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Characterization of Piezoelectric Wafer Active Sensors 
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ABSTRACT: In the beginning, the classical one-dimensional analysis of piezoelectric active sensors is reviewed. The complete 
derivation for a free-free sensor is then extended to cover the cases of clamped and elastically constrained sensors. An analytical model 
based on structural vibration theory and theory of piezoelectricity was developed and used to predict the electro-mechanical (E/M) 
impedance response, as it would be measured at the piezoelectric active sensor’s terminals. The model considers one-dimensional 
structures and accounts for both axial and flexural vibrations. The numerical analysis was performed and supported by experimental 
results. Experiments were conducted on simple beam specimens to support of the theoretical investigation, and on thin gauge aluminum 
plates to illustrate the method’s potential. It was shown that E/M impedance spectrum recorded by the piezoelectric active sensor 
accurately represents the mechanical response of a structure. It was further proved that the response of the structure is not modified by the 
presence of the sensor, thus validating the sensor’s non-invasive characteristics. The sensor calibration procedure is outlined and 
statistical analysis was presented. It was found that PZT active sensors have stable and repeatable characteristics not only in as-received 
condition, but also while mounted on 1-D or 2-D host structure. It is shown that such sensors, of negligible mass, can be permanently 
applied to the structure creating a non-intrusive sensor array adequate for on-line automatic structural identification and health 
monitoring.  
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INTRODUCTION 

 The advent of commercially available low-cost 
piezoceramics has opened new opportunities for dynamic 
structural identification using embedded active sensors. 
Embedded active sensors are small piezoelectric (PZT) 
ceramic wafers that can be permanently attached to the 
structure (Figure 1). Through their intrinsic electro-
mechanical (E/M) coupling, these piezoelectric wafers act 
as both sensors and actuators. In addition, their frequency 
bandwidth is orders of magnitude larger than that of 
conventional modal analysis equipment. They can form 
sensor and actuator arrays that permit effective modal 
identification in a wide frequency band. 
 Crawley and Luis (1987) proposed the use of 
piezoceramic wafers as elements of intelligent structures. 
Dimitriadis et al. (1991) and D’Cruz (1993) used 
piezoelectric wafers for structural excitation. Zhou et al. 
(1996) performed experiments in which a PZT wafer 
produced the excitation, while a laser velocimeter picked 
up the vibration response. Several investigators (Collins et 
al. (1992), Clark et al. (1993)) and others used piezo-
polymer films for vibration sensing. Banks (1996) 
describes experiments in which the PZT wafer was used 
initially for excitation, and then for sensing the free decay 
response. Wang and Chen (2000) used a PZT wafer to 
excite the structure and an array of PVDF film sensors to 
pick up the forced vibration response to generate the 
frequencies and mode shapes through multi-point signal 
processing. Liang et al. (1994) performed the coupled E/M 
analysis of adaptive systems driven by a surface-attached 
piezoelectric wafer. The aim of the analysis was to 
determine the actuator power consumption and system 

energy transfer. A 1-degree of freedom (1-DOF) analysis 
was performed, and the electrical admittance, as measured 
at the terminals of the PZT wafer attached to the structure, 
was expressed as: 

 2
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where C is the electrical capacitance of the PZT active 
sensor, Zstr(ω) is the 1-DOF structural impedance as seen 
by the sensor, and ZA(ω) is the sensor impedance. A 1-
DOF numerical example, using a quasi-static sensor 
impedance formulation, was used to show that the E/M 
admittance response accurately reflects the system 
dynamic response. At coupled-system resonance, the real 
part of the E/M admittance was shown to have a distinct 
peak. However, due to the additional stiffness contributed 
by the PZT wafer, the system natural frequency shifted 
from 500 Hz (without PZT wafer) to 580 Hz (with PZT 
wafer). Experimental curve-fitting results were also 
presented. No modeling of the structural substrate was 
included, and no prediction of Zstr(ω) for a multi-DOF 
structure was presented. This work was continued and 
extended by Sun et al. (1994) who used the half-power 
bandwidth method to accurately determine the natural 
frequency and damping values. Mode shape extraction 
methods, using the self and across admittance of multiple 
sensors, were explored. Experiments were performed on 
aluminum beams at frequencies up to 7 kHz. These two 
papers were the first to conceptualize that the E/M 
admittance as seen at the sensor terminals reflects the 
coupled-system dynamics, and that an embedded PZT 
wafer could be used as structural-identification sensor. 
However, no theoretical modeling of the E/M 
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impedance/admittance response for comparison with experimental data was attempted. 
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Figure 1 PZT wafer acting as active sensor to detect and monitor 
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Figure 2 Schematic of a PZT active sensor 

 
Nor were investigated the issues of sensor calibration and 
consistency. Subsequently, several authors reported the use 
of the E/M impedance method for structural health 
monitoring, whereby the admittance or impedance 
frequency spectra of pristine and damaged structures were 
compared (Chaudhry et al., 1994, 1995; Ayres et al., 1996; 
Giurgiutiu et al., 1997, 1999; Park, Cudney, and Inman, 
2000)). The method has been shown to be especially 
effective at ultrasonic frequencies, where it can properly 
capture the changes in local dynamics due to incipient 
structural damage. (Such changes are too small to affect 
the global dynamics and hence cannot be readily detected 
by conventional low-frequency vibration methods). The 
method is direct and easy to implement, since the only 
required equipment is the electrical impedance analyzer. In 
spite of extensive experimental effort investigation of the 
electromechanical impedance method, little theoretical 
modeling work has been reported to date. Park, Cudney, 
and Inman (2000) showed that “there is little analytical 
work done about the vibration modes of complex 
structures at ultrasonic frequencies” and hence restricted 
their analysis to axial vibrations. In addition, only the 
structural displacement response was predicted. A few 
other investigators have attempted to model structures with 
piezoelectric active sensors (Wang and Rogers; 1991; 
Zhou et al., 1996; Esteban, 1996), but none have derived 
explicit expressions for predicting the E/M admittance and 
impedance, as it would be measured by an electrical 
impedance analyzer connected to the embedded active 
sensor terminals during the structural identification 
process. Such a derivation is necessary to permit complete 
understanding of the phenomenon and to allow critical 
comparison with the abundant experimental data. 
 In response to this need, this work sets forth to present 
a step-by-step derivation of the piezoelectric sensor 
dynamics for various boundary conditions and its 
interaction with the host structure. The classical approach 
for free vibrations of piezoelectric sensor was reviewed 
and numerical simulations are presented. An expression for 
elastically constrained sensor, containing the full sensor 
dynamics, will be derived. This will open the path towards 
full inclusion of the structural dynamics and the 
development a fully coupled sensor-structure model. 

Analytical expressions and numerical results for the E/M 
admittance and impedance as seen at sensor terminals will 
be produced. These numerical results will be directly 
compared with experimental measurements performed at 
the piezoelectric active sensor terminals during the 
structural identification process. In our derivation, the 
limitations of the quasi-static sensor approximation 
adopted by previous investigators are lifted. Exact 
analytical expressions are being used for structural 
modeling of simultaneous axial and flexural vibrations. 
Free-free boundary conditions for the host structure that 
can unequivocally be implemented during experimental 
testing (though more difficult to model) are being used. 
 Another important aspect covered in this work is that 
of sensor calibration, reliability and repeatability. These 
aspects are essential for the qualification of new sensor 
concepts. The intrinsic properties of the piezoelectric 
active sensors in the as received condition (single wafers), 
and after adhesive attachment to the 1-D and 2-D 
structures were statistically studied. Good consistency and 
repeatability was found throughout our work. 

MODELING OF A SINGLE PZT ACTIVE SENSOR 

 The dynamics of a single PZT active sensor is first 
considered. The modeling of a single PZT sensor is useful 
for two reasons (a) understanding the electromechanical 
coupling between the mechanical vibration response and 
the complex electrical response of the sensor; and (b) 
sensor screening and quality control prior to installation on 
the structure. Various boundary conditions (free; clamped; 
elastically constrained) will be analyzed. The free 
boundary condition is a classical case (Onoe and Jumoji; 
1967; Pugachev et al., 1984; IEEE Std. 176, 1987; Parton 
and Kudryavtsev, 1988; Ikeda, 1996), which allows us to 
introduce the notations to the reader and set the stage for 
the other two cases. The clamped case is important as the 
antithesis of the free case. Whereas the elastically 
constrained case represents a generic situation, which 
asymptotically tends to each of the previous two cases as 
the constraint becomes vanishingly soft, or infinitely stiff, 
respectively. The elastically constrained case opens the 
path to the analysis of the complete sensor-structure 
dynamics, as covered in later sections of this paper. 
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Figure 3 PZT wafer active sensor schematic. 

