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Introduction

Soil is a vitalizing system where the prolonged interaction between 
the microorganisms, organic matters and soil minerals in�uence the 
physico-chemical, biological properties of the terrestrial systems. Soil 
acts as a critical controlling component in an ecosystem. Mining activity, 
speci�cally open cast mining, o�en lead to land degradation with 
adverse changes in soil textural and structural attributes [1]. During 
surface mining, the overlying soil is removed, and the fragmented 
rock is heaped in the form of overburden. �e mine overburden spoil 
constitutes a mixture of coal seam, coarse rocks, sands, dusts, shale, 
pebbles and other impurities [2,3]. �e surface mining thus results in 

nutrient de�cient condition with loss of soil organic C, leading to a long 

lasting drastic condition for both plants and soil microorganisms. Being 

de�cient in plant nutrients, it represents a disequilibriated geomorphic 

system [4], and poses problem for the process of pedogenesis [5,6], 

revegetation [2,7], and restoration [8-11]. �ere have been reports 

about slow recovery of mine spoil restoration due to constraints in 

microbial growth [8,12-14] and vegetation secession [2,10]. 

Understanding microbial diversity has become an important �eld 

of research, as well as resource management. Soil microbial populations 

play an important role in decomposition and mineralization of organic 

matter by producing various enzymes [15]. �e biochemical functions 

in soil subsystems are catalyzed by soil enzymes [16,17], and considered 

to be a bio-indicator of soil fertility because of their involvement in 

biogeochemical cycling of C, N and P [18,19]. Soil enzymes are derived 

primarily from microorganisms [20], either as extracellular secretions, 

and/or products from lysed cells [21,22], which provides an insight 

into microbial dynamics and activity [23]. �e soil microbial activity 

is an important constituent for ecosystem functioning, in which the 

interpretation of biological and biochemical trait can be favorable for 

identifying the impacted ecosystem of coal mine overburden spoil 
[24]. �e enzymatic study revealed important information about the 
origin, existing nature and catalytic properties of soil enzymes [25]. Soil 
enzyme activities have been related to soil physico-chemical properties 
[26,27]; microbial community structure [28,29], vegetation [28,30], 
disturbance [27,31] and succession [32,33]. Various factors such as 

pH [34,35], texture, hydrological regime [14,36-38], and plant nutrient 

status [39], regulate the soil enzyme activity. Relationship between soil 

enzymatic activities and the successional level of soil microorganisms 

has been substantiated by many workers [3,23,40-42]. 

Soil enzymatic studies can be potentially used to monitor and assess 

soil restoration process of perturbed ecosystem [23,34,42,43]. Bacterial 

population is the major source of amylase [37], which hydrolyzes starch 

mainly to dextrans and a small quantity of maltose. Soil invertase 

hydrolyzes sucrose into -D glucose and β-1 fructose, and serves as 

an important diagnostic clue to soil functioning [44,45]. Protease is 

a proteolytic enzyme that hydrolyzes the peptide bonds, which links 

the amino acids in the polypeptide chain to form a protein structure 

[46,47]. Proteases are particularly important in C and N cycling, and 

such activity tends to be regulated by the soil microorganisms. �e net 
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Abstract

Mining activities lead to land degradation and alter ecosystem functions. Monitoring land degradation status is 

essential to take appropriate and timely conservation measures. Soil genesis during early years of mine spoil reclamation 

is critical and may help to predict reclamation success. The microbial activity is significantly influenced by the physico-
chemical properties, and hence, the assessment of these changes is essential for soil management practices. In 

the present investigation, the physico-chemical characterization and the activities of six different enzymes (amylase, 

invertase, protease, urease, phosphatase and dehydrogenase) were periodically analyzed with respect to different coal 

mine overburden spoil in chronosequence over a period of 10 yr, and compared with the native forest soil, in order to 

assess their effectiveness in reclaiming mine overburden spoil. Comparative analysis suggested that there was gradual 

increase in enzyme activities from a nutrient deficient situation (fresh mine spoil) to an enriched soil (native forest soil). 
Besides, the variation in enzyme activities was significantly attributable to differences in physico-chemical properties. 
Stepwise multiple regression analysis was performed in order to determine the contribution of different physico-chemical 

properties influencing the variability in enzyme activities. Further, principal component analysis was able to discriminate 
six coal mine overburden spoils and native forest soil into independent clusters on the basis of their physico-chemical 

properties and enzyme activities. The study clearly revealed that the change in microbial indices in terms of enzyme 

activities were more responsive and correlated very well with the extent of land degradation, and therefore, can serve 

as biomarker for reclamation studies. 
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impact of nutritional regulation of soil protease activity can be observed 
at the overall microbial community [48-50]. Soil urease is secreted by 
urolytic microorganisms and root exudates [51-53], which hydrolyzes 
urea to ammonia and appears to be dependent on the metabolic 
state of soil microbial population [52,54,55]. Soil acid phosphatase 
(Orthophosphoric monoester phosphohydrolase), which hydrolyzes 
orthophosphoric monoester to alcohol and orthophosphate, acts as 
intermediary enzyme in the transformation of organic phosphate 
into inorganic forms [56-58]. Dehydrogenases are mainly linked 
to oxidation-reduction involved in microbial respiratory processes 
[18,56,59-61]. Being intracellular, the soil dehydrogenase activity is 
considered as an index of endogenous microbial activity [62,59,37]. 

In view of the increased mining activities and decreasing soil fertility, 
it is of utmost concern to monitor the coal mine spoil reclamation over 
time, which pave the way of greater understanding the direction of 
improving soil fertility. Since soil enzyme activity is linked with several 
ecosystem processes and exhibited rapid response to both natural and 
anthropogenic disturbances, it has been suggested as suitable indicator 
of soil quality assessment. �e comparative assessment of enzyme 
activities represents the direct expression of soil microbial community 
to metabolic requirements, and hence will provide information about 
the linkage between resource availability, microbial community 
structure and function, and ecosystem processes. Since enzyme activity 
is linked with several ecosystem processes, it is important to quantify 
the contribution of di�erent physico-chemical properties a�ecting the 
soil enzyme activities. Realizing this, the present study was designed 
to assess the impact of di�erent soil physico-chemical properties on 
enzyme activities in a chronosequence coal mine overburden spoil over 
time, which can be used as indices for reclamation study.

