et al., 2012).

The main features of these molecules include the conserved stem–loop, a

secondary stem–loop, the satellite conserved region (SCR) and an A-rich

region. A schematic representation of a betasatellite is included for

comparison.

showed 99.8% identity to the corresponding region of the
genome of the sweepovirus sweet potato leaf curl Canary virus

(SPLCCaV) that was isolated from the same sample [isolates
BG21 (EU856365) and BG25 (FJ529203); Lozano et al., 2009].

BLAST analysis of the remaining 788 bp (coordinates 1452-
2239) showed significant levels of identity with ToLCV-sat

(U74627). Alignment of the non-sweepovirus region of pBG9
and ToLCV-sat showed a nucleotide identity of 74.0%. This

DNA fragment contains several features in common with
ToLCV-sat, consisting of an A-rich region (154 nt, containing

61.0% A), a region with significant identity with the SCR of
betasatellites, a stem–loop structure containing an incomplete

nonanucleotide, and a second predicted stem–loop structure
(Figure 1A).

Small Circular DNA Satellites are
Frequently Associated with
Sweepoviruses Infecting Sweet Potato
and I. indica in Spain
A pair of abutting primers (MA465, MA466) was designed

to the satellite-like sequence contained in the chimeric clone
pBG9. PCR amplification using primers MA465/MA466 yielded

a DNA fragment of ∼700 bp for 7 out of 28 samples from
Spain; five sweet potato plants from Málaga and Lanzarote

(Canary Islands) and two I. indica plants from Málaga
(Table 1). These samples have been previously shown to be

infected by the sweepovirus SPLCV and sample B32 was
infected in addition with SPLCCaV (Table 1). The sequences

of 16 clones were obtained and these ranged in size from
633 to 750 nt (Table 2). The overall nucleotide identity

between the 16 clones ranged from 94.6 to 99.9%, and with
the satellite-derived sequence of pBG9 ranged from 93.2 to

98.9%.
A BLAST analysis of the sequences against the GenBank

nucleotide sequence database identified sequence relatedness
with a small molecule (673 nt in length) isolated from

a begomovirus infected Malvastrum coromandelianum plant
originating from the Philippines, which will henceforth be
referred to as PH-Mc1 (KC577540; 86% identity across ∼227

nt; black bar in Figure 2A) and an ∼198 nt fragment of
ToLCV-sat (U74627, 84% identity, red bar in Figure 2A). Also,

BLAST analysis identified additional sequence relatedness with
an ∼162 nt fragment of a small molecule (739 nt in length)

isolated from a begomovirus infected Croton bonplandianus plant
originating from India which will henceforth be referred to as

IN-Cb1 (AJ968684, 76% identity, blue bar in Figure 2A) and an
approximately 80 nt fragment of a number of betasatellites, with

the highest levels identity (89%) to Lindernia anagallis yellow vein
betasatellite (LaYVB) originating from Vietnam (DQ641715; Ha

et al., 2008; gray bar in Figure 2A).
The sequences of the 16 clones were found to be structurally

similar to ToLCV-sat, with a region with significant sequence
identity to the SCR of betasatellites, an A-rich sequence, a

predicted stem–loop structure containing the nonanucleotide
TAATATTAC (Figures 1B and 3A), and a second predicted

stem–loop (Figures 1B and 3C). With the exception of the
nonanucleotide, the sequences of these molecules are unrelated
to the sequences of begomoviruses. The differences in sizes

of the molecules is due mainly to the presence/absence of a
70–90 nt duplicated region located immediately downstream

of the nonanucleotide-containing hairpin structure, duplicating
the 3′ leg of the hairpin, and an insertion/deletion of 29–31

nt in the A-rich sequences [coordinates 339–368 for pSBG57
(FJ914397)].