Consider a PZT wafer of length l, breadth b, and thickness 
t, undergoing displacements, u1, u2, u3 induced by the 
electric polarization field, E3 (Figure 3). The electric field 
is produced by the application of a harmonic voltage V(t) = 
V̂ eiωt between the top and bottom surface electrodes. The 
resulting electric field, E = V/t, is assumed spatially 
uniform ( 1/E x∂ ∂  = 2/E x∂ ∂  = 3/E x∂ ∂  = 0). The 
constitutive equations of the PZT material are: 

 1 11 1 12 2 13 3 31 3
E E ES s T s T s T d E= + + + . 

 2 21 1 22 2 23 3 32 3
E E ES s T s T s T d E= + + +  (2) 

 3 31 1 32 2 33 3 33 3
E E ES s T s T s T d E= + + +  

 3 31 1 32 2 33 3 3 3
TD d T d T d T Eε= + + + . 

where Si is the strain, Ti is the stress, D3 is the electrical 
displacement (charge per unit area), E

ijs  is the mechanical 

compliance at zero field, 3
Tε  is the dielectric constant at 

zero stress, d3i is the induced strain coefficient, i.e., 
mechanical strain per unit electric field.   

Longitudinal Vibrations of a Free Active Sensor 
 To simplify the analysis, the length, breadth, and 
thickness are assumed to have widely separated values 
(t<<b<<l) such that the length, breadth, and thickness 
motions are practically uncoupled. For longitudinal 
vibration, we write: 

 1 11 1 31 3
ES s T d E= + . 

 3 31 1 3 3
TD d T Eε= + . (3) 

Using Newton’s law of motion, /
1 1T uρ= , and the strain-

displacement relation, 1 1S u′= , Equation (3) yields the 
axial waves equation: 

 2
1 1u c u′′=  (4) 

where ( )= ( )/ t∂ ∂ , and ( ) = ( )/ x′ ∂ ∂ , while 2
111/ Ec sρ=  is 

the wave speed. The general solution of Equation (4) is: 

( )1 1 1 1 2ˆ ˆ( , ) ( )  ,   ( ) sin cosi tu x t u x e u x C x C xω γ γ= = +  (5) 

The variable γ = ω/c is the wave number (Graff, 1975), and 
ˆ( )  signifies the harmonic motion amplitude. The 

constants C1 and C2 are to be determined from the 
boundary conditions. For a free PZT active sensor, stress-
free boundary conditions apply at both ends, i.e., 1

2( )T l−  

= 1
2( )T l  = 0. Equation (3) gives the conditions 

1 1
31 32 2

ˆˆ ˆ( ) ( )u l u l d E′ ′− = = . Substitution of Equation (4) 
yields: 

 ( )1 1
1 2 31 32 2

ˆcos sinC l C l d Eγ γ γ− =  (6) 

 ( )1 1
1 2 31 32 2

ˆcos sinC l C l d Eγ γ γ+ =  (7) 

The solution is: 

 1
1 2 1 1

2 2

sinˆ ( )
cosISA

xu x u
l l

γ
γ γ

=  (8) 

This result is consistent with Ikeda (1996), with the only 
difference of the notation 31 3

ˆ
ISAu d E l= ⋅ . The poles of 

Equation (8), correspond to frequency values where the 
mechanical response to electrical excitation becomes 
unbounded, i.e., electromechanical resonance. For pure 
mechanical response (Inman, 1996, pp. 322), resonance 
occurs at l nγ π= , n = 0,1,2, …. The even multiples of π 
correspond to symmetric modes of vibration, while the odd 
values correspond to anti-symmetric modes. However, the 
condition for Equation (8) to have unbound values and 
produce electromechanical resonance is 1

2 2(2 1)l m πγ = +  
m = 0,1,2, …. This means that only anti-symmetric 
vibration modes, corresponding to odd multiples of π, are 
amiable to electromechanical resonance. The physical 
explanation for this phenomenon lies in the fact that the 
free boundary conditions (6) and (7) imply that the mode 
shape derivatives have same values at both ends, and this 
can only happen if the vibration modes shapes are anti-
symmetric. 
Equation (3) can be re-expressed as: 

( ) 231 1
3 1 31 3 33 3 33 3 31

11 31 3
1 1T Td uD u d E E E

s d E
ε ε κ

  ′
′= − + = + −  

   
  (9) 

where ( )2 2
13 31 11 33/d sκ ε=  is the electromechanical coupling 

factor (IEEE Std. 176 1987). Integration of Equation (9) 
yields the charge: 

22 2 2
3 33 31 1

31 32 2 2

1 11 1
l b l

T
l b l

blQ D dxdy V u
t l d E

ε κ
+ + +

− − −

  
= = + −  

   
∫ ∫  

  (10) 
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where 33 /T bl t Cε =  is the conventional capacitance of the 

piezoelectric wafer. For harmonic motion, ˆˆ iI Qω= ⋅ . 

Recall the expressions ˆ ˆ/Y I V= and Z = Y-1 for the electric 
admittance and impedance, respectively. Hence, Equation 
(10) yields 

 
1

2 2
31 1

2

tan
i 1 1

l
Y C

l
γ

ω κ
γ

  
= ⋅ + −  

   
 (11) 

This result agrees with Ikeda (1996). To facilitate 
comparison with future results, we write it in the form: 

 2
31

1i 1 1
cot

Y Cω κ
ϕ ϕ

  
= ⋅ − −  

  
 

 
1

2
31

1 11 1
i cot

Z
C

κ
ω ϕ ϕ

−
  

= − −  ⋅   
 (12) 

where 1
2 lϕ γ= . As for any electrically reactive device, the 

admittance is purely imaginary. The admittance poles, 

2(2 1)Y m πϕ = + , m = 0, 1, 2, … correspond to the 
electromechanical resonance. At the admittance poles, 
Î → ∞ . Mathematically, the admittance follows the 
behavior of the 1/cotϕ function, which goes to +∞, and 
then suddenly jumps to -∞. Also of interest are the 
admittance zeros (impedance poles), which are solutions of 
the equation ( )2 2

31 31cot / 1Z Zϕ ϕ κ κ= − − . At these values I 

= 0. Table 1 shows the admittance and impedance poles 
calculate for κ31= 0.36. The numerical values of the 
admittance poles, ϕY, and impedance poles, ϕZ, differ 
significantly only for the first few modes. By the fourth 
mode, the difference between them drops below 0.1%. 
Equation (12) can be used to predict the admittance and 
impedance frequency response. To this purpose, we note 
that 2 fω π=  and 1

2 /l cϕ ω= . As the excitation 
frequency varies, and resonance and anti-resonance 
frequencies are encountered, the admittance and 
impedance go through +∞ to -∞ transitions. Outside 
resonance, the admittance follows the linear function iωC, 
while the impedance follows the inverse function 1/(iωC). 
 
