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Abstract 

Changes in the performance of bearings can significantly vary the distribution of internal forces and 

moments in a structure as a result of environmental or operational loads. The response of a bearing has been 

traditionally idealised using a linear model but a nonlinear representation produces a more accurate picture 

at the expense of modelling complexity and computational time. In this paper, a lead-rubber bearing is 

idealised using the hysteretic Bouc-Wen model. The Hilbert-Huang Transform is then employed to 

characterize features of the non-linear system from the instantaneous frequencies of the bearing response to 

a time-varying force. Instantaneous frequencies are also shown to be a useful tool in detecting sudden 

damage to the bearings simulated by a reduction in the effective stiffness of the force-deformation loop. 

Keywords: Elastomeric Bearings; Bouc-Wen; Nonlinear Structural Dynamics; Hilbert-Huang Transform. 

1. Introduction 

Generally, it is reasonable to assume that the response of a structure to moderate dynamic loads will remain 

in the elastic region, however, large deformations or specific components with non-linear physical properties 

are represented best by non-linear models [1]. An example of a nonlinear structural component is an 

elastomeric bearing. Elastomeric bearings are the most commonly used type of seismic isolator [2] and their 

main purpose is to allow lateral movement due to shrinkage, temperature variation and earthquakes. In 

addition to this lateral flexibility, bearings can have a degree of compressibility in the vertical direction, 

typically modelled with translational springs.  In some cases, rotational springs are also needed to accurately 

resemble field measurements from static and dynamic loading tests. For instance, there is experimental 

evidence that changes in joints and elastomeric bearings are one of the main causes of changes in bridge 

frequencies [3-5].  

Of relevance to this investigation, is the non-linear nature of elastomeric bearings due their inherent 

damping properties [6]. The nonlinearity can be described by the restoring force and displacement 

behaviour, i.e., a hysteresis loop describing the recoverable and permanent deformations. A number of 

mathematical hysteresis models that predict the bearing response for different levels of stress are presented 

in the literature [7-11]. Hwang et al [7] experimentally validates a mathematical model that replicates the 

hysteretic behaviour of hard rubber bearings for a variety of external loading conditions. Matsagar and 

Jangid [12] investigate the influence of different isolator characteristics, such as the shape of the isolator 

force-deformation loop and yield displacement of the isolator, on the seismic response of the structure. They 
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find that the seismic response is significantly influenced by the shape of the loop and that lower yield 

displacements increase the acceleration response of the structure. In this paper, elastomeric bearings are 

assumed to be lead rubber bearings modelled as vertical springs. Lead rubber bearings present several 

convenient features with fundamental drawbacks related to the negligible increase in damping and high 

deformability for low static loads. The lead plug increases the horizontal stiffness significantly compared to 

other bearings (e.g. laminated rubber bearings). With the placing of lead plugs (Fig. 1(a) where 𝑓(𝑡) is the 

external vertical load applied to the bearing), aside from energy dissipation for seismic response and 

stiffness for static loads, a single compact device is obtained, able to satisfy most of the requirements 

associated with a good bearing. For that reason rubber bearings are used extensively in practical applications 

in bridge structures [13].  

Fig. 1(b) represents a bilinear hysteretic model for simulating the response a lead rubber bearing. In this 

figure, 𝑢(𝑡) is the time-varying vertical displacement of the bearing and 𝑓𝑠(𝑡) is the restoring force in the 

bearing.  The stiffness of the bearing (slope 𝐾𝑣) is related to post-yield stiffness by . The lead responds 

with elastic perfectly plastic loops, therefore, after yielding (fs(t) > fsy in Fig. 1(b)), the stiffness is equal to 

the stiffness of the rubber bearing alone (Kv) and the loops are almost bilinear [14]. 𝐾𝑒𝑓𝑓  is the effective 

stiffness value given by the ratio of the maximum restoring force (𝑓𝑠𝑚𝑎𝑥) to the maximum displacement 

(𝑢𝑚𝑎𝑥) [15]. 

 
 

 

 

(a) (b)  

 

Figure 1. Typical Lead Elastomeric Bearing Used in Bridges: (a) Components; (b) Force-Displacement 

Hysteresis loops 

 

Deterioration in elastomeric bearings is caused by external restraint forces which are generated in the 

movement of concrete in response to temperature, creep and shrinkage. The restraint may consist of friction 

at the bearings, bonding to already hardened concrete or by attachment to other components of the structure. 