An analysis for potential coding regions indicated the
presence of a number of small ORFs, all with a predicted

coding capacity of less than 50 amino acids, but with no
obvious RNA polymerase II promoter elements required to

initiate transcription. This suggests that the molecules are non-
coding. The A-rich regions are 190–234 nt in length with

51.5–53.9% adenine content. The sequences with similarity
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FIGURE 2 | Sequences of the small satellites homologous to the satellite conserved region of betasatellites. (A) Alignment of the sequences immediately

upstream of the nonanucleotide (nona)-containing hairpin (at coordinate 300 of the alignment) of two sweepovirus-associated satellites from Spain (SBG59 and

SBG51), two sweepovirus-associated satellites from Venezuela (1764E13 and 1764E34), two satellites from Cuba (177H1 and 228H6; Fiallo-Olivé et al., 2012), two

satellites isolated from whiteflies from Florida (WfVEM-Sat-a and WfVEM-Sat-g; Ng et al., 2011), the tomato leaf curl virus-satellite (ToLCV-sat; Dry et al., 1997), a

small satellite isolated from C. bonplandianus originating from India (IN-Cb-1), a small satellite isolated from Malvastrum coromandelianum originating from the

Philippines (PH-Mc-1) and two betasatellites [Ageratum yellow vein betasatellite (AYVB); Saunders et al., 2000] and Lindernia anagallis yellow vein betasatellite

(LaYVB; Ha et al., 2008). For each the database accession number is given. NW satellites from Cuba and Florida are highlighted with asterisks. The approximate

extent of the SCR of betasatellites is delimited by the blue highlighting. This contains two regions of conserved sequence (indicated by the yellow bars labeled A and

B) separated by a region of sequence that is not conserved. The betasatellite SCR consensus sequence was produced from an alignment of 158 betasatellites [all

full-length betasatellites available in the nucleotide sequence databases (sampled June 2014), but excluding those produced using primers beta01/beta02] using the

program “cons,” part of the EMBOSS suite of programs (Rice et al., 2000). Shown are nucleotide sequence positions with greater than 50% conservation. The

colored bars below each block of the alignment are discussed in the text. (B) Alignment of the sequences immediately upstream of the nonanucleotide (nona)

containing hairpin (at coordinate 285 of the alignment) of small satellites. Nucleotide sequences with identity to the sequence of SBG51 are highlighted by white text

on a black background.

to the SCR of betasatellites, determined following the limits

defined by Briddon et al. (2003), are ∼254 nt in length
(with the exception of that of SBG52 that is composed of

∼233 nt) and the identity between them ranged from 95.7 to
100%.

A second predicted stem–loop structure is located between

the A-rich region and the SCR-like sequences, as described
for ToLCV-sat and satellites associated with bipartite NW

begomoviruses infecting malvaceous hosts in the Caribbean
(Figure 3C). The loop contains a sequence identical to the
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FIGURE 3 | Hairpin structures encoded by small begomovirus-associated satellites. (A) Comparisons of the sequences encompassing the nonanucleotide

(TAATATTAC) containing hairpin structures of selected small satellites and the consensus sequence (produced as described for Figure 2) of betasatellites.

(B) Alignment of the secondary hairpin structures of the satellites SBG51 and 1764E13 with the iteron containing sequences of their helper begomoviruses (sweet

potato leaf curl virus). The TATA box of the Rep promoter is highlighted in each case by white text on a black background. The predicted iteron sequences of the

virus are underlined in each case. The sequence of satellite SBG-51 with identity to the iteron sequence of the helper virus is highlighted in red text. (C) Comparisons

of the sequences encompassing the secondary hairpin structures of selected satellites, including three betasatellite sequences [cotton leaf curl Multan betasatellite

(CLCuMB) and Ageratum yellow vein betasatellite (AYVB)]. The sequence of satellite SBG-51 and ToLCV-sat with identity to the predicted iteron sequences of the

respective helper virus is highlighted in red text. Iteron-like sequences, in both the forward and reverse orientations, are underlined. Iteron-like sequences are here

defined as any four nucleotides beginning GG, since this dinucleotide sequence frequently forms part of iterons (Argüello-Astorga and Ruiz-Medrano, 2001). For

each panel the loop of the predicted hairpin is highlighted in blue and the two legs of the stem in pink.