 

Table 1 Admittance and impedance poles for κ31= 0.36 
Admittance 
poles, ϕY π/2 3π/2 5π/2 7π/2 9π/2 

Impedance 
poles, ϕZ 

1.0565π/2 3.021π/2 5.005π/2 7π/2 9π/2 

ϕZ/ϕY 1.0565 1.0066 1.0024 1.0012 1.000
7 

Internal Damping Effects 
Materials under dynamic operation displays internal 
heating due to several loss mechanisms (Lazan, 1968). 
Such losses can be incorporated in the mathematical model 
of the piezoelectric active sensor by assuming complex 
expressions for the compliance and dielectric constant: 

 11 11(1 i )s s η= − ,      ( )33 33 1 iε ε δ= −  (14) 

The values of η and δ vary with the piezoceramic 
formulation, but are usually small (η, δ < 5%). The 
admittance and impedance become complex expressions: 

 2
31

1i 1 1
cot

Y Cω κ
ϕ ϕ

  
= ⋅ − −  

  
 

 
1

2
31

1 11 1
i cot

Z
C

κ
ω ϕ ϕ

−
  

= − −  ⋅   
 (15) 

where ( )2 2
13 31 11 33/d sκ ε=  is the complex coupling factor, 

and ( )1 iC Cε= − , 1 iϕ ϕ δ= − . Similar expressions can 
be derived for the breadth and thickness vibrations, with 
appropriate use of indices. When studying the frequency 
spectrum of the complex admittance and impedance, an 
interesting phenomenon is observed at resonance and anti-
resonance frequencies. Recall that, in the absence of 
internal damping, the admittance is purely imaginary and, 
at resonance, crosses over from +∞ to -∞. The effect of 
damping is to reduce these extremes to finite, though very 
large values, such that, while traversing a resonance 
frequency, the imaginary part of admittance crosses from a 
very large positive to a very large negative value, and, in 
this process, its value at resonance is actually zero. At the 
resonance frequency, the real part of the admittance is the 
only non-zero term, since the response is only limited by 
the physical dissipation mechanism. At resonance, the real 
part of admittance displays a clear peak, which can be used 
to detect the value of the resonance frequency (This 
phenomenon is well known in vibration testing, as 
described by, e.g., Ewins, 1984). A similar behavior is also 
displayed by the complex impedance. 

Longitudinal Vibrations of a Clamped Active Sensor 
Consider fully constrained PZT active sensor as shown in 
Figure 4. The boundary conditions for this case are 
expressed as 1

1 2( )u l−  = 1
1 2( )u l  = 0. General solution (5) 

upon substitution into Equation (3):  

 ( )1 1
1 2 11 0 31 32 2

ˆcos sin EC l C l s T d Eγ γ γ− = +  (16) 

 ( )1 1
1 2 11 0 31 32 2

ˆcos sin EC l C l s T d Eγ γ γ+ = − +  (17) 
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Figure 4 Clamped PZT wafer active sensor. 
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Figure 5 PZT wafer active sensor constrained by an overall structural 
stiffness, kstr. 

 

Upon summation 31 3
1 1

2

ˆ

cos
d E

C
lγ γ

= , and the general solution 

is expressed as: 

 1
1 2 1 1

2 2

sinˆ ( )
cosISA

xu x u
l l

γ
γ γ

=  (18) 

Equation (18) is applied only for the even modes, i.e. for 
the electromechanical resonances. 
Imposing boundary condition into Equation (10), we 
obtain the electric charge: 

 22 2 2
3 33 31 1

31 32 2 2

1 11 1
l b l

T
l b l

blQ D dxdy V u
t l d E

ε κ
+ + +

− − −

  
= = + −  

   
∫ ∫ , 

 2
33 311TQ CVε κ = −   (19) 

For harmonic motion, ˆˆ iI Qω= ⋅ , the electric admittance 
and impedance expressions for a PZT active constrained 
sensor are obtained in the following form: 

 2
31i 1Y Cω κ = ⋅ −  ,      

12
31

1 1
i

Z
C

κ
ω

−
 = − ⋅

 (20) 

It can be shown that this result is equivalent with that 
mentioned by Ikeda (1996). The effect of structural and 
sensor damping can be easily introduced in Equations (20) 
by the use of complex notations: 

 2
31i 1Y Cω κ = ⋅ −  ,      

12
31

1 1
i

Z
C

κ
ω

−
 = − ⋅

 (21) 

Longitudinal Vibrations of an Elastically Constrained 
Active Sensor 
Consider a constrained PZT active sensor as shown in 
Figure 5. For symmetry, the overall structural stiffness, kstr, 
has been split into two end components, each of size 2kstr. 
The boundary conditions applied at both ends connect the 
resultant of internal stresses with the spring reaction force, 
i.e., 

 
( ) ( )

( ) ( )

1 1
1 12 2

1 1
1 12 2

2

2

a a a str a

a a a str a

T l b t k u l

T l b t k u l

= −

− = −
 (22) 

Substitution of Equation (22) into Equation (3) gives: 

 
( ) ( )

( ) ( )

111 1
1 1 31 32 2

111 1
1 1 31 32 2

2

2

E

a a a str a

E

a a a str a

su l b t k u l d E
bt

su l b t k u l d E
bt

′ = − +

′ − = − +

 (23) 

Introducing the quasi-static stiffness of the PZT active 
sensor, 

 
11

a
PZT E

a

A
k

s l
= , (24) 

and the stiffness ratio 

 str

PZT

k
r

k
= , (25) 

Equation (23) can be re-arranged in the form: 

 ( ) ( )1 1
1 1 31 32 2

2
a

a a a al
ru l b t u l d E′ ± ± ⋅ =  (26) 

Substitution of the general solution (5) yields the following 
linear system in C1 and C2: 

 
( ) ( )
( ) ( )

1
1 2 2

1
1 2 2

cos sin sin cos

cos sin sin cos
ISA

ISA

r C r C u

r C r C u

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

+ − − =

+ + − =
(27) 

where 31 3
ˆ

ISA au d E l= ⋅  and 1
2 alϕ γ= . Upon solution, 

 ( ) ( )
1

1 2
sinˆ

cos sinISA
xu x u
r

γ
ϕ ϕ ϕ

=
+

 (28) 

Substitution into Equation (3) leads to admittance and 
impedance expressions for a PZT active sensor constrained 
by the structural substrate with an equivalent stiffness ratio 
r: 

 2
31

1i 1 1
cot

Y C
r

ω κ
ϕ ϕ

  
= ⋅ − −  +  

 

 
1

2
31

1 11 1
i cot

Z
C r

κ
ω ϕ ϕ

−
  

= − −  ⋅ +  
  (29) 
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Comparison of this equation with the Equations (12) 
corresponding to the free sensor, indicates that the 
structural stiffness ratio, r, is additive to the sensor 
resonance term, cotϕ ϕ . When the PZT active sensor is 
used in a frequency sweep, the apparent structural 
stiffness, kstr will vary with frequency, going through zero 
at structural resonances, and extreme values at structural 
anti-resonances. Equations (29) infers that both structural 
resonances and sensor resonances will be reflected in the 
admittance and impedance frequency spectra.  
Analysis of the asymptotic behavior of Equations (29) 
reveals important facts. For a vanishingly small r, i.e., free 
sensor vibrations, we get 

 2
31

1( ) i 1 1
cotfreeY r Y Cω κ

ϕ ϕ
  

→ = ⋅ − −  
  

 as r → 0(30) 

For infinitely large r, i.e., clamped sensor vibrations, we 
get Equation (20): 

 2
31( ) i 1clampedY r Y Cω κ → = ⋅ −   as r → ∞ (31) 

Both these formulae are consistent with the fundamental 
theory of piezoelectricity (Ikeda, 1996). On the other hand, 
as γla → 0 (i.e., quasi-static sensor conditions), we get 

2
31i 1

1qs
rY C

r
ω κ = ⋅ − + 

, 
1

2
31

1 1
i 1qs

rZ
C r

κ
ω

−
 = − ⋅ + 

,(32) 

which is consistent with the results of Liang et al. (1994), 
Giurgiutiu et al. (1994), and other investigators. The 
expressions contained in Equations (29) are a 
generalization of these results and bridge the gap between 
high-frequency sensor-focused analysis (e.g., Ikeda, 1996) 
and low-frequency structure-focused analysis (e.g., Liang 
et al., 1994). The present results cover the complete 
frequency spectrum and encompass both structure and 
sensor dynamics. 
The effect of structural and sensor damping can be easily 
introduced in Equations (29) by the use of complex 
notations: 

 2
31

1i 1 1
cot

Y C
r

ω κ
ϕ ϕ

  
= ⋅ − −  +  

  

 
1

2
31

1 11 1
i cot

Z
C r

κ
ω ϕ ϕ

−
  

= − −  ⋅ +  
 (33) 

where r  is the frequency-dependent complex stiffness 
ratio that reflects the structural point-wise dynamics and 
the sensor dissipation mechanisms. 
 