Materials and Methods

Study site

�e present study was carried out in the Basundhara (west) open 
cast colliery in the Ib valley of Mahanadi Coal�elds Limited (MCL), 
Odisha, India (Geographical location: 22º03’58”-20º04’11” north 
latitude and 83º42’46”- 83º44’45” east longitude). �e coal mine 
overburden spoil have been grouped into six di�erent age series (fresh: 
OB

0
, 2 yr: OB

2
, 4 yr: OB

4
, 6 yr: OB

6
, 8 yr: OB

8
 and 10 yr: OB

10
) on the 

basis of their formation. Tropical dry deciduous forest was considered 
to be the natural vegetation of the study site, which experiences a 
semi-arid climate (1300 mm rainfall y-1, annual average temperature 
26ºC, relative humidity 15%) with three distinct seasons, i.e. summer, 
rainy and winter. Table 1 provides the vegetational characteristics of 
six di�erent mine overburden spoil and nearby forest soil (NF) of the 
region.

Mine spoil sampling 

Sampling was done in accordance with the general methods for soil 
microbiological study [63]. Sampling was done three times, i.e. summer 
(April), rainy (July) and winter (January), representing three di�erent 
seasons during the study period. Each coal mine spoil overburden 
was divided into 5 blocks, and from each block, �ve spoil samples 
were collected randomly from (0-15) cm soil depth by digging pits 
(15×15×15 cm3), referred to as ‘sub-samples’. �e sub-samples collected 
from each block of an overburden were thoroughly mixed to form one 
‘composite sample’. �us, from each overburden, �ve composite samples 
were collected. Similar strategy was followed for di�erent coal mine 
overburden spoil (OB

0
, OB

2
, OB

4
, OB

6
, OB

8
 and OB

10
), as well as nearby 

native forest soil (NF). �e composite samples were homogenized, 
sieved (0.2 mm) and stored at 4°C until analyzed. 

Physico-chemical Characterization

�e physico-chemical properties of di�erent age series coal mine 
overburden spoil, as well as nearby NF soil were analyzed following 
standard protocols. Soil texture analysis included the estimation of the 
percentage clay percentage (<0.002 mm), silt (0.06 mm-0.002 mm), and 
sand (2 mm-0.06 mm). Bulk density of di�erent mine overburden spoil 
as well as NF was calculated, following the method prescribed in TSBF 
Handbook [119]. �e moisture content and water holding capacity 
was determined following the protocol proposed by Mishra [64]. Soil 
pH (1:2.5 ratio of soil: water) was measured with digital pH meter 
(Make: Systronics, Model: MK VI). Soil organic carbon (SOC) content 
in mine spoil, as well as NF soil was determined by partial oxidation 
method [65]. Total nitrogen (TN) was determined using Kjeldahl 
method [66]. �e NaHCO

3
 extractable phosphorous (EP) in di�erent 

mine spoil and NF soil was estimated using chloro-stannous reduced 
molybdophosphoric blue colour method in HCL [67].

Enzyme activities

Amylase activity of di�erent coal mine overburden spoil, as well as 
nearby NF samples were determined by spectrophotometric method 
(540 nm), in adaptation to the procedures described by Somogyi [68] 
and Roberge [69], by taking starch as substrate and incubated at 30°C 
for 24 hr. Invertase activity was estimated by using sucrose as substrate, 
incubated at 37°C for 24 hr, and determined by taking absorbance at 540 
nm using spectrophotometer [70]. Protease activity was also determined 
by spectrophotometric method (700 nm), with sodium caseinate 
as a substrate [71]. Urease activity of di�erent mine overburden soil 
samples, as well as NF, was determined by titration method using 0.005 
NH

2
SO

4
 with boric acid indicator [72]. �e phosphatase activities of 

di�erent mine overburden spoil, as well as NF samples were determined 
by spectrophotometric method (400 nm), using p-nitrophenyl 
phosphate as substrate [73]. Dehydrogenase activity was measured by 
the following reduction of 2,3,5- triphenylotetrazolium chloride (TTC), 
as an arti�cial electron acceptor to red-coloured triphenyl formazon 
(TPF), which were determined spectrophotometrically [23,74].

Statistical analysis

�e data obtained from the mine spoil analyses were subjected 
to simple correlation analysis to test the level of signi�cance between 
physico-chemical properties and soil enzyme activities among six 
di�erent age series coal mine overburden spoil, as well as nearby 
native forest soil samples using SPSS Statistics 17.0 so�ware. Stepwise 
multiple regression analysis was employed to model the quantitative 
relationship between di�erent soil enzyme activities and physico-
chemical properties using Minitab 16 so�ware. Principal component 
analysis (PCA) was performed using Statistrix PC DOS Version-2.0 
(NH Analytical so�ware).

Results and Discussion

�e study of physico-chemical characterization has been emphasized 
in restoration studies, because soil is one of the primary agents in 
determining vegetation development [75]. �e complex physico-
chemical and biochemical changes that occur as a function of mining 
activities is di�cult to monitor the ecological e�ects and restoration 
success of mined regions [76]. In this context, a chronosequence of 
coal mine overburden spoil provides the opportunity to evaluate 
changes in soil quality over time, representing variable time series 
of mine overburden spoil undergoing ecological succession under 

similar conditions. Besides, directional change in soil physico-chemical 

properties over time, following disturbance indicates soil development 
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route [77]. �e comparative assessment of physico-chemical properties, 

as well as soil enzyme activities of di�erent mine overburden spoil would 

help to quantify and evaluate speci�c biological processes in due course 

of time. Soil enzyme diversity among di�erent mine spoil over time was 

evaluated as di�erences in activity, which can provide insight into the 

microbial community response to the changing nutrient resources and 

the relative importance of di�erent nutrients. As soil enzyme activity is 

closely associated with the living biomass, it can signi�cantly improve 

the ability to link microbial function (enzyme activity) with microbial 

physiology (nutrient stress) and resource availability. 