Cracks resulting from the actions of external restraint forces develop in a similar manner to those caused by 

external load. Concern about the reliability of elastomeric bearings is increasing and studies on experimental 

and in-service bearings reveal the occurrence of permanent changes in the engineering properties of the 

bearings [4, 5]. Cyclic loading is found to cause progressive damage, analogous to fatigue in metals [16]. 

Most damage cases are in the form of progressive debonding between the rubber and steel shims. A degree 

of stiffness loss can be expected due to repeated cyclic loading causing breading of molecular bonds 

between polymers [17]. A method to characterize and monitor the structural parameters characterizing the 

bearing response is clearly needed. 
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Many methods have been proposed for parameter identification of Single Degree-Of-Freedom (SDOF) and 

Multiple Degree-Of-Freedom (MDOF) structural systems. Recently, wavelet ridges of Continuous Wavelet 

Transform (CWT) have been employed to identify the Instantaneous Frequency of a time-varying structure, 

where the frequency change is gradual representing a linear system with time-varying frequency [18]. 

Nagarajaiah and Basu [19] investigate modal identification of linear time-variant systems and they conclude 

that the wavelet analysis is more appropriate than the Hilbert-Huang Transform (HHT) in identifying 

changes in the frequency of linear systems due to the number of scales and coefficients that can be applied. 

Feldman [20] applies the Hilbert Transform (HT) to identify the nonlinear instantaneous modal parameters 

of SDOF systems in forced and free vibration. However, the application of HT is limited as it only defines a 

‘mono-component’ signal (i.e., obtain only one frequency value using a single component) [21]. For ‘multi-

component’ signals, the concept of instantaneous frequency becomes meaningless, given that the HT is 

inherently limited to ‘mono-component’ signals and breakdown of the signal components is needed. The 

signal needs to be defined in terms of its single ‘mono-components’ each having a different instantaneous 

frequency [8] as addressed by Huang et al [22]. They decompose the signal using Empirical Mode 

Decomposition (EMD) to obtain the Intrinsic Mode Functions (IMFs) and then use the HT to obtain the 

instantaneous frequency of the signal. This methodology is called the HHT and it is one of the most popular 

methods for analysis of nonlinear and non-stationary data [22-24]. In the following sections, the HHT is 

applied to the characterization of the response of nonlinear systems with hysteresis that define lead rubber 

bearings. First, basics on the HHT are reviewed. Second, the mathematical model of the bearing (a SDOF) is 

introduced. Then, the response of the model to a time-varying force and to a sudden change in the force-

displacement hysteresis loop is investigated via the HHT. 

 

2. The Hilbert Huang Transform  

 

There are two main steps in the HHT analysis process [22,25]: EMD and the HT. The HT characterizes a 

time-domain signal 𝑥(𝑡) by extracting its envelope 𝑎(𝑡) and its phase 𝜃(𝑡) which can be expressed as 𝑥(𝑡) = 𝑎(𝑡)cos θ(𝑡). Huang et al [22] applies the EMD process first to overcome the limitation of the HT to 

only ‘mono-component’ signals. 

2.1 First step: EMD 

The signal is decomposed into a number of IMFs using the ‘sifting’ process. The IMFs can be defined as a 
representation of oscillatory modes of variable frequency and amplitude that are time dependent, as opposed 

to simple harmonic functions of constant amplitude and frequency. The IMFs must satisfy two conditions:  

(a) the number of extrema and the number of zero crossings must differ by no more than one,  

(b) the mean value of the envelope defined by the maxima and the minima at any given time must be 

zero.  

The sifting process to obtain the IMFs is as follows:  

i) identify the local maxima and minima,  

ii) find the mean m1(t) of the upper and lower envelopes,  

iii) obtain the difference ℎ1(𝑡) between the signal x(t) and the mean m1(t), i.e., ℎ1(𝑡) = 𝑥(𝑡) −𝑚1(𝑡).  
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iv) Check if ℎ1 satisfies the two conditions ((a) and (b) above) to be an IMF. If the two conditions 

are met, then h1 will be the first IMF. However, this rarely occurs in the first iteration, and 

therefore ℎ1 must be treated as the signal and the process i) to iii) repeated again (i.e., ℎ11(𝑡) =ℎ1(𝑡) − 𝑚11(𝑡)), until the sifted signal satisfies the two conditions for an IMF. 