Breadth and Thickness Vibrations 
The breadth and thickness vibrations could be deduced in 
ways similar with those used for length vibrations. 
However, certain aspect-ratio particularities and plane-
stress vs. plane-strain issues need to be addressed 
(Pugachev et al., 1984; Ikeda, 1996). For a free sensor: 

 2
31

tan
i 1 1l

l
l

Y C
ϕ

ω κ
ϕ

  
= ⋅ + −  

  
, 1

l lZ Y −=  (length)(34) 

where 
2

2 31
31

33 11
T E
d

s
κ

ε
= , 11v 1/ E

l sρ= , 1
2 vl

l

lωϕ = ,. 

2
31

tan
i 1 1b

b
b

Y C
ϕ

ω κ
φ

  
′= ⋅ + −  

  
, 1

b bZ Y −=  (breadth)

 (35) 

where 
2

2 31
31 2

31

1
11

κ σκ
σκ

+′ =
−−

, ( )2 2
11v =1/ 1b sρ σ− , 

1
2 vb

b

bωϕ = , , σ = Poisson’s ratio. 

 2

33

tan1 1
i

t
t tS

t

tZ
bl

ϕ
κ

ω ϕε
 

= − 
 

, 1
t tY Z −=  (thickness)(36) 

where 
2

2 33

33 33
t S D

h
c

κ
β

= , 33v /D
t c ρ= , 1

2 vt
t

tωϕ = . 

Axisymmetric Vibrations 
PZT wafer active sensors are also produced in circular 
shape. To cater for this situation, the axisymmetric radial 
vibrations of a thin piezoelectric disk (Figure 6) are 
considered. Because of axial symmetry, this two-
dimensional motion can be treated with a one-dimensional 
model in which the displacement varies with radius only. 
The solution of the corresponding differential equation is 
expressed in terms of Bessel functions (IEEE Std. 176 
1987). the displacement ξ(r) at radial position r is given by 

 ( )1( ) / j t
pr AJ r v e ωξ ω= ⋅  (37) 

a

1 

2 

3 

r θ

Surface electrodes 

Poling direction

 

Figure 6  Schematic of a PZT disk wafer 
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where J1 is the first order Bessel function while 
2

111/ (1 )E
pv sρ σ= ⋅ −  is the wave speed for axisymmetric 

radial motion. Upon solution for free-edge boundary 
conditions, one can express the electrical admittance 
(Ikeda, 1996) as 

2

2
0 1

(1 )
( ) / ( ) (1 )1

p
d

d dp

k
Y j C

J Jk
σω

ϕ ϕ ϕ σ
+

= ⋅ ⋅
− −−

 (38) 

where /d pa vϕ ω= , a is the radius of a disk, and 

2
31 11 332 / (1 )E T

pk d s σ ε = ⋅ −  is the planar coupling factor. 

MODELING OF A PZT ACTIVE SENSOR 
INSTALLED ON A STRUCTURAL SUBSTRATE 

After reviewing the dynamics of the sensor alone under 
various boundary conditions, we now turn our attention to 
the dynamics of a PZT active sensor installed on a 
structure. The dynamics of the structural substrate and its 
interaction with the sensor dynamics is paramount in this 
analysis. 
To couple the sensor and the structure, we are going to use 
Equations (25) and (29) where the dynamic structural 
stiffness, ( )ωstrk , will be used in Equation (25). To derive 

( )ωstrk , we calculate the response of structural substrate 
using the general theory of structural vibrations 
(Timoshenko, 1955; Meirovitch, 1986; Inman, 1996; and 
Kelly, 2000) However, the PZT excitation departs from the 
typical textbook formulation since it acts a pair of self-
equilibrating axial forces and bending moments that are 
separated by a small finite distance, lPZT, as shown next. 
 

Definition of the Excitation Forces and Moments 
The excitation forces and moments acting upon the beam 
structure are derived from the PZT force, ˆ i t

PZT PZTF F e ω= , 
using the beam cross-section geometry (Figure 7): 

 
2a PZT
hM F= ,    a PZTN F=  (39) 

The space-wise distribution of excitation bending moment 
and axial force are expressed using the Heaviside function, 
H(x - xa), defined as H(x - xa) = 0 for x < xa, and H(x - xa) 
=1 for xa ≤ x: 

 ( ) ( )( , ) i t
e a a a aN x t N H x x H x x l e ω = − − + − − ⋅  (40) 

 ( ) ( )( , ) i t
e a a a aM x t M H x x H x x l e ω = − − − + − − ⋅  (41) 

Ma 

FPZT 

Beam extension εα 

Rotation θ = dw/dx 
Curvature 1/ρ 

PZT strain and displacement, εPΖΤ and uPΖΤ 

Na Na 

Ma 

FPZT 

 

Figure 7 Interaction between PZT active sensor and a substructure: 
forces and moments. 

where subscript e signifies excitation. Equations (40) and 
(41) correspond to axial and flexural vibrations, 
respectively. Axial vibrations modes are usually of much 
larger frequency than flexural vibration modes, and were 
neglected by previous researchers (Liang et al., 1994). 
However, their vibration frequencies are commensurable 
with those of the PZT active sensors. Other researchers 
have only considered axial modes and neglected the 
flexural vibrations (Park, Cudney and Inman, 2000). 

Calculation of Frequency Response Function and 
Dynamic Structural Stiffness 
To obtain the dynamic structural stiffness, kstr, presented 
by the structure to the PZT, we first calculate the 
elongation between the two points, A and B, connected to 
the PZT ends. Simple kinematics gives the horizontal 
displacement of a generic point P place on the surface of 
the beam: 

 ( ) ( ) ( )
2P
hu t u x w x′= − , (42) 

where u and w are the axial and bending displacements of 
the neutral axis. Letting P be A and B, and taking the 
difference, yields: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,
2

PZT B A

a a a a a a

u t u t u t
hu x t u x l t w x t w x l t

= − =

′ ′= − + − − +  
(43) 

Using classical axial and flexural vibrations analysis, one 

writes ( )i
2 2( , )

i 2
u

u

u u u

nt
n

n n n

C
u x t e U xω

ω ω ζ ω
=

− + ⋅
∑  and 

i
2 2( , ) ( )

i 2
w

w

w w w

nt
n

n n n

C
w x t e W xω

ω ω ζ ω
′ ′=

− + ⋅
∑ , where ( )

unU x  

are the axial modes and ( )
wnW x  are the bending modes. 

Equations (40) and (41) can be used to express the 
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constants 
unC and 

WnC  in terms of the excitation forces 

and moments (Giurgiutiu and Zagrai, 2001). Hence, 
Equation (43) becomes 

 

( ) ( )

w

2

2 2

22

2 2
n

i 2ˆ
ˆ

( ) ( )

2 i 2

u u

u u u u

w w

w w w

n a a n a

n n n nPZT
PZT

n a a n a

n n n

U x l U x

Fu
A W x l W xh

ω ω ζ ω ω

ρ

ω ω ζ ω ω

  + −  + − + ⋅ =  
  ′ ′+ −    +  − + ⋅   

∑

∑
 (44) 

where ˆPZTu  is the vibration amplitude, i.e., 

ˆ( ) i t
PZT PZTu t u e ω= . Dividing Equation (44) by ˆ

PZTF  yields 
the structural frequency response function (FRF) to the 
Single Input Single Output (SISO) excitation applied by 
the PZT active sensor. This situation is similar to 
conventional modal testing (Harris, 1996, Section 21) with 
the proviso that the PZT wafers are unobtrusive and 
permanently attached to the structure. The dynamic 
structural stiffness is the inverse of frequency response 
function, i.e.,  

( )

( ) ( )
12

2 2

22

2 2

i 2ˆ

ˆ ( ) ( )

2 i 2

u u

u u u u

w w

w w w w

n a a n a

n n n nPZT
str

PZT
n a a n a

n n n n

U x l U x

Fk A
u W x l W xh

ω ω ζ ω ω
ω ρ

ω ω ζ ω ω

−
  + −  + − + ⋅ = =  
  ′ ′+ −    +  − + ⋅   

∑

∑

  
 (45) 

For free-free beams (Inman, 1996) axial and flexural 
components are:  

( ) cos( )
u u un n nU x A xγ= , 2 /

unA l= , 
u

u
n

n
l
π

γ = , 

u un n cω γ= , Ec
ρ

= , nu = 1,2,… (46) 

( )( ) cosh cos sinh sin
w w W w w w wn n n n n n nW x A x x x xγ γ σ γ γ = + − + 

2
w wn n aω γ= , � , ( )2

0
1/

w

l
n nwA W x dx= ∫ .  (47) 

Numerical values of 
wnl γ⋅ and 

wnσ  for 5wn ≤  can be 

found in Blevins (1979), page 108; for 5 wn< , 

( )2 11
2wn

n
l

π
γ

+
=  and 1

wnσ = . 