predicted iterons (Rep-binding sequences) of sweepoviruses and

some sequence similarity to the Rep binding domain that
lies just upstream of the TATA box of the Rep promoter

(Figure 3B).
A Southern blot analysis of DNA extracted from sweet

potato plant B3, probed with SBG53, detected the DNA forms
typical of rolling-circle replication (Figure 4). There was no

hybridization of this probe with total nucleic acid extracted

from apparently healthy sweet potato plants in which no
sweepoviruses or satellites were detected by PCR. Additionally,

for none of the Ipomoea samples analyzed was amplification
evident in PCR with primers DNA101/DNA102, UN101/UN102

or beta01/beta02, indicating the absence of alphasatellites and
betasatellites.
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FIGURE 4 | Southern blot analysis to detect the presence of DNA

satellites in a sweepovirus-infected sweet potato sample (B3). Total

DNA (∼1 µg) was separated on 0.8% agarose gel electrophoresis in TAE,

transferred to a positively charged nylon membrane and hybridized with

digoxigenin-labeled probes synthesized by PCR from clone SBG53 (satellite,

left panel) and the sweet potato leaf curl virus (SPLCV) isolate present in that

sample (virus, right panel). Total DNA was digested (right part of each panel)

with a restriction enzyme which recognizes a unique site in the satellite (PstI)

and SPLCV (BamHI). The positions of open circular (oc), supercoiled (sc), and

single-stranded (ss) DNA forms are indicated with black arrowheads. The

positions of linear (lin) DNA forms are indicated with white arrowheads.

Mobility of the size marker (1 kb DNA ladder) is given in the right margin.

Distinct DNA Satellites are also
Associated with a Sweepovirus Infecting
Merremia dissecta in Venezuela
Digestion of the RCA product, obtained from the M. dissecta

sample, with EcoRI resulted in a DNA product of about
750 bp. Cloning and sequencing of the inserts from four

EcoRI clones showed all to be 733 bp in length with
three having identical nucleotide sequences, represented by

clone pG1764E13 (acc. no. KF716173). The fourth clone,
pG1764E34 (KF716174), differed by only one nucleotide from

pG1764E13.
BLAST analysis of the full-length satellite sequences from

Merremia showed the highest percentage identity (65%) across
only 35% of the sequence with ToLCV-sat. This sequence

spans the SCR-like sequences of ToLCV-sat but extends further
upstream than the SCR sequences of betasatellites. A BLAST

analysis additionally identified sequence identity (79%) with a
large number of betasatellites but spanning only 10% or less

of the sequence within the SCR of betasatellites (gray bar in
Figure 2A).

A more detailed sequence analysis showed a structure for the

clones obtained fromMerremia to be identical to that of ToLCV-
sat and the satellites associated with the sweepoviruses infecting

Ipomoea sp. in Spain; consisting of an A-rich region, a region with
significant levels of identity with the SCR of betasatellites and, in

addition to the conserved nonanucleotide-containing stem–loop
structure, a second predicted stem–loop (Figure 1B). Although,

the sequence of the second stem–loop structure contains some
levels of sequence identity to the iteron-containing Rep-binding

domain of the sweepovirus present in the same sample [this
sweepovirus was cloned using a pair of abutting primers designed

on a 806 bp clone obtained after RCA and digestion with BamHI,
and was shown to be an isolate of SPLCV (KF716172)], unlike

ToLCV-sat and the satellites in sweet potato and I. indica, this
lacks the predicted iterons sequences of the virus (Figure 3B).

Analysis of the Merremia satellites for potential coding
sequences indicated the presence of small ORFs, the
longest with a predicted coding capacity of 53 aa, with no

obvious RNA polymerase II promoter elements required
to initiate transcription. As for the Ipomoea samples, PCR

amplification with primers DNA101/DNA102, UN101/UN102,
or beta01/beta02 did not result in products, indicating the

absence of alphasatellites and betasatellites.