After the sifting process i) to iii) has been done a number of times i.e., k, the two conditions will be met and 

the first IMF,  1c t , will be obtained (Equation (1)). 

 
1 1( 1) 1( ) ( ) ( )
k k k

h h mt t t   

1 1( ) ( )
k

c ht t
  

 

(1) 

 

 

However, too many sifting cycles could reduce all the components to a constant-amplitude signal with 

frequency modulation only, i.e., only frequency variation is retained. To guarantee that the IMF components 

retain enough physical sense of amplitude and frequency modulations, the number of times, k, the sifting 

process repeats has to be limited. There are two main mathematical stoppage criteria proposed in the 

literature that are used to ensure that the sifting process stops when conditions (a) and (b) above are met [22, 

23]: 

 A first criterion based on limiting the normalised Square Difference (SD) between two successive 

sifting operations to a small value, i.e.: 

 

 
𝑆𝐷 = ∑ [|ℎ1(𝑘−1)(𝑡) − ℎ1𝑘(𝑡)|2ℎ1(𝑘−1)2 (𝑡) ] ≤ 0.2 − 0.3𝑇

𝑡=0  

 

 

 

(2) 

at time 𝑡 and for a total duration 𝑇 of the signal. 

 A second criterion based on assuming the sifting process has ended after a predefined number of 

times. For instance, if after S sifting times there is no difference between the number of zero 

crossings and the extrema, or differ at most by one, then the process is stopped. 

 

The first criterion is difficult to implement in practice due to the need to select an accurate value of 𝑆𝐷 to 

stop the sifting process. A small value of SD does not necessarily satisfy the number of zero crossings and 

extrema. For that reason, the second criteria is adopted in this paper, although there also exists difficulty in 

predefining the value of S which it is generally taken between 4 and 8 [23]. The value of S adopted here is 4 

to save computational time given that choosing a higher value has not shown to significantly enhance the 

results of the analysed signals.  

The process of sifting starts by separating the finest local mode  1c t (Equation (1)) from the data x(t). This 

gives the residual  1 1( ) ( )r t x t c t  . The residual is then used as the input signal to obtain the second IMF

2( ( ))c t  and so on. The decomposition into higher order IMFs is repeated m  times until the value of ( )
m

r t  

becomes a ‘monotonic’ component from which no more IMFs are extracted.  
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2.2 Second step: The HT 

Once the EMD process has been finalised, the second step of the HHT analysis is the HT of the IMFs [24, 

25]. A complex analytical signal is formed for each IMF consisting of a real part defined as the 
th

i  IMF 

(𝑐𝑖(𝑡)), and an imaginary part defined by the HT ( ( )
i

y t in Equation (3)).  

 
( )1

( )   lim i
i

y

y

y

c
y t d

t

 
 




  (3) 

 

The complex signal can be expressed in exponential format as in Equation (4). 

 
( )

( ) ( ) ( ) ( ) ij t

i i i i
z t c t jy t a t e

    (4) 

 

where 1j   , ( )
i

a t  is the amplitude at time t  and ( )
i

t  is the instantaneous phase. In another words, the 

analytical signal ( )
i

z t represents a rotation in the complex plane with the radius of rotation ( )
i

a t and the 

instantaneous phase angle, ( )
i

t , where: 

 
( )

( ) arctan
( )

i
i

i

y t
t

c t


 
  

 
, and 

2 2
( ) ( ) ( )

i i i
a t c t y t   (5) 

 

The instantaneous frequency  i
IF t associated to the i

th
 IMF at time t can be obtained from: 

 
( )

( ) i
i

d t
IF t

dt


  (6) 

 

Using the HHT, it is possible to characterize the frequency of a nonlinear system such as a nonlinear 

support. The potential of the HHT in detecting changes in bearing stiffness is examined in the following 

sections.  

 

3. Description of Mathematical Model of Bearing 

 

An elastomeric bearing is idealised as a SDOF system consisting of a mass (M) supported on a spring ( ( )
v

k t

) and damper (Cv) system (Fig. 2(a)). The response of a SDOF system with a nonlinear hysteretic stress-

strain relationship has been analysed by Dobson et al [9], who provide a mathematical model based on 

Bouc-Wen capable of simulating the asymmetric hysteretic response found in bearings. The asymmetric 

hysteresis is composed of four different curves that describe the force-displacement response of the 
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bearings. Here, the nonlinear stiffness in the spring, Kv(t), is given by the slope of the curve in Fig. 2(b), 

which is a smoother and more realistic representation of a bearing response than the simplified bilinear 

mathematical model consisting of straight lines shown in Fig. 1(b) [26]. In Fig. 2(b), z is the hysteretic 

displacement which defines the permanent displacement in the hysteresis, i.e. at unloading the displacement 

does not return to the original value. 