Physico-chemical characterization

�e comparative account of di�erent physico-chemical properties 

of six di�erent coal mine overburden spoil in chronosequence 

(OB
0
→OB

10
), as well as nearby NF soil has been presented (Table 2). 

Textural analysis of di�erent age series mine spoil over time revealed 

considerable variations in soil texture. �e data indicated a decline 

trend in sand percentage from OB
0
 (86.8%) to OB

10
 (75.9%). However, 

the clay fraction showed a reverse trend, i.e. maximum in OB
10

 (11.3%) 

and minimum in OB
0
 (5.4%). Similar textural composition was also 

exhibited with respect to slit, which varies from 7.8% (OB
0
) to 12.8% 

(OB
10

). �e slit (13.8%) and clay (12.1%) percentage exhibited by the 

NF soil is found to be higher, as compared to di�erent mine spoil (Table 

2). Soil texture a�ects other soil properties, which in turn determine 

microbial growth and activity, and hence, reported as a key determinant 

of microbial ecology. Progressive increase in clay% from OB
0
 to OB

10
 

Age of overburden
Vegetation (tree, shrub and herbaceous species)

Tree Shrub Herb

OB
0

No vegetation.

OB
2

Ocimum zyantia L.

Argemone maxicana L.

Tephrosia purpurea L.Pers.

Evolvulus alsinoides L.

Cyperus rotundus L.Pers.

OB
4

Acacia leucophloea Roxb.

Acacia catechu (L.f.) Willd.

Acacia nilotica (L.) Willd.

Cassia siamea Lam.

Cassia spectabilis L. 

Emblica officinalis Gaertn.

Dalbergia latifolia Roxb.

Ocimum zyantia L.

Tephrosia purpurea L.Pers.

Eragrostis amabilis L.

Calatropis procera R.Br.

Aristida adscensicnis L.

OB
6

Acacia leucophloea Roxb. 

Acacia catechu (L.f.) Willd.

Emblica officinalis Gaertn.

Acacia nilotica L. Willd.

Cassia siamea Lam.

Cassia spectabilis L.

Dalbergia latifolia Roxb.

Ocimum zyantia L.

Tephrosia purpurea L.Pers.

Eragrostis amabilis L.

Calatropis procera R.Br.

Aristida adscensicnis L.

Dactyloctenium acgyptium L.

Atylosia scarabacoides L.

Clitoria ternatea L.

OB
8

Acacia leucophloea Roxb.

Cassia spectabilis L.

Tamarindus indica L.

Dalbergia latifolia Roxb.

Acacia nilotica (L.) Willd.

Cynodon dactylon L.Pers.

Pongmia pinnata L.

Tephrosia purpurea L.Pers.

Tridax procumbens L.

Calatropis procera R.Br.

Aristida adscensicnis L.

Dactyloctenium acgyptium L.

Digitaria setigera L.

Atylosia scarabacoides L.

Clitoria ternatea L.

Desmodium triflorum L.

OB
10

Acacia leucophloea Roxb. 

Caesalpinia pulcherrima L.

Madhuca indica Gmel.

Melia azedarach L.

Tamarindus indica L. 

Cassia siamea Lam.

Albizzia lebbeck Benth.

Cassia spectabilis L.

Dioscoria bulbifera L.

 Tephrosia purpurea L.Pers.

 Asparagus racemosus Willd.

 Sida cordifolia L.

Eragrostis amabilis L.

Tridax procumbens L.

Cyperus rotundus L.

Cynodon dactylon L.Pers. 

Calatropis procera R.Br.

Aristida adscensicnis L.

Dactyloctenium acgyptium L.

Digitaria setigera L.

Atylosia scarabacoides L.

Clitoria ternatea L.

Desmodium triflorum L.

NF

Shorea robusta Gaertn.

Pterocarpus marsupium Roxb.

Terminalia tomentosa DC.

Terminalia belarica Gaertn.

Terminalia chebula Gaertn.

Butea monosperma Lam.

Holarrhena antedysenterica L.

Diospyros melanoxylon Roxb.

Diospyros melanoxylon Roxb.

Holarrhena antedysenterica L.

Woodfordia fructicosa Kurz. 

 Zizyphus nummularis Wt.&Arn.

Phoenix sylvestris L.

Buchanania lanzan Spreng. 

 Gardenia turgida Roxb.

Ixora parviflora Vahl.

Butea monosperma Lam.

Phoenix humilis Royle.

Madhuca indica Gmel.

Achyranthus aspera L.

Andrographis peniculata Burm.

Heteropogon contortus L.

Atylosia scarabaeoides Benth.

Asparagus racemosus Willd.

Evolvulus numularis L.

Hemidesmus indicus R.Br.

Aristida setacea Retz.

Cyperus rotundus L.Pres.

Cynodon dactylon L.Pers.

Tephrosia purpurea L. Pers.

Indigofera tinctoria L.

Tridax procumbens L.

Sida cordifolia L.

Phaseolus trilobus L.

Eragrostis amabilis L.

Table 1: Vegetation pattern in six different coal mine overburden in chronosequence as well as nearby native forest (NF) at the study site.