Relationships of the Small DNA Satellites
Associated with Begomoviruses
The sequences of the DNA satellites associated with

sweepoviruses were aligned with other small DNA satellites
and a phylogenetic tree was produced (Figure 5). The tree

distinguishes three groups of sequences; (I) the sweepovirus-
associated satellites from Spain, (II) the NW satellites

(excluding the satellites from Merremia), and (III) all
the other small satellites. The relationship between the

groups, and the relationship within the third groups of
satellites of diverse origins, is not well-defined, likely due to
the low levels of sequence similarity. Within the Ipomoea

sweepovirus-associated satellite cluster, the sequences group
according to geographic origin (either mainland Spain or

the Canary Islands), suggesting that the two groups of
satellites have been isolated for some time and are evolving

independently (Figure 5B). Similarly, within the satellites
from mainland Spain, the isolates from I. indica form a single

cluster but are more closely related to satellites from the
mainland occurring in I. batatas than satellites occurring in

I. batatas on the Canary Islands. This suggests that there is
exchange, likely by whitefly transmission, between these two

hosts.
Grouping by geographic origin and plant species from which

they were isolated is also evident for the satellites originating
from Cuba, as noted previously (Fiallo-Olivé et al., 2012). This

study also showed that the presumed begomovirus satellites
isolated from B. tabaci insects collected in Florida (Ng et al.,

2011) are closely related to the Cuban satellites and thus likely
were associated with begomoviruses upon which the insects were

feeding. The satellites isolated from whiteflies share relatively
high levels of identity (76.2–94.8%) with the satellites isolated
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FIGURE 5 | Phylogenetic tree showing the relationships among the novel satellite molecules described in this work (Ipomoea and Merremia

satellites) and all other deltasatellites. Sequences retrieved from GenBank include small satellites associated with New World begomoviruses infecting

Malvaceae, ToLCV-sat, a satellite isolated from Croton bonplandianus in India (India-Cb1), and a satellite isolated from Malvastrum coromandelianum in Philippines

(Philippines-Mc1). The tree was constructed using the Neighbor-Joining method with MEGA 6. Only bootstrap values higher than 70% are shown. The Ipomoea

satellite sub-tree, compressed in (A), is expanded in (B). In (B), SB stands for I. batatas satellites (in orange) and SI stands for I. indica satellites (in purple). The

ToLCV-sat nucleotide sequence was randomly shuffled and used as an outgroup. See Table 2 and Supplementary Table 1 for details on the analyzed sequences.

from M. coromandelianum and S. micranthum originating from

Cuba (Fiallo-Olivé et al., 2012) but relatively low levels of
identity (<66%) to all the other small satellites, including those

from Venezuela characterized here (Figure 6; Supplementary
Table 2). Nucleotide sequence comparisons between all small

begomovirus-associated satellites showed them to form six
distinct sub-groups: (i) Cuban and Florida satellites, (ii) IN-

Cb1, (iii) Merremia satellites, (iv) ToLCV-sat, (v) PH-Mc1, and
(vi) Ipomoea satellites. Nucleotide identity within the sub-groups

range from 76 to 100% whereas identity between sub-groups
range from 56 to 75% (Figure 6; Supplementary Table 2).

Although all the small satellites discussed here contain
sequences homologous to the SCR of betasatellites, there are

distinct differences between them. All the small satellites contain
an insertion of ∼44 nt within the SCR-like sequences (relative

to betasatellites; approximately coordinates 236–280 in the
alignment shown in Figure 2A) between the nonanucleotide-
containing hairpin structure and the first highly conserved

(between all small satellites and betasatellites) sequence
(approximately coordinates 210–235 in the alignment shown in