 

 

 
(a)  (b) 

Figure 2. Bearing model: (a) SDOF, (b) Force-Displacement relationship  

 

The response of the SDOF system in Fig. 2 is governed by the dynamic equilibrium between the internal 

inertial (  Mu t ), damping (  v
C u t ) and stiffness (  ( )

v
k t u t ) forces and the external applied forces ( ( )f t ) 

given in Equation (7). 

      ( ) ( )
v v

Mu t C u t k t u t f t                (7) 

 

where  u t ,  u t  and ( )u t  are the acceleration, velocity, and displacement respectively of the SDOF, which 

can be obtained by integration of Equation (7) using the Wilson-θ method. The response of the nonlinear 

SDOF system in Equation (7) can be re-formulated [27] as: 

      2 ( ) ( ) /
s

u t t u t f t f t M    (8) 

 

where   is damping, ( )t is the natural frequency given by 
( )

( ) v
k t

t
M

  , and ( )
s

f t  is the restoring force 

for nonlinear system given by: 

 
2 2( ) ( )

( ) ( ) ( ) (1 ) ( ) ( )v
s

K t u t
f t t u t t z t

M
       (9) 

 

In Equation (9),  is the ratio of post-yield to pre-yield stiffness and ( )z t is the hysteretic displacement (i.e., 

the difference between the displacement at loading and unloading (permanent displacement)). The post-yield 

to pre-yield stiffness ratio ( ) regulates the shape of the hysteresis. If  =1 the force-displacement 

relationship reverts to linear case, while for  =0.2 (0≤ 𝛼 ≤ 1) a hysteresis force-displacement relationship, 

as illustrated in Fig. 2 (b), is formed. 
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The Bouc-Wen hysteretic displacement ( ( )z t , which is given by the horizontal axis in Fig. 2(b)) is used to 

guarantee a smooth transition between pre-yield and post-yield stiffness that represents the real force-

deformation behaviour of the bearing. ( )z t  is governed by Equations (10) and (11) where the influences of 

the characteristic strength, damping, post to pre-yield stiffness ratio and other parameters are taken into 

account via pre-established coefficients [27]:  

 

 
             1n n

z t Au t u t z t t z t t u t z t t 


       

 
(10) 

 
  (( ))z t z t tz t    

 
(11) 

 

where  z t is the incremental hysteretic displacement,  u t is the velocity of the SDOF system, A , n , ,   

are coefficients that define the shape of the hysteresis ( A  , ,  influence the loop size and n influence its 

smoothness), t is the incremental time step and ( )z t t  is the hysteresis displacement at the previous time 

step. In general, by using Equation (10) the coefficients are dependent on each other to produce a hysteretic 

loop that is representative of the hysteresis bearing response. In order to have more flexibility and better 

control over the coefficients that define the hysteresis shape, Equation (12) is used instead of Equation (11) 

to obtain the force-displacement loops presented in Fig. 2(b) as described by Dobson et al [9]: 

 

 

       
     

  
  

( ) ( ) ( )  

( ) ( )  

( ) ( ) ( ) ( )  

( ) ( ) ( ) ( )  

n

n

n

n

z t Au t B u t u t z t t z t

C u t u t z t t z t

D u t u t z t t z t

E u t u t z t t z t

    

   

   

   

 
 

(12) 

 

Equation (12) decouples the hysteretic loop in four loading regimes each of which being regulated by a 

different constant shape coefficient: B ,C , D  or E  (shown in Fig. 2(b)). The constants A and n define the 

shape and level of nonlinearity respectively in the restoring force-deformation behaviour, and the constants 

B, C, D and E shape the hysteresis loop. The constant shape parameter to employ will depend on the location 

of the force-displacement curve and the signs of the velocity ( ( )u t ) and the hysteretic displacement ( ( )z t ). 

