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Abstract. A pseudo-self-similar tiling is a hierarchical tiling of Euclidean space which
obeys a nonexact substitution rule: the substitution for a tile is not geometrically similar to
itself. An example is the Penrose tiling drawn with rhombi. We prove that a nonperiodic
repetitive tiling of the plane is pseudo-self-similar if and only if it has a finite number of
derived Vorono¨ı tilings up to similarity. To establish this characterization, we settle (in the
planar case) a conjecture of E. A. Robinson by providing an algorithm which converts
any pseudo-self-similar tiling ofR2 into a self-similar tiling ofR2 in such a way that the
translation dynamics associated to the two tilings are topologically conjugate.

1. Introduction

Much is known from an ergodic theoretic standpoint regardingself-similar tilings (some
fundamental references being [15], [17], [18], and [20]). However, there is a closely
related class of tilings, thepseudo-self-similar tilings, which we would like to claim have
the same dynamical properties. Pseudo-self-similar tilings have a hierarchical structure:
if the entire tiling is expanded by a well-chosen similarity ofRn, then one can recover the
tile in the original tiling at any pointx ∈ Rn by looking in a finite window aroundx in the
expanded tiling. A famous example of a pseudo-self-similar tiling is the Penrose tiling
drawn with “thick” and “thin” rhombi, which are decorated with arrows to specify how
they are allowed to fit together. Each expanded rhombus is replaced by configurations
of rhombi in the original size, but the smaller tiles do not fit onto it exactly—some parts
stick out over the edge, as shown in Fig. 1. However, the Penrose rhombs can be cut
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Fig. 1. Expanded thick and thin Penrose rhombi and their replacements.

into triangles which then satisfy the strict self-similarity condition, and this procedure
is reversible, see p. 540 of [7]. In this situation we say that the original tiling and the
modified version aremutually locally derivable (MLD) . The concept of mutual local
derivability was originally discussed in [2].

The main motivation for this paper comes from the work of the first author [14],
where it was conjectured thata nonperiodic tiling is pseudo-self-similar if and only
if it has finitely many derived Voronoı̈ tilings up to similarity. The “if” direction was
established in [14], where it was also shown that self-similar tilings have a finite derived
Voronoı̈ family. It was necessary to show that any pseudo-self-similar tiling ofR2 could
be converted to a self-similar tiling in order to prove the “only if” direction. This provides
a result which is interesting in its own right. We combined the result with the methods
of [14] to confirm the characterization in the planar case.

The use of derived Vorono¨ı tilings is motivated by a similar construct in symbolic
dynamical systems theory. Tilings and their translation dynamical systems are continu-
ous, higher-dimensional cousins of infinite symbolic sequences and their shift dynamical
systems. One can recode a sequence in terms of some recurrent wordW in the sequence
by noting thereturn words for W: these are the words in the sequence starting at an
occurrence ofW and ending at the next occurrence ofW. Originally, primitive substi-
tutive sequences were characterized by Durand [6] as those which have a finite number
of recodings when one considers the recodings for every initial word in the sequence.
Later the condition was expanded to include recodings for arbitrary words [9]. In higher
dimensions the return words are more difficult to mimic, as the notion of the “next”
copy of a set of tiles inT is unclear. Vorono¨ı tiles give a convenient geometric solution:
two occurrences are “next to” one another if their Vorono¨ı cells are adjacent. Pseudo-
self-similar tilings generalize primitive substitutive sequences, so the characterization
arrived at in this paper represents a nontrivial generalization of the characterization
given in [6].

To show the MLD between pseudo-self-similar and self-similar tilings ofR2, we
present an algorithm which takes any pseudo-self-similar tiling ofR2 and redraws it as a
self-similar tiling, using an iterative process. The procedure involves first converting the
tiling to a derived Vorono¨ı tiling as in [14]. This tiling is very easy to work with since
it is composed entirely of tiles which are convex polygons. Next, we use the pseudo-
self-similarity to determine an initial redrawing of the tile boundaries, which produces
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a tiling which is not yet self-similar, but much closer to being so. We iterate the process,
redrawing at each step, until in the limit we have obtained a self-similar tiling. The tiles of
this limiting tiling may be nonconvex and have fractal boundaries, but they will be seen
to be topological disks. We should note that the method of “redrawing the boundary” has
been used before: see, e.g., [3], [5], and [10]. We should especially mention the work of
Kenyon [11], since our methods are very similar to his at several points.

The paper is organized as follows. In Section 2 we collect all the basic definitions.
The results are stated in Section 3. The main theorem is proved in Sections 4 and 5.
The characterization of pseudo-self-similar tilings in terms of derived Vorono¨ı tilings is
obtained in Section 6. Section 7 contains concluding remarks.

2. Preliminaries

Here we collect the definitions and set up the terminology. The reader should be warned
that there is a great deal of inconsistency in terminology in the literature on this subject.
We usually do not attempt to trace the history of the terms we use; some of the early
references are [2], [4], and [20]. We closely follow [14] in our definitions.

Generally speaking, a tiling ofR2 is a covering of the plane by finitely many basic
shapes (tiles), which overlap only on their boundaries.