Citation: Maharana JK, Patel AK (2013) Characterization of Physico-chemical Properties and their Impact on Enzyme Activities in a Chronosequence 

Coal Mine Overburden Spoil as Biomarker of Reclamation Process. J Bacteriol Parasitol 4: 174. doi:10.4172/2155-9597.1000174

Page 4 of 10

Volume 4 • Issue 4 • 1000174J Bacteriol Parasitol
ISSN:2155-9597 JBP an open access journal 

may be due to the gradual establishment of vegetation over time [2], or 
vegetation succession in reclaimed coal mine overburden spoil [78,79]. 
Root of the vegetational component speci�cally root exudates in the 
form of organic acids promotes disintegration of coarse particles to 
�ner clay particles [80,81]. Clay being an important primary particle 
contributes to the soil structural stability, aggregation [80,82], and 
developed resistance to the soil erosion with age of overburden [2,83]. 
However, natural plant succession is very slow in coal mine spoil, 
but rising of plantations may accelerate this process, leading to a self 
sustained ecosystem in a relatively short period of time. �e variation in 
vegetation pattern in age series mine overburden (Table 1), may be due 
to the variation in nutritional status of mine spoil that act as a major 
factor limiting plant growth [84,85]. 

�e textural composition and particle size distribution is a major 
factor in governing successful revegetation on reclaimed mine spoil, as 
it in�uences BD, WHC, MC and nutrient availability [86]. BD exhibited 

a decline trend from OB
0
 (1.752 g/cm3) to OB

10
 (1.275 g/cm3) with age 

of overburden. �e BD in NF soil (1.252 g/cm3) was observed to be less 

as compared to OB
10

 (Table 2). Importance of BD lies with the fact that it 

regulates space, air and water availability to soil microorganisms [87]. A 

decline in BD can be interpreted as a reduction in the soil compactness 

because of the development of soil micropore space [88]. According 

to Ohta and E�endi [88], it is the clay fraction which has an ultimate 

bearing on the soil BD. An increased level of clay fraction contributes 

to the development of soil micropore space that reduces the soil BD. In 

the light of this concept, the gradual accumulation of clay fraction and 

organic matter input because of the vegetation development led to the 

development of soil micropore space that ultimately reduced the soil 

BD. Compared to NF soil, mine spoil have low MC, high BD and low 

porosity.

However, the WHC showed the reverse trend over time, which 

varies from 27.5% (OB
0
) to 43.8% (OB

10
). �e moisture content also 

showed the similar trend, i.e. minimum in OB
0
 (6.831%) and maximum 

in OB
10

 (7.955%). �e WHC and MC in nearby NF soil were found 

to be 46.348% and 11.219%, respectively (Table 2). MC exhibited a 

progressive improvement with age of mine spoil, which agreed with 

the �ndings of Dutta and Agrawal [84]. �is can be due to the positive 

in�uence of the canopy cover on OB
10

, which prevented the loss of 

soil water through evaporation by not allowing direct exposure of soil 

surface to incoming radiation. Across the sites, higher MC in NF soil 

as compared to di�erent mine spoils is due to dense vegetation cover 

and gradual supplement of organic matter [75]. Several researchers 
have reported lower clay %, high soil BD, low WHC, and poor physical 
conditions of mine spoil [10,81,84,89-91].

�e pH level up to 6.5 can lead to an increase in P availability; 
circumneutral pH can decrease the availability of some micronutrients 
and shi�s microbial composition, especially microrrhizal relationships 
on which native trees depend. Higher pH can lead to herbaceous 
competition and o�en out-compete tree [92]. �is suggested that pH 
should be site-speci�c, and could be added as an additional criterion for 
soil classi�cation and mapping. Soil pH in case of all mine spoil samples 
was estimated to be in acidic range, which varies from 6.11 (OB

0
) to 6.71 

(OB
10

). �e pH of NF soil was found to be 6.87 (Table 2). Soil reaction 
is o�en modeled as a positive liner relationship with soil fertility and 
productivity, where a high pH indicates a better soil. Improving soil 
chemical condition by the reduction of soil acidity has been well 
explained [1]. Acidi�cation of mine spoil is due to di�erent mineral 
deposits has also been reported [2,35,92]. Improvement of soil pH due 
to both passive and active reclamation either by natural succession or 
by plantation strategy on coal mine spoil has been reported [2,84]. 
Promotion of organic matter decomposition on degraded soil was 
reported to lower soil acidity [93]. 

A wide variation in OC was exhibited, which varies from 0.151 
mgC/g spoil (OB

2
) to 2.004 mgC/g spoil (OB

10
). However, the OC in NF 

(3.625 mgC/g soil) was comparatively higher than di�erent mine spoil 

(Table 2). Increase in OC was found to be correlated with the increase 

clay % in ecologically disturbed lands [94]. According to Marshman 

and Marshall [95], clay acts as an absorption sink for organic material. 

Increase in the soil organic fraction with the increase in clay can also 

be due to the fact that organic complexes being absorbed onto the clay 

surface are being physically protected against decomposition [96], 

which leads to an accumulation of OC in di�erent mine spoil over time. 

OC in association with primary soil particles is reported to promote 

soil aggregate formation, soil structural stability and nutrient retention 

capacity [97], and hence considered to be the most reliable indicator 

for monitoring land degradation [98]. �ere have been reports about 

the increase in OC, along with the restoration of coal mine spoil 

[2,31,40,97]. �e clay% and OC content was positively correlated 

(r=0.894; p<0.01) (Table 4). Establishment of vegetation and gradual 

input of litter from the vegetation compartment during the course of 

passive or active restoration have been reported to be the reason for such 

improvement in OC over time. An increased level of clay% contributes 

 Parameters
Mine spoil collected from different age series coal mine overburdens Native Forest soil 

(NF)OB
0

OB
2

OB
4

OB
6

OB
8

OB
10

Sand (%) 86.8± 2.1 84.6 ± 1.5 81.4 ± 1.6 79.5 ± 1.1 77.8 ± 1.2 75.9 ± 1.8 74.1 ± 1.2

Silt (%) 7.8 ± 0.6 8.5 ± 0.6 9.9 ± 0.3 10.6 ± 0.8 11.5 ± 0.5 12.8 ± 1.2 13.8 ± 0.6

Clay (%) 5.4 ± 1.2 6.9 ± 0.7 8.7 ± 0.9 9.9 ± 0.6 10.7 ± 0.8 11.3 ± 1.3 12.1 ± 0.5