Three of the nonlinear terms in Equation (12) will perish for each of the four possible combinations of signs 

for ( )u t  and ( )z t . For example, C( ( ) 0, ( ) 0u t z t  ) is called if the velocity is positive and the hysteretic 

displacement is negative while B , D , E  become zero. D( ( ) 0, ( ) 0u t z t  ) is called if the velocity is 

negative and the hysteretic displacement is positive (the opposite of the condition for C) and then, B, C and 

E are zero. Similarly for the regions B( ( ) 0, ( ) 0u t z t  ) and E( ( ) 0, ( ) 0u t z t  ) illustrated in Fig. 2(b). 

When ( ) 0u t   and ( ) 0z t   the system is linear and there is no constants that need to be defined for the 

force-displacement curve. 
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The main advantages of the model in Equation (12) over the Bouc-Wen model in Equation (11) is the added 

flexibility to the hysteretic cycle as each curve is defined separately. Setting the nonlinear parameters B, C, 

D and E equal to zero results in a linear relationship with a slope equal to that of the initial tangent slope. 

Depending on the selected coefficients, choosing a positive value shall bow the curve inwards (or outwards) 

from the loop, with the negative value producing the opposite effect. 

 

4. Characterization of Non-Linear SDOF Bearing Model Using the HHT 

 

The response of the SDOF in Fig. 2 (  u t ) is obtained for a sinusoidal load  f t  given in N by Equation 

(13) for testing the ability of the HHT-based method in characterizing the structural system.  

In this theoretical test, the SDOF bearing model has a mass of M =3135.8 kg and a viscous damping of 6% 

(ξ = 0.06) [5,28,29]. A vertical effective stiffness of 1.14375×10
9
 N/m is assumed which leads to a 

‘effective’ natural frequency of 30.7 Hz, The following values are assigned to the constants of the hysteresis 

model of Equation (12) to define the shape of Fig. 2(b): 1A  , 0.2  , 1n  , 500B   , 500C   , 

500D  , and 500E  . These values are selected to create a force-displacement curve that resembles 

previous experimental investigations on the response of hysteretic bearings [30-32]. 

Figs. 3(a) and (b) show the acceleration (  u t ) and displacement ( ( )u t ) respectively of the SDOF system 

under the sinusoidal load specified in Equation (13). The four stages (B, C, D, and E) of the hysteresis in 

Fig. 2(b) are shown by rounded dashed circles in Fig. 3 for the response between 1.1 s to 1.73 s (which 

covers one full hysteresis loop 0.63 s long, i.e., the time from start of loading at B to unloading at D and E to 

reloading at C and back to B in the curve). When the curve is at C, the stiffness is relatively high and the 

acceleration response (from 1.1 s to 1.225 s) has lower amplitude, which is similar to the stage when the 

curve is at D (from 1.425 s to 1.54 s). When the curve is at B (from 1.225 s to 1.425 s) the lower stiffness 

produces higher amplitude and a relatively linear force-displacement relationship (Fig. 2(b)), similarly to 

stage E from 1.54 s to 1.73 s. 

(a) (b) 

Figure 3. Response of non-linear SDOF system to a sinusoidal load: a) acceleration, b) displacement  

 

The HHT is applied to the acceleration signal from Fig. 3(a). Figs. 4(a) and b) show the first four IMFs 

resulting from the EMD process and the associated instantaneous frequencies via the HT respectively. 
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Although the total number of IMFs extracted from the acceleration is seven, only the first four IMFs are 

shown in the figure. The last three IMFs (IMF5-7) are residues of small magnitude that do not provide 

meaningful information on the system behaviour. Lower IMFs contain higher frequency components of the 

signal, and IMF1 appears to have higher coefficient values than other IMFs and to dominate the response.  

(a) (b) 

 
Figure 4. HHT: (a) IMFs 1-4 using EMD. (b) associated instantaneous frequencies (IF1(t) – IF4(t)) in Hz 

using the HT  

 

The frequency of the applied sinusoidal load (Equation (13)) is 1.59 Hz and it is captured by IMF4 in Fig. 4. 

The natural frequency of the SDOF system, NF(t), is time-varying and determined in Hz by: 

 

( )1
( )

2

v
k t

NF t
M

  

 

(14) 

 

 

where the stiffness ( )
v

k t  is obtained from the force-displacement curve in Fig. 2(b) at each point in time t . 