Figure 2A). However, the sequences differ between the groups
of satellites. The inserted sequence for WfVEM and the Cuban

satellites has high levels of identity (>93%) but only low levels
of identity (<46%) to the other small satellites, including those

from Venezuela. For the satellites from Venezuela, isolated
from Merremia, the insertion instead shows the highest levels of

identity to ToLCV-sat (56.8%). For both IN-Cb1 and PH-Mc1

the insertion shows the highest levels of identity (59.1 and 63.6%,

respectively) with the sweepovirus-associated satellites.
It is evident that, even amongst the betasatellites, there

is considerable variation within the SCR. Nevertheless, for
betasatellites, two blocks of conserved sequence can be

distinguished (marked as blocks A and B in Figure 2A) with
the sequence in block A (that contains the nonanucleotide-

containing hairpin structure) more conserved than that in
block B. The insertion in the small satellites is in block

A, relative to betasatellites. However, for all small satellites
originating from the NW (including those from Merremia

characterized here), the insertion is smaller than for the small
satellites from the OW (approximately coordinates 249–280 of

the alignment in Figure 2B) and the inserted sequence differs
between the Merremia (1764E13 and 1764E34) and other NW

satellites (228H6, 177H1, VfVEM-Sat-g and VfVEM-Sat-a). For
all satellites (including the betasatellites) block B is less well-
conserved with the lowest levels of conservation for the satellites

from the NW, particularly those isolated from the Malvaceae and
whiteflies.

DISCUSSION

The study described here has identified small DNA satellites

associatedwith sweepoviruses occurring in both the OWandNW
(Lozano et al., 2009; Albuquerque et al., 2012). Although satellites
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FIGURE 6 | Color pairwise nucleotide identity matrix of deltasatellites. Ipomoea and Merremia satellite sequences are described in this work and other

sequences were retrieved from GenBank, including small satellites associated with New World begomoviruses infecting Malvaceae, ToLCV-sat, a satellite isolated

from C. bonplandianus in India (IN-Cb1), and a satellite isolated from M. coromandelianum in Philippines (PH-Mc1). See Table 2 and Supplementary Table 1 for

details on the compared sequences.

from the two regions have related helper viruses, sweepoviruses,

and infect related hosts (members of the genera Ipomoea and
Merremia, both belonging to the family Convolvulaceae), they

are genetically only distantly related. The structures of these
DNA satellites share properties with other small non-coding
DNA satellites identified in association with begomoviruses;

ToLCV-sat, the first satellite identified in association with a DNA
virus (Dry et al., 1997), satellites identified with bipartite NW

begomoviruses infecting species of the Malvaceae in Cuba and
satellites isolated from B. tabaci originating from Florida (Ng

et al., 2011; Fiallo-Olivé et al., 2012).
Geminiviruses have a stringent size surveillance mechanism

that operates during virus movement within the plant and there
are also size constraints for encapsidation (Etessami et al., 1989;

Elmer and Rogers, 1990; Frischmuth et al., 2001; Gilbertson
et al., 2003). For defective interfering DNAs (diDNAs) associated

with geminiviruses, which are typically half (∼1400 bp) the size
of a begomovirus genome/DNA component, encapsidation has

been shown to be in isometric particles (thus half a geminate
particle; Frischmuth et al., 2001; Casado et al., 2004). Although

betasatellites, which are typically 1350 bp in size, have been
shown to be encapsidated in CP of the helper virus (Tabein et al.,

2013) and insect transmissible (Saunders et al., 2000), the nature
(multiplicity) of the particles has not been investigated. However,

it would seem likely that, in common with diDNAs, they are
encapsidated in isometric particles. The nature of virus particles

encapsidating quarter unit-length DNAs, such as the ToLCV-

sat-like satellites, remains unclear. However, encapsidation of
ToLCV-sat DNA in the CP of ToLCV has been demonstrated by

immunocapture PCR (Dry et al., 1997).
The sizes of the satellites characterized here range from

633 to 750. Thus, these molecules are about half the size of

betasatellites and alphasatellites and about a quarter the size
of begomovirus DNA components. The presence of an A-rich

region is a common feature for all the DNA satellites associated
with begomoviruses so far, including betasatellites, alphasatellites

and the small non-coding satellites such as ToLCV-sat (Dry
et al., 1997; Mansoor et al., 1999; Briddon et al., 2003; Fiallo-