The derivations (29), (45), (46), (47) open the way for the 
numerical example and comparison between theoretical 
and experimental results. 

NUMERICAL SIMULATION OF PZT ACTIVE 
SENSOR RESPONSE 

To illustrate our analysis, we performed numerical 
simulation of a typical piezoelectric active sensor with 
following dimensions: l = 6.99 mm, b = 1.65 mm, t = 0.2 
mm. The piezoceramic properties are presented in Table 2 
(Note that ε0 = 8.84194 pF/m).  
 Figure 8 presents the numerical simulation of 
longitudinal vibrations over a wide frequency range. The 
electromechanical admittance and impedance, as it would 
be measured at sensor terminals, are plotted. In these 
simulations, 1% damping (δ = ε = 1%) was assumed. The 
introduction of this slight damping values generated non-
singular behavior around the resonance and anti-resonance 
points and gave realism to our simulation. The examination 
of Figure 8 shows the effect of resonances and anti-
resonances on the admittance and impedance curves. 
Outside resonances, the electro-mechanical admittance 
behaves essentially like iωC (Figure 8a). Similarly, outside 
anti-resonances, the electro-mechanical impedance 
behaves like 1/(iωC). At resonances and anti-resonances, 
the basic iωC 1/(iωC) patterns of behavior are modulated 
by the resonant and anti-resonant responses that generate 
zigzags in the imaginary parts and sharp peaks in the real 
part. The resonance and anti-resonance frequencies can be 
clearly identified as definite peaks in the real-part plots of 
the admittance and impedance functions (Figure 8b). These 
frequencies, read to 4-digit accuracy, are listed in Table 3. 
Also listed in Table 3 are the undamped resonance and 
anti-resonance frequencies determined with the Yϕ  and 

Zϕ  values of Table 1. Comparison of slightly damped and 
undamped frequencies reveals that their numerical values 
remain virtually unchanged when slight damping was 
introduced. This confirms that the peaks of the admittance 
and impedance real-part spectra can be confidently used to 
determine the resonance and anti-resonance frequencies. 
This has important experimental significance, since 
extracting the same information from the imaginary part 
plots is much less practical because, in these plots, the 
resonance and anti-resonance specific patterns are masked 
by the dominant iωC and 1/(iωC) basic response. 
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Table 2 Properties of piezoelectric ceramic APC-850 (as from the company website www.americanpiezo.com ) 
Property Unit Symbol APC-840 APC-841 APC-880 APC-850 APC-855 APC-856 
Relative dielectric constant 1 

33 0/Tε ε  1250 1350 1000 1750 3250 4100 

Dissipation factor measured: C 
1 kC@ low field 

% tan δ 0.4 0.35 0.35 1.4 2 2.7 

Curie temperature 0C TC 325 320 310 360 195 150 

Coupling coefficient 1 kp 
k33 
k31 
k15 

0.59 
0.72 
0.35 
0.70 

0.60 
0.68 
0.33 
0.67 

0.50 
0.62 
0.30 
0.55 

0.63 
0.72 
0.36 
0.68 

0.65 
0.74 
0.38 
0.66 

0.65 
0.73 
0.36 
0.65 

Piezoelectric coefficient 10-12 C/N 
or  

m/V 

d33 
-d31 
d15 

290 
125 
480 

275 
109 
450 

215 
95 

330 

400 
175 
590 

580 
270 
720 

620 
260 
710 

Piezoelectric coefficient 10-3 V-m/N 
or 

 m2/C 

g33 
-g31 
g15 

26.5 
11 
38 

25.5 
10.5 
35 

25 
10 
28 

26 
12.4 
36 

19.5 
8.8 
27 

18.5 
8.1 
25 

Young’s modulus 1010 N/m2 

11
EY  

33
EY  

8 

6.8 

7.6 

6.3 

9 

7.2 

6.3 

5.4 

6.1 

4.8 

5.8 

4.5 

Frequency constants 
L = longitudinal mode 
T = thickness mode 
R = radial mode 

 
Hz-m  

or  
m/s 

 
NL 
NT 
NR 

 
1524 
2005 
2130 

 
1700 
2005 
2055 

 
1725 
2110 
2080 

 
1500 
2032 
1980 

 
1475 
1930 
1980 

 
– 

1980 
– 

Elastic compliance 10-12  m2/N 
11
Es  

33
Es  

11.8 

17.4 

11.7 

17.3 

10.8 

15.0 

15.3 

17.3 

14.8 

16.7 

15.0 

17.0 

Density g/cc ρ 7.6 7.6 7.6 7.7 7.5 7.5 

Mechanical quality factor 1 Qm 500 1400 1000 80 75 72 

 
 
 
 
 

Table 3 Peaks of the admittance and impedance real-part plots; numerical simulation of a PZT active sensor with l = 7 mm, b = 1.68 mm,  
t = 0.2 mm, APC-850 piezoceramic, δ = ε =1%. 

Mode No. 1 2 3 4 5 

Slightly damped resonance frequencies, fY, kHz. 208.059 624.17 1040.29 1456.41 1872.54

Undamped resonance frequencies, fY*, kHz. 208.056 624.16 1040.28 1456.39 1872.51

Error in fY vs. fY*, % 0.0014% 0.0016% 0.0010% 0.0014% 0.0016%

Slightly damped anti-resonance frequencies, fZ, kHz 219.89 628.35 1042.84 1458.26 1873.99

Undamped anti-resonance frequencies, fZ*, kHz 219.88 628.32 1042.78 1458.18 1873.90

Error in fZ vs. fZ*, % 0.0045% 0.0048% 0.0058% 0.0055% 0.0048%
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Figure 8 Simulated electromechanical admittance and impedance of a PZT active sensor (l = 7 mm, b = 1.68 mm, t = 0.2 mm, 33ε T = 15.470⋅109F/m, 

11
Es = 15.3⋅10-12⋅Pa-1, 31d = -175⋅10-12⋅m/V, k31 = 0.36 δ = ε =1%): (a) complete plots showing both real (full line) and imaginary (dashed line) parts; (b) 

plots of real part only, log scale. 

 

PZT ACTIVE SENSORS FABRICATION, AND 
CHARACTERIZATION  

 Previous efforts (Giurgiutiu and Zagrai, 2000) have 
shown that consistent sensor fabrication and installation 
procedures are needed for successful implementation of 
active sensor techniques. Hence, the analysis of sensor 
fabrication, and the identification/elimination of fabrication 
faults and shortcomings was one of our major concerns 
during the present investigation. A batch of 25 APC-850 
small PZT wafers (7 mm sq., 0.2 mm thick, silver electrodes 
on both sides), from American Piezo Ceramics, was 
acquired, and subjected to statistical evaluation. Our 
selection of these products was based on their affordable cost 
and adequate manufacturing tolerances (Table 4). When 
connected to lead wires and adhesively installed on the 
structural specimen, these wafers would become 
piezoelectric active sensors. The aim of our investigation was 
to establish an in-process test procedure that would allow the 
final properties of the installed active sensor to be traced 
back to the initial properties of the PZT wafer, as modified 
by the sensor fabrication process. In this process, we started 
with the mechanical and electrical properties declared by the 
vendor, and then conducted our own measurements to verify 

the vendor data and evaluate its veridicality. The 
material properties of the basic PZT material are given in 
Table 2. The mechanical tolerances of these wafers, as 
presented by the vendor on their website, are given in 
Table 4. Other tolerances declared by the vendor were 
±5% for resonance frequency, ±20% for capacitance and 
±20% for the d33 constant. For in-process quality 
assurance of active sensor fabrication, we selected the 
following indicators: (a) geometrical dimensions; (b) 
electrical capacitance; (c) E/M impedance and 
admittance spectra. The geometric measurements were 
the initial indicators that, when showing an acceptable 
tolerance and a narrow spread, would build up the 
investigator’s confidence. The electrical capacitance was 
use to verify electrical consistency of the fabrication 
process. It was found to be an important but also elusive 
indicator. We found that during the adhesive installation 
of the sensor onto the structural specimen, the electrical 
capacitance will typically decrease, but remain within 
the order of magnitude of the initial reading. Of the three 
indicators, the E/M impedance and admittance spectra 
were found to be the most labor-intensive but also the 
most comprehensive. 
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Table 4 Manufacturing tolerances for APC, Inc. small piezoelectric 
wafers (www.americanpiezo.com ) 