Bulk Density

(g/cm3)
1.752 ± 0.049 1.605 ± 0.021 1.364 ± 0.019 1.331 ± 0.028 1.294 ± 0.026 1.275 ± 0.014

1.252 ± 0.019

WHC (%) 27.5 ± 1.121 31.3 ± 1.005 36.1 ± 0.984 38.3 ± 0.833 41.2 ± 0.743 43.8 ± 1.413 46.348 ± 0.833

Moisture (%) 6.831 ± 0.103 7.138 ± 0.141 7.422 ± 0.097 7.541 ± 0.143 7.783 ± 0.121 7.955 ± 0.087 11.219 ± 0.132

Soil pH 6.11 ± 0.03 6.24 ± 0.04 6.38 ± 0.02 6.45 ± 0.05 6.62 ± 0.07 6.71 ± 0.06 6.87 ± 0.07

Organic C

(mgC/g spoil)
nd 0.151± 0.024 0.779 ± 0.048 1.057 ± 0.127 1.533 ± 0.242 2.004 ± 0.249 3.625 ± 0.25

Total N

(µgN/g spoil)
nd 8.514 ± 0.425 45.833 ± 2.248 72.896 ± 4.078 113.555± 3.901 169.830 ± 8.95 2510 ± 28.43

Extractable P

(µgP/g spoil)
nd nd 4.254 ± 1.246 8.063 ± 1.636 11.061 ± 0.764 12.581± 1.411 275 ± 9.97

nd: Not detectable. Values are mean ± SD, calculated from seasonal (summer, rainy, winter) mean values.

Table 2: Physico-chemical properties of mine spoil samples collected from different age series coal mine overburden (OB
0
→OB

10
) as well as native forest soil.
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to the development of soil micropore space from OB
0
 to OB

10
, which 

ultimately reduced the BD. �e negative correlation between BD and 
OC (r=-0.780; p<0.05.) substantiated the concept [2,90]. 

�e TN and EP exhibited improvement in di�erent mine spoil 
over time. In the present study, the OC, TN and EP content in OB

0
 

was beyond the detectable limit. �e TN ranged from 8.514 µgN/g 
spoil (OB

2
) to 169.83 µgN/g spoil (OB

10
). Similarly, the EP varies from 

4.254 µgP/g spoil (OB
4
) to 12.581 µgP/g spoil (OB

10
). However, the TN 

and EP content in NF soil was found to be 2510 µgN/g soil and 175 
µgP/g soil, respectively (Table 2). �e variation on OC with respect to 
di�erent mine spoil was positively correlated with TN (r=0.856; p<0.05) 
and EP (r=0.848; p<0.05) (Table 4). �e gradual accumulation of soil 
nutrients from mine spoil to enriched NF soil may be attributed to 
the input from the plant species capable of nitrogen �xing potential, 
as well as development of mycorrhiza and other nutrient immobilizing 
microbial colonization. 

Enzyme activity 

Soil enzyme activity indices appeared to be more informative 

and highly reliable, as it responded more clearly to parent material 

properties, and hence, considered to be an important indicator of mine 

spoil genesis over time [6,99]. Further, the relationships between soil 

organic matter, microbial biomass and activity have been proposed as 

indicators of soil maturity [100,101]. Comparative analysis on enzyme 

activities indicated minimal activity in OB
0
, which may be due to the 

reduced microbial population caused by the toxic e�ects and oxidative 

stress of mine spoil metal impurities, there interference in osmotic 

balance and nutrient de�ciency [102]. 

Amylase is complex enzyme belongs to glycoside hydrolase 

group enzymes [α-amylase (α-1, 4–glucan-4 glucanohydrolase; E.C. 

No. 3.2.1.1), β-amylase (β-1,4-glucanmaltohydrolase; E.C. 3.2.1.2), 

glucoamylase (α-1, 4–glucanglucohydrolase; E.C. 3.2.1.3)]. �e amylase 

activity in di�erent age series coal mine spoil showed a range of 1.253 

to 4.571 µg glucose/g spoil/hr, with minimum in OB
2
 and maximum 

in OB
10

. �e amylase activity is quite higher in NF soil (13.124 µg 

glucose/g soil/hr), as compared to di�erent mine spoil (Table 3). Such 

variation in amylase activity in mine spoil may be due to the variation 

in available soil nutrients and diversity of microbiota [103,50,46], which 

is positively correlated with OC (r=0.963; p<0.01) (Table 4). 

Similarly, the invertase activity (β-fructofuranosidase; E.C. 3.2.1.5) 

showed progressive increase from OB
2
 (6.642 µg sucrose/g spoil/hr) to 

OB
10

 (348.331 µg glucose/g spoil/hr). �e invertase activity in NF soil 

was estimated to be 849 µg sucrose/g soil/hr (Table 3). �e variation in 
invertase activity in di�erent mine spoil, as well as NF soil is positively 
correlated with OC (r=0.953; p<0.01) (Table 4). �e decrease in 
amylase and invertase activity is attributable mainly to the declination 
of enzyme synthesis due to the accumulation of heavy metals and 
associated toxic e�ects on soil microbes [104,105]. �e heavy metals 
may cause changes in the active center and structure of soil enzymes, 
thus making the amylase as well as invertase concentration decrease 
and inhibit the decomposition of starch and sucrose, respectively. 
Besides, the interaction of heavy metals inhibits the microbial growth 
[106,107], thus reducing the synthesis, secretion of enzymes, and �nally 
leading to the decrease in amylase and invertase activity.