Olivé et al., 2012). For alphasatellites, it has been suggested that
the A-rich region may be a “stuffer” required to increase the

size of a nanovirus DNA component (∼1000 nt), from which
alphasatellites are believed to have evolved, to that required for

encapsidation by a begomovirus (∼1400 nt, about half the size
of a begomovirus DNA component) (Mansoor et al., 2003). The

betasatellites also have a size corresponding to half a begomovirus
genome/DNA component with an A-rich region. By analogy to

alphasatellites, this has been taken to indicate that betasatellites
possible also have their origins as a component of another

ssDNA virus, although no virus from which the component
could have originated has yet been identified. Defective versions

of betasatellites that are approximately half the size of full-
length betasatellites are frequently identified in association with
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begomovirus-betasatellite infections (Briddon et al., 2003; Akhtar

et al., 2014). Such defective molecules retain both the A-rich
region and the SCR, but lack the βC1 coding sequence and

resemble the satellite molecules identified in this study. Retention
of the A-rich region and the SCR suggests that these are

required for maintenance of these molecules by the helper
begomovirus and thus is more than just a “stuffer,” since random

mutation would otherwise rapidly reduce the A content. It has
been suggested that the A-rich region may have a function in

complementary-strand DNA replication, although evidence in
support of this is lacking (Briddon et al., 2003).

For all the satellites discussed here, including the betasatellites,
the presence of a second hairpin structure upstream of the

SCR/SCR-like sequences appears to be a common feature;
although for NW satellites the position differs from the

remaining satellites (Figures 1B and 3C). Only for some satellites
(ToLCV-sat and some of the sweepovirus-associated satellites)
is this structure also associated with sequences that match the

predicted iteron sequence of the helper virus. Lin et al. (2003)
showed that mutation of the “iteron” sequence in ToLCV-

sat, which abolished interaction of the satellite with ToLCV
Rep in vitro, did not abolish trans-replication of the satellite

in planta. Additionally, ToLCV-sat could be trans-replicated
and maintained in plants by other begomoviruses, and even a

curtovirus, which do not have the same iterons as ToLCV (Dry
et al., 1997). These findings suggest that, although the iteron

sequence of ToLCV-sat may be important for interaction with
ToLCV, other sequences, or possibly the hairpin structure, can

act as a Rep binding site for both ToLCV and other viruses.
Nawaz-ul-Rehman et al. (2009) put forward two hypotheses

to explain the promiscuous interaction of betasatellites with
begomoviruses. The “universal Rep” hypothesis proposed that

begomoviruses that interact with betasatellites have Rep proteins
with more relaxed origin recognition properties. The “universal

iteron” hypothesis proposed that betasatellites contain sequences
that allow them to be recognized by a greater range of
Rep proteins (so-called “iteron-like” sequences). Although it

remains unclear which hypothesis may be correct, the weight
of evidence lies with the “universal iteron” hypothesis at this

time. Saunders et al. (2008) showed that sequences important
for trans-replication of betasatellites lie in the vicinity of the

secondary hairpin and Nawaz-ul-Rehman et al. (2009) showed
that, in adapting to a new helper begomovirus, these sequences

may change to improve interaction with the virus. Also, in
common with betasatellites, some of the small satellites have

iteron-like sequences adjacent to the secondary hairpin structure
(Figures 3B,C). This suggests that, due to long association with

a single helper begomovirus, satellites such as ToLCV-sat and
the sweepovirus-associated satellites have evolved a more close

relationship with their helper viruses, by encoding helper virus
iterons, but nevertheless maintain the iteron-like sequences of

their betasatellites progenitors allowing them to interact with
other begomoviruses (Saunders et al., 2002b; Lin et al., 2003).

It is evident based on the analyses presented here that
the ToLCV-sat-like satellites are distinct from betasatellites.