Fig. 5 shows the close correlation between the IF1(t) extracted from the IMF1 and the natural frequency of 

the system, NF(t). Discrepancies between IF1(t)  and NF(t) are noticed for the lowest stiffness in the loop 

(stages B and E), i.e.,  IF1(t) predicts about 12 Hz for a minimum NF of 14 Hz. The latter can be partially 

attributed to mode mixing in the EMD process.  
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Figure 5. Comparison of instantaneous frequency of IMF1 using HT and actual instantaneous natural 

frequency (NF(t)) of the system 

 

Fig. 6 shows the variation of stiffness with time of the SDOF system using 𝐾𝑣(𝑡) calculated using Equation 

(14) with the predicted IF1(t) in Fig. 5, and the “actual 𝐾𝑣” obtained from the force-displacement curve at 

each point in time. Fig. 6 shows how the variations of stiffness due to frequency changes are captured with a 

reasonable degree of accuracy for stages B, C, D, and E of a full hysteresis cycle. The high frequency 

content (  41-16 Hz) in Fig. 5 from 1.1 s to 1.225 s corresponds to points in the left portion of the C stage 

(associated to high slopes and stiffness in Figs. 2(b) and 6 respectively). Stiffness is significantly lower 

when entering stage B from 1.225 s to 1.425 s where the frequency range is  16-14 Hz. Stiffness is again 

higher in stage D from 1.425 s to 1.54 s where the frequency range increases to  41-16 Hz. Finally, stage E 

takes place between 1.54 s and 1.73 s (  16-14 Hz) where the stiffness reduces to similar levels found 

before in stage B.  
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Figure 6. Comparison of stiffness prediction (𝐾𝑣) based on IF by HHT and true stiffness (“Actual 𝐾𝑣”) of 

the system 

Although the IF1 and 𝐾𝑣 using HHT does not exactly match that of the ‘actual values’ of the system, it 
closely approximates the exact frequency and stiffness of the system. Figs. 7 and 8 show the analysis of the 

acceleration in Fig. 3 using Fast Fourier and Continuous Wavelets Transforms (CWT) respectively to 

compare with the HHT. In Fig. 7, the Power Spectral Density (PSD) shows the range of possible frequencies 

of the system with the highest peaks taking place at 1.6 Hz and 4.8 Hz. These two large peaks are followed 

by others of smaller magnitude up to 42 Hz representing the continuous change in frequency of the system 

with time. It is evident that the PSD is very limited in characterizing a non-linear system due to the lack of 

time information. There is no way of knowing if these frequencies correspond to stages B, C, D, or E on the 

force-displacement hysteresis curve. 

 

Figure 7. PSD of acceleration in Fig. 3(a) 

The CWT uses inner products to measure the similarity between a signal and a function known as the 

mother wavelet. In the CWT, the signal is compared to shifted and compressed or stretched (scaled) versions 

of the mother wavelet. By comparing the signal to the wavelet at various scales and points in time, a 

frequency-time map of wavelet coefficients is obtained [33]. Fig. 8(a) shows the wavelet coefficients versus 

pseudo-frequency and time that result from applying the CWT to the acceleration response of Fig. 3(a) using 

the Mexican Hat mother wavelet. The pseudo-frequency is directly proportional to the centre frequency of 
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the wavelet in Hz (For the Mexican Hat wavelet, this centre frequency is 0.25 Hz), and inversely 

proportional to the scale of the wavelet and to the sampling period. It is difficult to interpret the behaviour of 

the system from Fig. 8 alone, so sections at times 1.1, 1.225, 1.425, 1.54, and 1.73 s (A-A, B-B, C-C, D-D, 

and E-E respectively) are plotted versus frequency in Fig. 8(b) and sections at frequencies 14 and 41 Hz (F-

F and G-G respectively) are plotted versus time in Fig. 8(c). In Fig. 8(b), section A-A corresponds to initial 

stage of C, while section B-B corresponds to end of stage C and beginning of stage B. Sections through C-C 

and D-D correspond to end of stage B and beginning of stage D. It can be seen that the sections C-C and D-

D have the same magnitude than sections A-A and B-B but they are in the negative region. Section E-E 

corresponds to end of stage E and it is almost equal in magnitude to section A-A suggesting that the stiffness 

is returned to its original value and a full hysteresis cycle is complete. Fig. 8(c) shows the variation in 

content of the pseudo-frequencies 14 and 41 Hz (lower and upper values respectively of the range of 

variation of the frequency of the system) with time. However, the range of variation of the frequency of the 

system, the frequency at which the system is responding for each point in time and its duration is not as 

clearly defined by wavelets as in Fig. 5 simply using the IF1(t) by HHT.  
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 (c)  

Figure 8. Wavelet analysis of acceleration in Fig. 3(a): (a) Contour plot of wavelet coefficients versus 

frequency and time, (b) Wavelet coefficients versus frequency for times of 1.1, 1.225, 1.425, 1.54 and 

1.73 s, (c) Wavelet coefficients versus time for frequencies of 41 and 14 Hz. 
 