�e protease activity depends on the distribution of proteolytic 
bacteria and the amount of proteinaceous substrate availability in 
soil organic matter. �e protease activity was comparatively higher in 
NF soil (215.813 g glucose/g soil/hr), with respect to di�erent mine 
spoil (Table 3), which may be due to vegetation and the associated 
di�erence in litter inputs and root exudation in NF soil ([108]. �e 
progressive increase in protease activity from OB

2
 (3.042 g tyrosine/g 

spoil/hr) to OB
10

 (39.226 µg glucose/g spoil/hr) was found to be closely 
related to the progressive improvement in OC (r=0.911; p<0.01) and 
TN (r=0.992; p<0.01) (Table 4), or NH

4
-N accumulation facilitated 

by vegetation cover in course of time, and distribution of proteolyitc 
bacteria [109,46,47]. Further, the gradual N accumulation stimulates 
soil microbes for enhanced production of C-degrading enzymes.

Urease (Urea amidohydrolase; E.C. 3.5.1.5) is mostly an 
extracellular enzyme, representing up to 63% of the total activity in soil. 
�e emphasis on urease activity has been given in order to evaluate N 
supply to plants, because large N losses to atmosphere by volatilization 
mediated by these enzymes. Urease activity exhibited progressive 
increase from 3.354 µg NH

4
+/g soil/hr (OB

2
) to 20.121 µg NH

4
+//g soil/

hr (OB
10

) (Table 3). Urease activity in OB
0
 was beyond detectable limit, 

which may be due to the nutrient de�cient situation in OB
0
. Higher 

urease activity was exhibited by NF soil (58.541 µg NH
4

+//g soil/hr). 
�e six mine spoil, as well as NF soil, undergo di�erent pedogenic 
processes, and thus unlikely to have similar urease origin. �e variation 
in urease activity is due to the variation in physico-chemical properties 
of soil [110], MC [109], organic matter, gradual N accumulation, which 
is considered as the substrate for soil urease [59,111,112], and synthesis 
of urease enzyme by increased microbial population [18]. Urease 

activity exhibited positive correlation with MC (r=0.993; p<0.01), OC 

(r=0.963; p<0.01), and TN (r=0.960; p<0.01), which indicated that this 

 Parameters Mine spoil collected from different age series coal mine overburdens Native Forest soil 

(NF)
OB

0
OB

2
OB

4
OB

6
OB

8
OB

10

Amylase activity

(µg glucose/g/hr)

nd 1.253 ± 0. 124 2.034 ± 0.112  2.263± 0.171 3.655 ± 0.279 4.571 ± 0.205 13.124 ± 1.153

Invertase activity

(µg sucrose/g/hr)

nd 6.642 ± 0.498 25.228 ± 5.211 83.331 ± 4.781 121.013 ± 7.372 348.331 ± 4.636 849.335 ± 6.389

Protease activity

(µg tyrosine/g/hr)

nd 3.042 ± 0.058 8.801 ± 0.534 23.692 ± 1.428 28.437 ± 2.127 39.266 ± 2.574 215.813 ± 12.911

Urease activity

(µg NH
4
+/g /hr)

nd 3.354 ± 0.027 5.299 ± 0.121  9.463 ± 0.261  14.317± 1.032 20.121 ± 1.576 58.451 ± 2.834

Phosphatase activity

(µg PNP/g /hr)

nd nd 10.108 ± 1.005 26.495 ± 1.554 35.407 ± 2.901 49.617 ± 2.250 92.118 ± 3.107

Dehydrogenase activity

(µg TPF/g /hr)

0.056 ± 0.011 0.144 ± 0.039 0.291 ± 0.034  0.458 ± 0.052  0.948 ± 0.041 1.275 ± 0.043 4.006 ± 0.115

nd: Not detectable. Values are mean ± SD, calculated from seasonal (summer, rainy, winter) mean values.

Table 3: Enzyme activities of mine spoil samples collected from different age series coal mine overburden (OB
0
→OB

10
), as well as native forest soil.
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enzyme can be used to make some inferences about nitri�cation (Table 4).

Phosphatase activity (Orthophosphoric monoester phosphohydrolase; 
E.C. 3.1.3.2) appeared to be more dependent on the metabolic state of 
soil, biological activity of microbial population, and hence their activity 
level can be used as an index for microbial activity in soil [57]. Wide 
variation in phosphatase activity was exhibited with respect to di�erent 
mine spoil, which ranged from 10.108 g PNP/g spoil/hr (OB

4
) to 49.617 

µg PNP/g spoil/hr (OB
10

). �e phosphates activity in OB
0
 and OB

2
 were 

beyond detectable limit (Table 3). Phosphatase activity showed positive 
correlation with EP (r=0.852; p<0.05) (Table 4). 

Estimation of dehydrogenase activity is attractive due to the fact 
that they are an integral part of soil microorganisms and are involved 
electron transport system of oxygen metabolism, and requires an 
intracellular environment (viable cells) to express its activity [113]. 
Dehydrogenase is considered to be an index of microbial activity 
[74,114], and metabolic status of soil microorganisms [37,61,103,115]. 
�e data showed consistent increase in dehydrogenase activity from 
OB

0
 (0.056 µg TPF/g spoil/hr) to OB

10
 (1.275 µg TPF/g spoil/hr). 

Highest dehydrogenase activity was observed in NF soil (4.006 µg 
TPF/g soil/hr), which may be due to higher organic matter that support 
increased microbial activity and microbial biomass, and consequently 
the concentration of dehydrogenase [116]. Dehydrogenase activity 
exhibited positive correlation with OC (r=0.954; p<0.01) (Table 4). 
Further, the variation in dehydrogenase activity may be attributed to 
the change in soil microbial community composition with a change in 
the community of dehydrogenase [117].

�e dehydogenase and protease enzymes are independent to 
each other, indicating soil organic matter transformation and initial 
breakdown of proteins are self-regulated process. �e dehydrogenase 
activity was positively correlated with protease activity (r=0.989; 
p<0.01), which explained 97.8% variability (Table 4). Initial organic 
matter transformation by dehydrogenase during the microbial 
respiration made available substrate to protease, and subsequently 
higher protease activity was achieved in NF soil. In contrast, the 
mine spoil (OB

0
→OB

10
) may be lacking proteinaceous substrates in its 

integral part of soil organic matter [47]. It can, therefore, be concluded 

that the microbial metabolic status of NF soil is comparatively higher as 
compared to di�erent mine overburden spoil.