They lack the βC1 gene and have sequences that have
diverged significantly from the SCR of betasatellites, including

nonanucleotide sequence-containing hairpin loop structures that

are distinct from those of betasatellites. Additionally they do
not occur in the presence of betasatellites, unlike the defective

betasatellite that have been identified in association with many
betasatellites. On the basis of these findings it is proposed that

the ToLCV-sat-like satellites be considered a class of satellites
distinct from betasatellites, for which the name “deltasatellites” is

proposed – the Greek letter delta often being used in molecular
biology to indicate a deletion or mutation. The deltasatellites

include the two groups of satellites identified here, the satellites
associated with sweepoviruses infecting Ipomoea sp. in Spain

and Merremia in Venezuela, ToLCV-sat, the small molecules
identified in Croton from India and Malvastrum from the

Philippines, the satellites identified by Fiallo-Olivé et al. (2012)
isolated from Malvastrum and Sidastrum, as well as a group of

small molecules identified in B. tabaci whiteflies originating from
the United States of America (Ng et al., 2011).

Although the deltasatellites and betasatellites are clearly

related, it is unclear whether one group evolved from the other
or they have distinct origins. Based on the premise that the

simplest explanation is frequently the correct one, it would seem
most likely that the delatasatellites evolved from the betasatellites.

This possibility is supported by the apparent ease with which
betasatellites lose their βC1 coding sequence (Briddon et al.,

2003; Akhtar et al., 2014). Thus a betasatellite would have lost
its βC1 gene, becoming approximately one quarter the size

of a begomovirus genome/genomic component, and the SCR-
derived sequences diverged from the parent betasatellite once

the betasatellite was lost by the virus. What forces might have
driven the divergence of the SCR sequences is unclear since the

precise function of these sequences remains unknown. Since,
the SCR occupies a position analogous to the common region

shared by components of bipartite begomoviruses, which ensure
the integrity of the split genome by virtue of encompassing

the ori, it has been suggested that the SCR sequences may be
involved in transreplication by the helper begomovirus (Briddon
et al., 2003). However, for transreplication of betasatellites,

specificity has been shown to be mediated by sequences between
the A-rich region and the SCR (Saunders et al., 2008). If the

SCR is involved in interactions with the helper begomoviruses,
the divergence of the SCR sequences of deltasatellites might

have been driven by the need to interact with the helper
begomovirus.

The fact that the nonanucleotide-containing hairpin
structures of delatasatellites differ from those of betasatellites

suggests that the betasatellite(s) from which deltasatellites
evolved has yet to be identified or is extinct. Additionally,

the difference in the nonanucleotide-containing hairpin
structures between distinct deltasatellites that each lineage has

a distinct origin (convergent evolution). The identification of
deltasatellites in a vegetatively propagated species provides a

possible explanation of the present wide geographic distribution
of these satellites. Sweet potato has its evolutionary origins in

tropical South and Central America and has been transported
to all the warmer parts of the World for cultivation (Roullier

et al., 2013).This is not, however, evidence for a NW origin of
deltasatellites since sweet potato germplasm has been moved
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both to and from its geographic origin (Paprotka et al., 2010a)

and the sweepoviruses are typical OW begomoviruses (Brown
et al., 2012). Further deltasatellites will need to be identified

and characterized to more precisely determine the origins and
evolution of these satellites.

Despite the fact that ToLCV-sat was identified in the 1990s
(Dry et al., 1997), little is known concerning the maintenance

of deltasatellites by begomoviruses and the effects they have on
virus infections. So far only ToLCV-sat has been experimentally

introduced into plants and these studies did not look at the
effects of the satellite on symptoms and virus replication (Dry

et al., 1997; Lin et al., 2003). There is thus a need to investigate
the effects of deltasatellites on begomovirus infections and their

interactions with helper begomoviruses, for comparison to the
better characterized, and more numerous, betasatellites and

alphasatellites. These aspects will be the focus of future studies.
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