Dimension Units (mm) Standard 
Tolerance 

Length or breadth of plates <13mm +/-0.13mm 

Thickness of all parts 0.20mm to 
0.49mm +/-0.025mm 

Geometric measurements 
 Twenty-five nominally identical APC-850 wafers were 
measured with precision instrumentation consisting of 
Mitutoyo Corp. CD - 6'' CS digital caliper (0.01-mm 
precision) and Mitutoyo Corp. MCD - 1'' CE digital 
micrometer (0.001-mm precision). Length, breadth, and 
thickness were measured and recorded. Statistical analysis of 
the data obtained from these measurements shown good 
agreement with the Normal distribution (Gauss law). Mean 
and standard deviation values for length/breadth and 
thickness were 6.9478 mm, ± 0.5%, and 0.2239 mm, ± 1.4 
%, respectively. 

Electrical Measurements 
 Electrical capacitance was measured with a BK 
Precision® Tool Kit™ 27040 digital multimeter with a 
resolution of 1pF. Capacitance measurements were selected 
as a in-process quality check to be applied during each step 
of sensor development and also during the sensor installation 
process. Capacitance of the basic PZT sensors was measured 
directly by putting the PZT square on a flat metallic ground 
plate. The negative probe was connected to the plate in a 
semi-permanent fashion (hole, bolt + nut + washer, short 
multifilament lead, alligator clip), and the top of the PZT 
wafer was touched with the positive probe. Then, data was 
taken when the tester readings had converged to a stable 
value. At least 6 readings were recorded and the average was 
taken. The process was iteratively improved until consistent 
results were obtained. The results of statistical analysis for 
direct capacitance test is presented on Figure 8. Mean and 
standard deviation values are 3.276 nF, ± 3.8 %. 

INTRINSIC E/M IMPEDANCE AND ADMITTANCE 
CHARACTERISTICS OF THE PZT ACTIVE SENSOR  

 The intrinsic E/M impedance/admittance of the PZT 
active sensor is an important dynamic descriptor for 
characterizing the sensor prior to its installation on the 
structure. In our work, the intrinsic E/M 
impedance/admittance of the PZT active sensor was 
determined both theoretically and experimentally. 
Theoretical calculations were performed with Equations 
(34)-(36) The measurements were done with HP 4194A 
Impedance Phase Gain Analyzer.  

Statistical distribution of capacitance
(APC-850 piezoceramic initial wafers)

0

1

2

3

4

5

6

7

8

9

10

2.
93

90

3.
03

30

3.
12

70

3.
22

10

3.
31

50

3.
40

90

3.
50

30

3.
59

70

3.
69

10

Capacitances  class, mm

S
ta

tis
tic

al
 fr

eq
ue

nc
y

Experimental
Theoretical

 
Figure 9 Statistical distribution of APC-850 piezoceramic wafers 
capacitance. 

 

(a)

PZT element 

 

 

(b)

Test probe

Ground 
lead 

PZT wafer

Metallic support plate

 

Figure 10 (a) Test jig schematics for dynamic measurement of PZT 
elements that ensures unrestraint support of the PZT wafer 
(Waanders, 1991); (b) physical implementation of the schematic as 
used in our experiments. 
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Figure11  Intrinsic E/M impedance characteristics of the PZT active sensor: (a) real part; (b) imaginary part; (c) amplitude; (d) phase. 

 

(a)

Statistical distribution of 1st resonance
(PZTwafers in free-free condition)

-1

0

1

2

3

4

5

6

7

8

9

10

24
0.

4

24
2.

6

24
4.

9

24
7.

1

24
9.

4

25
1.

6

25
3.

9

25
6.

1

25
8.

4

Frequencies class, kHz 

St
at

is
tic

al
 fr

eq
ue

nc
y

Experimental
Theoretical

                             (b)

Statistical distribution of amplitude of 1st resonance
(PZTwafers in free-free condition)

0

1

2

3

4

5

6

7

0.
01

53

0.
02

67

0.
03

80

0.
04

94

0.
06

08

0.
07

22

0.
08

35

0.
09

49

0.
10

63

Amplitudes class, Siemens

St
at

is
tic

al
 fr

eq
ue

nc
y

Experimental
Theoretical

 

Figure 12 Results histograms vs. frequency and amplitude sorting classes: (a) 1st resonance frequencies and (b) admittance amplitudes at 1st 
resonance of PZT active sensor.  
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Measurements of the intrinsic E/M impedance and 
admittance characteristics of the PZT active sensor 
 The test fixture for measuring the intrinsic E/M 
impedance/admittance of free PZT active sensor was 
designed following Waanders (1991) concept shown on 
Figure 10a. We used a metallic plate with a lead connected at 
one corner (Figure 10b). The PZT wafer was centered on the 
bolt head and held in place with the probe tip. Thus, proper 
support conditions were simulated, and the PZT wafer could 
freely perform its vibrations. The PZT active sensors were 
tested in the 100Hz  12MHz frequency range using the HP 
4194A Impedance Analyzer. Typical admittance and 
impedance frequency spectra are given in Figure 11. 
The PZT wafer resonance frequencies were identified from 
the E/M admittance spectra. It was found that since the 
length and the breadth of the PZT wafers are nearly identical, 
the corresponding lengthwise and breadthwise frequencies 
are coalescent, forming twin-peaks of in-plane vibration 
resonances. The first, second, and third in-plane resonance 
frequencies, as well as the out-of-plane (thickness) resonance 
(which is at much higher frequency) were identified and 
recorded. Also recorded were the values of the corresponding 
resonance peaks. Statistical distributions of the resonance 
frequencies and resonance amplitudes are given in Figure 12. 
Mean values of 251kHz and 67.152 mS, and standard 
deviations of ±1.2% and ±21%, respectively, were obtained. 
These results proved that the basic APC-850 piezoelectric 
wafers had acceptable quality with a narrow dispersion band 
in resonance frequency. 

Comparison of Measured and Calculated E/M 
admittance Spectra of PZT Active Sensors 
 Measured results and calculated predictions for circular 
disc and rectangular plate PZT wafer active sensors of 
various aspect ratios are given in Table 5. Superposed plots 
of the measured and calculated E/M admittance spectra are 
given in Figures 13 through 16. Figure 13 refers to a circular 
disk active sensor, while Figures 14 – 16 refer to rectangular 
active sensors of various aspect ratios.  

E/M Admittance Spectrum for a Circular Disk Active Sensor 
 The E/M admittance of a disk-shaped piezoelectric 
active sensor undergoing axisymmetric in-plane radial 
vibrations was modeled with Equation (38). Figure 13 shows 
superposed the predicted and measured results. On this plot, 
three resonance peaks are clearly visible. The corresponding 
frequencies (300 kHz, 784 kHz, and 1,247 kHz, as indicated 
in Table 5) correspond to the first three in-plane radial 
modes. The forth in-plane frequency (1,697 kHz) which lies 
outside the 0—1,500 kHz plotting range, was not plotted. 
However, its value appears in Table 5. During our 
experiments, we also noticed a very high frequency peak in 
the E/M impedance real-part response at 10,895 kHz (Figure 

12a). This value can be identified with the out-of-plane 
thickness vibration, as predicted by Equation (36). 
Comparison of measured and calculated results listed in 
Table 5 for the circular disk case indicate very good 
agreement between theory and experiments (2.1% 
maximum error). 