Stepwise multiple regression analysis 

�e stepwise multiple regression analysis was performed to 
determine the contribution of di�erent soil physico-chemical 
properties on enzyme activity in di�erent mine spoil over time. �e OC 
explained about 92.7% of the variability in amylase activity. Additional 
7% variability in was explained by MC as 2nd variable (Table 5). �e TN 
as 1st variable explained 91.8% of the variability in amylase activity in 
di�erent mine spoil, as well as NF soil and 2nd variable of importance in 
explaining the 8% variability was pH (p<0.001). Besides, clay fraction 
explained about 58.2% of the variability, and additional 41.3% by MC 
as 2nd variable of importance (Table 5). Stepwise multiple regression 
analysis revealed the relationship between invertase activity in di�erent 
mine spoil and OC, which explained 90.9% of the variability and an 
additional 7.4% was accounted by BD as 2nd variable (Table 5). Besides, 
the TN explained about 88.8% of the variability (p<0.001) in invertase 
activity. Further, 53.1% of the variability was explained by clay fraction, 
and an additional 45.3% (p<0.001) was explained by OC as 2nd variable 
(Table 5).

Stepwise multiple regression analysis revealed the relationship 
between protease activity and OC, which explained 83% variability, 
and an additional 16.8% variability was accounted by EP as 2nd variable 
(Table 5). Besides, TN explained about 98.4% of the variability (p<0.001) 
in protease activity, and an additional 1.4% by OC as 2nd variable. 
Further, the clay fraction explained about 42.7% of the variability in 
protease activity. �e 2nd and 3rd variables of importance in explaining 
the variability were TN and BD (R2=0.999; p<0.001) (Table 5). 

About 92.7% of the variability in urease activity was explained 
by OC, and an additional 6.9% (p<0.001) was explained by TN as 2nd 
variable. �e TN explained about 92.1% of the variability in urease 
activity (Table 5). �e 2nd and 3rd variable of importance in explaining 
the variability were slit fraction and BD (R2=0.998; p<0.001). Besides, 
the clay fraction explained about 56.9% of the variability in urease 
activity, an additional 42.1% was explained by MC as 2nd variable 
(p<0.001), and a marginal e�ect was contributed by BD as 3rd variable. 
Further, about 73.4% of the variability in urease activity was explained 
by pH, an additional 26.2% of variability was explained by TN as 2nd 
variable, and a marginal e�ect by BD as 3rd variable. �e enzyme activity 
can be in�uenced directly by alternation in pH value. 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 1

X2 -0.988** 1

X3 -0.994** 0.966** 1

X4 0.938** -0.880** -0.965** 1

X5 -0.999** 0.985** 0.995** -0.944** 1

X6 -0.760* 0.832* 0.711 -0.579 0.753 1

X7 -0.991** 0.995** 0.975** -0.895** 0.991** 0.813* 1

X8 -0.930** 0.971** 0.894** -0.780* 0.925** 0.937** 0.959** 1

X9 -0.618 0.712 0.561 -0.414 0.610 0.980** 0.685 0.856* 1

X10 -0.608 0.701 0.550 -0.405 0.599 0.978** 0.674 0.848* 1.000** 1

X11 -0.810* 0.878** 0.763* -0.630 0.805* 0.995** 0.862* 0.963** 0.959** 0.954** 1

X12 -0.790* 0.871* 0.729 -0.571 0.780* 0.972** 0.843* 0.953** 0.943** 0.936** 0.982** 1

X13 -0.708 0.791* 0.654 -0.507 0.698 0.995** 0.766* 0.911** 0.992** 0.990** 0.984** 0.970** 1

X14 -0.805* 0.876** 0.755* -0.610 0.797* 0.993** 0.857* 0.963** 0.960** 0.955** 0.998** 0.989** 0.986** 1

X15 -0.915** 0.961** 0.875** -0.742 0.906** 0.935** 0.945** 0.995** 0.860* 0.852* 0.959** 0.961** 0.917** 0.966** 1

X16 -0.782* 0.859* 0.728 -0.578 0.775* 0.992** 0.840* 0.954** 0.966** 0.962** 0.996** 0.989** 0.989** 0.998** 0.958** 1

** Correlation is significant p<0.01 and * correlation is significant p<0.05. 

Xi (i=1-16) stands for sand, slit, clay, bulk density, water holding capacity, moisture content, pH, OC, TN, EP, amylase, invertase, protease, urease, phosphatase and 

dehydrogenase activity.

Table 4: Simple correlation coefficient of different soil properties.
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Stepwise multiple regression analysis revealed that the clay 

fraction explained about 75.7% of the variability in phosphatase 

activity. The 2nd and 3rd variables of importance in explaining 

the variability were OC and BD (R2=0.996; p<0.001). Besides, EP 

explained about 74.6% of the variability in phosphatase activity 

(Table 5). The 2nd, 3rd and 4th variables of importance in explaining 

the variability were slit, BD and clay fraction (R2=0.999; p<0.001). 

Further, pH contributed 89.1% of the variability in phosphatase 

activity, and an additional 9.9% was contributed by OC as 2nd 

variable (Table 5). 

Stepwise multiple regression analysis suggested that 91% of the 
variability was explained by OC (p<0.001). �e 2nd, 3rd and 4th variables 
of importance in explaining the variability in dehydrogenase activity 
were TN, BD and a marginal e�ect by pH respectively (R2=0.999; 
p<0.001). Further, about 53% of the variability in dehydrogenase 
activity was explained by clay faction (Table 5). �e 2nd, 3rd and 4th 
variables explaining the variability in dehydrogenase activity were OC, 
MC and a marginal e�ect by BD respectively (R2=0.999; p<0.001). 