It has been shown that HHT can be used to characterize frequency and stiffness changes due to nonlinearity 

properties of a SDOF system, although one problem that may arise with the EMD process is over 

decomposition of the signal resulting into excessive IMFs and mode mixing, i.e., IMFs sharing similar 

frequencies. It is also important to note that this is a theoretical investigation of a SDOF system with a 

specific hysteretic loop and that experimental results may contain other complexities involving external 

factors such temperature and/or inconsistencies of the applied load and the specimen, and/or internal factors 

such as friction between steel shims and rubber (for steel reinforced rubber bearings).  

 

5. Identification of Changes in the Bearing Behaviour Using the HHT 

 

Although the HHT was initially develop to characterize non-linear systems, its application to structural 

damage detection has been limited mostly to sudden losses in stiffness using simple periodic functions, 

experimental beams with crack, or linear time variant systems [19,34-37]. The reason for this possibly lays 

on the lack of data to characterize how damage affects the overall performance of non-linear structural 

systems. In this investigation, damage is theoretically simulated through the introduction of a reduction in 

the effective stiffness of a hysteretic loop as shown in Fig. 9(a) [38]. Acceleration response of the SDOF 

system is illustrated in Fig. 9(b) where a 10% reduction in effective stiffness is introduced after 2.5 s. This 

change in the effective stiffness of the hysteretic loop is visualized as an increase in the maximum amplitude 

of the acceleration signal of 0.282 m/s
2 

with respect to the original acceleration (i.e., maximum acceleration 

is 28.8% higher after the stiffness reduction). This large increase in acceleration is attributed to the low 

stiffness values experienced by the bearing at loading and unloading. In comparison, at higher stiffness the 

change in acceleration is much lower (6.2%). 
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(a)  (b) 

Figure 9. (a) Force-displacement relationship for SDOF system before and after 10% loss in effective 

stiffness, (b) acceleration response before and after 10% loss in effective stiffness  
 

Four IMFs of interest can be obtained from Fig. 9(b) using EMD and the IFs of these IMFs are shown in 

Fig. 10(a). Edge effects (before 0.5 s and after 4.5 s) appear in the IFs as a result of the decomposition 

process [22].  IF1(t) to IF4(t) show a sudden peak at the instant of change in effective stiffness. This peak can 

be clearly visualized in  IF3(t)  and IF4(t) of Fig. 10(a), due to the relative high frequency content at this 

location with respect to the rest of the IMF. The dominant IMF is IMF1 and Fig. 10(b) zooms in on the 

IF1(t) shown in Fig. 10(a). The average range of IF1(t)  is 42.35-10.64 Hz prior to the simulated damage and 

38.35-9.46 Hz after damage has occurred. Once edge effects are ignored, the reduction in frequency as a 

result of the stiffness change is 9.6% (- 4 Hz) at the upper range (cases C and D in Fig. 2(b)) and 11.1 % (- 

1.18 Hz) at the lower range (cases B and E in Fig. 2(b)). The average drop in stiffness is 

(9.6%+11.1%)/2=10.35%, i.e., approximately the 10% reduction in effective stiffness.  

  
(a) (b) 

Figure 10. Instantaneous frequencies in Hz before and after 10% effective stiffness loss of (a) IMFs 1-4 

and (b) IMF1  
 

This section has demonstrated the capability of the HTT to extract important time-frequency information 

about the nonlinear behaviour of a SDOF system. IF1(t) has been able to capture a small change in effective 

stiffness of 10%. It is acknowledged that experimental setups and more complex systems will require IFs 

from more than one IMF to gather sufficient information to characterize the system.   