E/M Admittance Spectrum for Rectangular Plate Active 
Sensors 
 As received, the rectangular piezoceramic wafers 
had an aspect ratio close to one, i.e., were practically 
square. The modeling of in-plane vibrations of square 
PZT wafers is not easily attainable, since no closed-form 
solution exists for this 2-dimensional (2-D) non-
axisymmetric mode. In our analysis, we investigated the 
possibility of using 1-dimensional (1-D) results of 
Equations (34—36) to predict the E/M impedance and 
admittance response, and subsequently identify 
resonance frequencies. To achieve this, we progressively 
used active sensor specimens of increasing aspect ratios 
1:1, 2:1, and 4:1. The specimens were fabricated from an 
as-received square wafer, by machining the breadth in 
half and then in quarter. It was expected that, as the 
aspect ratio increases, the experimental results would 
converge with 1-dimensional prediction 
 Figure 14 shows the admittance real-part spectrum 
for the square-shaped piezoelectric active sensor (aspect 
ratio 1:1). In the 0 – 1500 kHz frequency band, the 1-D 
theoretical curve predicts 3 double peaks (1L, 1B, 2L, 
2B, 3L, 3B) and one single peak (4L) where L = length 
modes, B = breadth modes. The 4B mode is outside the 
0 – 1500 kHz range, and hence was not plotted. The 
double peaks indicate the modes coalescence between 
length and breadth vibrations due to l= 7.00 mm and b = 
6.99 mm giving almost identical length and breadth 
frequencies at the low end of the spectrum. The 
corresponding resonance frequencies (Table 5) are 208 
kHz (1L), 222 kHz (1B), 621 kHz (2L), 663 kHz (2B), 
1038 kHz (3L), 1108 kHz (3B) and 1451 kHz (4L). It 
should be noted that the calculated frequencies are in the 
harmonic ratio 1:3:5:7, as predicted by Table 3. The 1L 
and 1B experimental results are significantly different 
from the theoretical predictions. The high positive errors 
(19% and 37%, respectively) are indicative of the 2-D 
stiffening effect, typical of low-aspect ratio in-plane 
vibrations, that is not captured by the 1-D theory. At 
higher modes, this stiffening diminishes, and the 
agreement between theory and experiment improves 
(7.3% and 5.6% for the 2L and 2B modes; 2.3% and 
3.6% for the 3L and 3B modes). This indicates that, with 
the exception of first modes, 1-D theory gives a 
reasonable approximation at aspect ratios as low as 1:1. 
Also in good agreement is the out-of-plane 1T thickness 
frequency (10, 565 kHz, 0.7% error). 
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Figure 13 Experimental and calculated admittance 
spectra for circular wafer active sensor (d= 6.98 mm, t = 
0.216 mm, 33ε T = 15.470⋅109F/m, 11

Es = 18⋅10-12⋅Pa-1, 31d = -
175⋅10-12⋅m/V, kp = 0.63). 
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Figure15 Experimental and calculated admittance 
spectra for half-breadth active sensor (l= 6.99 mm, b = 3.53 
mm, t = 0.215 mm, 33ε T = 15.470⋅109F/m, 11

Es = 15.3⋅10-12⋅Pa-1, 

31d = -175⋅10-12⋅m/V, k31 = 0.36). 
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Figure 14 Experimental and calculated admittance 
spectra for square plate active sensor (l= 6.99 mm, b = 6.56 
mm, t = 0.215 mm, 33ε T = 15.470⋅109F/m, 11

Es = 15.3⋅10-12⋅Pa-1, 

31d = -175⋅10-12⋅m/V, k31 = 0.36). 
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Figure 16 Experimental and calculated admittance 
spectra for quarter-breadth active sensor (l= 6.99 mm, b = 
1.65 mm, t = 0.215 mm, 33ε T = 15.470⋅109F/m, 11

Es = 15.3⋅10-

12⋅Pa-1, 31d = -175⋅10-12⋅m/V, k31 = 0.36). 

Table 5 Results of the dynamic characterization of one circular and three rectangular APC-850 piezoelectric wafers (R = axisymmetric radial 
vibration; L = in-plane length vibration; B = in-plane breadth vibration; T = out-of-plane thickness vibration) 

  Frequency, kHz 
Exp. 300 (1R) 784 (2R) 1,247 (3R) 1,697 (4R) 10,895 (1T) 
Calc. 303 (1R) 796 (2R) 1267 (3R) 1,733 (4R) 10,690 (1T) 

Circular wafer 6.98mm × 0.216-mm 

Error -1.0% -1.5% -1.6% -2.1% 1.9% 
Exp. 257 352 670 702 1070 1150 1572 1608 10,565 

Calc. 207.6 
(1L) 

221.6
(1B) 

623 
(2L) 

665 
(2B) 

1038 
(3L) 

1108 
(3B) 

1453 
(4L) 

1551 
(4B) 

10,488 
(1T) 

Square wafer 
6.99-mm × 6.56-mm × 0.215-mm 

Error 23.8% 58.8% 7.5% 5.6% 3.1% 3.8% 8.2% 3.4% 0.7% 

Exp. 208 432 597 670 821 1153 1307 1491 10,567 

Calc. 
207.6
(1L) 

439 
(1B) 

621 
(2L) 

  1038 
(3L) 

1318 
(2B) 

1451 
(4L) 

10,488 
(1T) 

½ breadth wafer 
6.99-mm × 3.53-mm × 0.215-mm 

Error 0.2% -1.6% -4.0%   11.1% -
0.8% 

2.8% 0.7% 

Exp. 212  597 950 1020   1496 10,905 

Calc. 207.6
(1L) 

 621 
(2L) 

940 
(1B) 

1038 
(3L) 

  1451 
(4L) 

10,488 
(1T) 

¼ breadth wafer 
6.99-mm × 1.64-mm × 0.215-mm 

Error 2.1%  -4.0% 1.1% -1.8%   3.1% 1.0% 
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 Figure 15 shows the admittance real-part spectrum for 
the half-breadth piezoelectric active sensor (aspect ratio 
2:1). In the 0 – 1500 kHz frequency band, the theoretical 
curve displays 6 peaks. The corresponding resonance 
frequencies (Table 5) are 208 kHz (1L), 621 kHz (2L), 1038 
kHz (3L), 1451 kHz (4L), for lengthwise vibration, and 439 
kHz (1B), 1318 kHz (2B) kHz for breadthwise vibration. 
The experimental results agree very well for the 1L and 1B 
modes (<2% error), a little less for the 2L and 2B modes (4 
– 5% error) and reasonable for 3L mode (10%). The 
agreement for the 4L mode is also good. In addition to these 
clearly identifiable modes, several other peaks are present in 
the experimental curve. These modes are attributed to the 
edge roughness producing secondary vibration effects. We 
conclude that, although the half-breadth sensor (aspect ratio 
2:1) is still far from a proper 1-D case, a clear trend towards 
mode separation and a definite improvement in the first-
mode prediction accuracy can be observed. 
 Figure 16 shows the admittance real-part spectrum for 
the quarter-breadth piezoelectric active sensor (aspect ratio 
4:1). In the 0 – 1500 kHz frequency band, the theoretical 
curve displays six peaks. The corresponding resonance 
frequencies, as given in Table 5, are 208 kHz (1L), 621 kHz 
(2L), 1038 kHz (3L), 1451 kHz (4L), and 940 kHz (1B) 
kHz  
The experimental results, as presented in Figure 14 and 
Table 5, are in good agreement with the theory, especially 
for the 1L, 2L, 3L, and 1B, resonances that stay within 4% 
error. The 4L resonance shows a rather higher (–9%) error. 
In addition, the experimental curve shows an additional 
peak at 1167 kHz, which does not have a theoretical 
explanation. The overall conclusion is that, for 4:1 aspect 
ratio, good agreement between experiment and 1-D theory is 
obtained. 
 As a final note on this section, a few comments about 
the allocation of the symbols R, L, B and T are being made. 
In Table 5, these symbols were used to signify the natural 
frequencies calculated for axisymmetric radial, in-plane 
length-wise, in-plane breadth-wise, and out-of-plane 
thickness-wise vibrations. Then, the measured frequencies 
were allocated based on their numerical proximity to a 
certain theoretical frequency. Admittedly, this approach 
could introduce uncertainties regarding modes allocation, if 
mode clusters were present. Fortunately, most of the modes 
were well-separated, permitting a straightforward mode 
allocation. However, in a few instances, uncertainty in mode 
allocation was encountered (e.g., in some of the 1/1 and 1/2 
rectangular plates results). To eliminate this uncertainty, 
further investigation could be done using a laser vibrometer 
to determine the actual vibration mode shapes. Such 
investigations are planned as follow up studies. Beam and 
plate Experiments To verify the applicability of 
Equation (33) and better understand the relationship 
between structural resonances and the active-sensor 
response, experiments on simple beam and plate specimens 

were performed. The experimental results were compared 
with theoretical prediction, and method’s salient features 
were highlighted. 