Considering the tropical dry deciduous forest as natural vegetation 
of the study site, attempt was made to compare the spoil features of 
di�erent mine overburden spoil in chronosequence (OB

0
→OB

10
) over 

time, and nearby NF soil using principal component analysis [118-120], 
on the basis of their physico-chemical properties and enzyme activities, 
in which the Z

1
 and Z

2
 components accounts for 99% cumulative 

variance (Figure 1).

Conclusion

�e assessment of physico-chemical indices appeared to be more 
informative to characterize soil fertility, and could be used to guide the 
selection of appropriate additional reclamation strategies. Comparative 
study of physico-chemical properties and enzyme activities would 
provide greater insight into the pathways by which the energy and 
nutrient �ow through the soil food web. Assessment of enzyme activity 
could signi�cantly increase our understanding of the linkages between 
resources availability, microbial community structure and function, 
and ecosystem processes. Stepwise multiple regression analysis was 
used to quantify the contribution of physico-chemical properties on 
enzyme activities, which can provide insight how the enzyme activity 
contributed by soil microorganisms is responding physiologically to 
the �uctuations in available nutrients in di�erent age series coal mine 
overburden spoil in course of time. 

�e goal of ecological rehabilitation is to accelerate natural 
successional processes to increase productivity, soil fertility and biotic 
control over biogeochemical �uxes within the recovering ecosystem. 
In order to increase fertility status of mine spoil, there is the need to 
improvise OC by use of agricultural wastes, compost and bio-fertilizers. 

Appropriate amount of both phosphate and potassium may be applied for 

better soil quality. Besides, a healthy population of soil microorganisms 

can stabilize the ecological system in soil due to their microbial activity 

and ability to regenerate nutrients to support plant growth. Any change 

in their population and activity may a�ect nutrient cycling as well as 
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Figure 1: Principal component analysis based on physico-chemical properties 

and enzyme activities in different mine spoil (OB
0
→OB

10
) as well as nearby NF 

soil.

*All R2- values are significant at p<0.001. BD: Bulk density; MC: Moisture content; 

OC: Organic Carbon; TN: Total Nitrogen; EP: Extractable Phosphorous.

Table 5: Stepwise multiple regression analysis of soil enzymes (amylase, 

invertase, protease, urease, phosphatase and dehydrogenase) on soil physico-

chemical characteristics.

Enzyme activity Equation(s) R2*

Amylase activity

= -0.5643 + 3.37 OC 0.927

= -15.1584 + 0.89 OC + 2.23 MC 0.997

= 1.958 + 0.00452 TN 0.918

= -38.37 + 0.00327 TN + 6.3 pH 0.998

= -8.853 + 1.367 Clay 0.582

= -19.598 + 0.201 Clay + 2.702 MC 0.995

Invertase activity

= -104.1 – 236 OC 0.909

= -1215.7 + 321 OC + 709 BD 0.985

= 73.609 + 0.315 TN 0.888

= -654.3 + 93 Clay 0.531

= 441.3 – 78 Clay + 372 OC 0.984

Protease activity

= -27.5281 + 55.9 OC 0.830

= -0.6948 + 15.7 OC + 0.581 EP 0.998

= 11.3733 + 0.082 TN 0.984

= -0.4019 + 0.0656 TN + 14.2 OC 0.998

= -145.12 + 20.54 Clay 0.427

= -27.35 + 4.47 Clay + 0.0754 TN 0.998

= -181.99 + 10.45 Clay + 0.0727 TN + 71 BD 0.999

Urease activity

= -4.3476 + 15.46 OC 0.927

= 0.1819 + 8.5 OC + 0.0109 TN 0.996

= 7.205 + 0.02074 TN 0.921

= -27.131 + 0.01473 TN + 3.43 Slit + 14.9 BD 0.998

= -41.7 + 6.2 Clay 0.569

= -91.41 + 0.8 Clay + 12.5 MC 0.990

= -181.16 + 5.75 Clay + 11.24 MC + 44.8 BD 0.998

= -398.68 + 63.94 pH 0.734

= -172.3 + 28.05 pH + 0.01518 TN 0.996

= -271.48 + 40.21 pH + 0.01404 TN + 14.772 BD 0.998

P h o s p h a t a s e 

activity

= -73.644 + 11.4 Clay 0.757

= 7.126 – 1.2 Clay + 27.5 OC 0.990

= -149.561 + 5.9 Clay + 23.1 OC + 68 BD 0.996

= 19.8 + 0.2692 EP 0.746

= -77.1 + 0.1181 EP + 9.63 Slit 0.990

= -155.86 + 0.0927 EP + 12.82 Slit + 32 BD 0.996

= -252.88 + 0.1065 EP + 6.72 Slit + 86 BD + 9.3 Clay 0.999

= -693.25 + 112 pH 0.891

= 87.93 – 14 pH + 28.3 OC 0.990

Dehydrogenase 

activity

= -0.36384 + 1.0629 OC 0.910

= -0.01734 + 0.5305 OC + 0.00084 TN 0.994

= -1.95461 + 0.8176 OC + 0.00061 TN + 1.1754 BD 0.998

= -15.52356 + 0.2734 OC + 0.00085 TN + 1.5362 BD 

+ 2.1088 pH
0.999

= -2.829 + 0.514 Clay 0.530

= 2.123 – 0.355 Clay + 1.68 OC 0.988

= -1.797 – 0.192 Clay + 0.93 OC + 0.426 MC 0.997

= -7.26 + 0.053 Clay + 0.61 OC + 0.531 MC + 1.95 BD 0.999
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availability of nutrients, which indirectly a�ect productivity and other 

soil functions. On the basis of the soil analysis of the study site, the 

following tree species such as Acacia auriculiformis, Acacia arabica, 
Eucalyptus species, Cassia siamea, Dalbergia sissoo, Prosopis species, 
Bamboo may be planted. Further, a new approach called ‘Microbe 
Assisted Green Technology’ (MAGT) is an integrated biotechnological 
approach serves as model for mine spoil reclamation and development 
of lush green vegetation on mine overburden spoil. �e process is eco-
friendly and cost-e�ective with numerous environmental bene�ts. 
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