 

6. Influence of Noise in the Performance of the HHT 

 

Noise can be caused by a number of factors which include the natural intermittent instabilities in the system, 

the concurrent phenomena in the environment where investigations are conducted, and/or the sensors and 
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recording systems. As a result, data is always an amalgamation of signal and noise, that here it is simulated 

using the additive model: 

 {�̈�𝑛(𝑡)} = {�̈�(𝑡)} + 𝑛𝑙{𝑁}𝜎 (15) 

 

where {�̈�𝑛(𝑡)} is the acceleration corrupted by noise, {�̈�(𝑡)} is the acceleration of the system at time 𝑡, 𝑛𝑙  is 

the noise level, {𝑁} is the standard normal distribution vector with zero mean and unit standard deviation, 

and 𝜎 is the standard deviation of the noise-free signal. For testing purposes, the original acceleration data of 

Fig. 3(a) is corrupted with 1% noise level (i.e., 𝑛𝑙 = 0.01 in Equation (15)) which results into Fig. 11.  

 
Figure 11. Acceleration response of non-linear SDOF system to a sinusoidal load with 1% noise  

 

Following EMD of the corrupted acceleration signal, the corresponding IMFs 1-8 are represented in Figs. 

12(a) and (b). Compared to the noise-free signal (Fig. 4), there is a higher number of IMFs that need to be 

considered as a result of the presence of noise. It can be seen that even low noise levels can have a 

significant impact on the decomposition process. Figs. 12(c) and (d) show the instantaneous frequencies 

associated to each IMF. IMFs 1-3 reveal high variability of frequency content between 0-500Hz, 0-300Hz 

and 0-150Hz for IMF1, IMF2, and IMF3 respectively, which can be attributed to noise. IMFs 4-8 contain a 

smoother variation of frequencies that appears to be in the range of instantaneous frequencies obtained in 

Fig. 4(b) for noise-free acceleration.  
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(a) (b) 

 
(c) (d) 

Figure 12. HHT for signal with 1% noise: (a) IMFs 1-4 using EMD. (b) IMFs 5-8 using EMD. (c) 

Associated instantaneous frequencies (IF1(t) – IF4(t)) in Hz using the HT. (d) Associated instantaneous 

frequencies (IF5(t) – IF8(t)) in Hz using the HT.  
 

However, when plotting the instantaneous frequencies of IMF4 and IMF5 (Fig. 12), together with the time-

varying natural frequency of the system in Fig. 13, the influence of noise is clear. The extraction of a clean 

instantaneous frequency that matches the frequency of the system is rendered unsatisfactory.  

  

  
  

(a) (b) 

Figure 13. Comparison of instantaneous frequency of IMF using HT on a 1% noisy signal and actual 

instantaneous natural frequency (NF(t)) of the system: (a) Instantaneous frequency of IMF4 and NF(t). 

(b) Instantaneous frequency of IMF5 and NF(t). 
 

 

For cases where noise has distinct time or frequency scales from those of the true signal, Fourier transform 

filters can be applied to separate the noise from the signal. Once the signal is filtered from noise, the HT has 

been shown to be capable of extracting phases and instantaneous frequencies for damage identification of 

linear scenarios [39,40]. Similarly, Sections 4 and 5 have demonstrated that the HHT is a valid tool to 

characterize instantaneous changes using the response of a non-linear SDOF bearing system where noise is 

non-existing or has been safely removed. However, traditional filtering methods may not be as reliable in 

separating mixed noise and harmonics in non-linear systems, and Section 6 has shown that the direct 
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application of EMD and the HT to a corrupted signal can produce misleading results. In this regard, 

Ensemble Empirical Mode Decomposition (EEMD) [41] is an alternative to EMD that attenuates mode 

mixing and noise to some extent. 

 

7. Conclusions 

 

A hysteretic Bouc-Wen model has been implemented in a SDOF system to simulate the response of a lead 

rubber bearing. An instantaneous frequency analysis of the response of the SDOF via the HHT has provided 

information that allows characterizing the different stages of stiffness in this non-linear system (i.e., stages

B , C , D , and E of the hysteretic loop). The HHT has overcome the inability of the PSD to distinguish the 

multiple frequencies associated to one mode of vibration in a non-linear system. It has also outperformed 

wavelet analysis in characterizing the system. A sudden change in effective stiffness has been successfully 

identified via the instantaneous frequency. Finally, it has been shown that the accuracy of the method can be 

severely limited by noise. Further research is needed to address the impact of noise and of integrating the 

bearing as part of a more sophisticated MDOF system on the performance of the HHT. 
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