Beam Experiments 
 One-dimensional beam structures are easy to model, 
and the prediction of their natural frequencies is fairly well 
understood (Inman, 1996). A number of small steel beams 
of various thickness and breadth values were fabricated 
(Figure 17). All specimens were instrumented with 7-mm 
square PZT active sensors placed at 40 mm from one end. 
Standard sensor-installation procedure was employed. 
During the experiments, the specimens were supported on 
commercially available packing foam to simulate free-free 
conditions. These small beams, ranging in weight from 16.4 
g to 82 g, were chosen as representative of precision 
machinery parts that are the candidate application for this 
embedded-sensor structural identification technology. 
During the experiments, the E/M impedance and admittance 
spectra were recorded in a wide frequency range. When 
necessary, frequency zoom was employed. Theoretical 
analysis was performed for free-free boundary conditions, 
and the corresponding frequencies and mode shapes were 
derived using Equations (46) and (47). Prediction of E/M 
impedance and admittance response was performed using 
Equations (33) and (45). The beam natural frequencies were 
also identified from the E/M impedance real part spectrum. 
As shown by Giurgiutiu and Zagrai (2001), these 
frequencies could be identical with the basic beam 
resonances, as predicted by classical vibration analysis 
(Inman, 1996). It was also shown that when the sensor 
dynamics and structural dynamics are widely separated, the 
sensor’s own dynamics can be neglected and the quasi-static 
approximation for sensor stiffness, as depicted in Equation 
(1), can be utilized. 
 In our case, the sensor first frequency was around 208 
kHz, while the structural frequency range was 0—30 kHz. 
In this case, no distinguishable difference could be found 
between the use of fully dynamic sensor model, and the 
quasi-static sensor model. However, at higher frequencies, 
when the sensor and structural dynamics start to interfere, 
the use of fully dynamic sensor model is warranted.When 
the beam thickness and breadth were varied, the frequencies 
changed accordingly. As an example, Figure 18 shows the 
calculated and measured E/M impedance real-part spectra 
for beam #1 of Figure 18 (to fit into same graph, selective 
scaling of the theoretical and measure curves was applied). 
In this 0—30 kHz range, several flexural modes (2F @ 
3.850 kHz, 3F @ 7.547 kHz, 4F @ 12.475 kHz, 5F @ 
18.635 kHz) and one axial mode (1A 26.035 kHz) are 
clearly visible. Not easily identifiable on Figure 18 is the 
first flexural mode (1F @ 1.396 kHz), which is 
overshadowed by the dominant 1/ωC behavior of the 
impedance curve at low frequencies. As a general note, we 
mention that embedded active sensors techniques are more 



 

suitable for high frequency modal identification, where the 1/ωC effect is much diminished.  

Narrow beams:  
b=8 mm, l=100 mm 
h=2.6 and 5.2 mm  

PZT active sensor 7 
mm sq. 0.200 mm thick, 
APC, Inc. 

W ide beams:  
b=19.6 mm, l=100 mm 
h=2.6 and 5.2 mm  

 # 2 

 # 1 

 # 4
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Figure 17 Experimental specimens to simulate one-dimensional structure. 
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Figure 18  Experimental and calculated spectra of frequencies for 
beam #1 of Figure 17. 

 
 
In spite of this difficulty, the 1F mode could be also 
detected by zooming into the 1.4 kHz frequency band. 
Further details of this experiment, including description of 
all the four beam measurements, error estimation (0.4% to 
3.6%), and a full set of measure and predicted frequencies 
are given by Giurgiutiu and Zagrai (2001). Our studies have 
shown that, when attached to the structure, these thin and 
small PZT wafers do not detectably modify the structural 
dynamics. Even on the smallest of the specimens studied, 
the sensor mass (0.082 grams) was only 0.5% of the 
structural mass (16.4 grams). The alternative technology, 
utilizing a conventional 0.7-gram accelerometer, would have 
modified the structural mass by an order of magnitude 
(0.7/16.4 = 4.3 %). This observation confers a true non-
invasive characteristic to the proposed piezoelectric wafer 
active sensors technology. 
 
 

CONCLUSION 

 The modeling and characterization of piezoelectric-
wafer active sensors for in-situ structural identification has 
been presented. The main purpose of this work has been to 
gain adequate understanding of piezoelectric sensor’s 
behavior and to develop predictive models that can be 
validated through carefully conducted calibration 
experiments. In our modeling effort, we started with the 
classical theory of piezoelectricity, and progress through the 
free vibrations analysis of a free, clamped, and elastically 
constrained piezoelectric wafer. In doing this, we developed 
unifying formulations for the prediction of the 
electromechanical (E/M) impedance and admittance, as it 
would be measured at sensor’s terminals.  It asymptotically 
recovers the free and clamped cases, as well as the quasi-
static case favored by previous investigators. As the next 
step, we considered the sensor response when attached to 

the structural substrate. The structural dynamics was 
incorporated through the pointwise dynamic stiffness 
presented by the structure to the sensor. The model accounts 
for both axial and flexural vibrations and predicts the 
electro-mechanical (E/M) impedance response, as it would 
be measured at the piezoelectric active sensor’s terminals. 
The derived mathematical expressions accounted for the 
dynamic response of both the sensor and the structure. This 
feature is especially important for proper modeling of the 
sensor-structure interaction at the high end of the structural 
frequencies spectrum. In support of the theoretical 
investigation, experiments conducted on simple specimens 
were performed. The performed experiments were able to 
correctly identify structural resonance in the 0—30 kHz 
range and beyond. It was shown that E/M impedance 
spectrum recorded by the piezoelectric active sensor reflects 
the mechanical response of the structure around the 
structural natural frequencies. Our studies have shown that, 
when attached to the structure, these thin and small PZT 
wafers would not detectably modify the structural 
dynamics. 
 In our experiments, special attention was given to 
investigating sensor’s consistency and repeatability. 
Statistical sensor batches were used and statistical analysis 
was performed. It was found that PZT active sensors have 
good and stable characteristics not only in the as-received 
state, but also when mounted on a structure.  
 A limitation of using PZT wafer embedded active 
sensors for structural identification is that these sensors, 
which are tuned to high frequency explorations, do not 
behave well below 5 kHz. This is due to the overshadowing 
effect of the 1/ωC characteristics, which becomes very 
strong at low frequencies. In the 1 – 5 kHz range, we were 
able to alleviate these difficulties by narrowband tuning. 
However, below 1 kHz, the method is not recommended.  
 In view of advantages and disadvantages, it is felt that 
piezoelectric active sensors in conjunction with the E/M 
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impedance technique, have their niche as a structural 
identification methodology using self-sensing, permanently 
attached active sensors. They can be confidently used at 
high frequencies where other embedded sensors (e.g., 
accelerometers and strain gauges) usually encounter 
bandwidth difficulties. Due to their perceived low cost, 
these active sensors can also be inexpensively configured as 
sensor arrays. The proposed method can be a useful and 
reliable tool for automatic on-line structural identification in 
the ultrasonic frequencies range. The use of piezoelectric-
wafer active sensors can be not only advantageous, but, in 
certain situations, may be the sole investigative option, as in 
the case of precision machinery, small but critical turbo-
machinery parts, and computer industry components. 
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