We will find that it is convenient to have labelings (visually interpreted as colorings)
for our tiles, allowing us to distinguish congruent tile shapes if we choose. So we fix a
finite set of labelsA. Taking a compact setA ⊂ R2 which is the closure of its interior, and
a labell ∈ A, we define aprototile t as a pair(A, l ). Thesupport of t is supp(t) = A;
the label (or tile type) oft is l (t) = l . Throughout the papertranslations are the only
allowable transformations of prototiles, standing in contrast to the work of Radin and
others (see [15], [16], and references therein) which allows arbitrary rotation of prototiles.

Definition 2.1. Given a finite prototile setτ , a tile T is a pair(supp(t) − g, l (t)) for
someg ∈ R2 andt ∈ τ . We let supp(T) = supp(t)− g andl (T) = l (t). We say

T = {Tj = (supp(ti j − gj ), l (ti j )): j ∈ N, ti j ∈ τ, gj ∈ R2}

is atiling if R2 =⋃j supp(Tj ) and int(supp(Ti )) ∩ int(supp(Tj )) = ∅ for i 6= j .

Different tilings that we consider need not have the same prototile set. For conve-
nience of notation we suppress subscripts and refer to anyT -tile as T ∈ T . When
considering two tilings, it is natural to identify them if they are equal, up to a one-to-one
correspondence of the label sets.

A T -patch P is a finite subset of the tilingT . Thesupport of a patch P is defined
by supp(P) = ⋃ {supp(T): T ∈ P}. The diameter of a patch P is diam(P) =
diam(supp(P)). The translate of a tile T by a vectorg ∈ R2 is T + g = (supp(T) +
g, l (T)). The translate of a patchP is P+g = {T+g: T ∈ P}. We say that two patches
P1, P2 aretranslationally equivalent if P2 = P1+ g for someg ∈ R2.

The following definition will be useful in the proof of our main theorem.
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Definition 2.2. A patch with a marked tile is a pair(P, T) whereP is a patch and
T ∈ P. Two patches with marked tiles(P1, T1) and(P2, T2) are said to be translationally
equivalent ifP2 = P1+ g andT2 = T1+ g for someg ∈ R2.

Definition 2.3. We say that a tilingT hasfinite local complexity (abbreviated as an
FLC tiling ), if for any R > 0, there are finitely manyT -patches of diameter less than
R, up to translation.

To a subsetF ⊂ R2 and a tilingT we can associate aT -patch as follows:

[F ]T = {T ∈ T : supp(T) ∩ F 6= ∅}.
An important patch is the one associated to a pointy ∈ R2, given by [y]T := [{y}]T .

Notation. We denote byBR(y) the closed ball of radiusR centered aty and write
NR(F) = {x ∈ R2: dist(x, F) ≤ R}.

Definition 2.4. (See [2].) LetT1 andT2 be two tilings. We say thatT2 is locally deriv-
able (LD) from T1 with a radiusR> 0 if for all x, y ∈ R2,

[BR(x)]
T1 = [BR(y)]

T1 + (x − y) ⇒ [x]T2 = [y]T2 + (x − y). (2.1)

If T1 is LD from T2 andT2 is LD from T1, then we say thatT1 andT2 aremutually
locally derivable (MLD) .

Remark. Mutual local derivability is a useful equivalence relation. It is natural in the
context of atiling dynamical system defined as the translation action on a space of
tilings (see [14], [15], and [18] for definitions). In fact, MLD is the tiling analog of
a finite block code in symbolic dynamics. If two tilings are MLD, then the associated
translation dynamical systems are topologically conjugate [14], hence they have the same
dynamical and ergodic-theoretic properties. (We should note, however, that a topological
conjugacy between tiling systems does not, in general, imply that the tilings are MLD,
see [13] and [16].)

The following lemma is immediate from the definitions.

Lemma 2.5. Suppose thatT1 and T2 are two tilings andT2 is LD from T1 with the
radius R. Then for any L> R and any compact sets F1, F2 ⊂ R2 with F2 = F1+ g,

[NL(F2)]
T1 = [NL(F1)]

T1 + g ⇒ [NL−R(F2)]
T2 = [NL−R(F1)]

T2 + g.

The definition of LD can be extended to include functions.

Definition 2.6. Let8: X→ R2 be a function for someX ⊆ R2. We say that8 is LD
from a tilingT with a radiusR> 0 if ∀x, y ∈ X,

[BR(x)]
T = [BR(y)]

T + (x − y) ⇒ 8(x) = 8(y)+ (x − y). (2.2)
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Definition 2.7. A tiling T is calledrepetitive if for any patchP ⊂ T there is a real
numberR> 0 such that for anyx ∈ R2 there is aT -patchP′ such that supp(P′) ⊂ BR(x)
andP′ is a translate ofP. The minimal suchR, denotedR(P), is called therepetitivity
radius of P. A repetitive tiling is calledlinearly repetitive if there exists a constant
C > 0 such that

R(P) ≤ Cdiam(P) for any P ⊂ T .

We should note that repetitive tilings are called “almost periodic” in [14] and “locally
isomorphic” in [18].

In everything that follows, we letϕ: R2 → R2 be an expanding, orientation-
preserving similitude; that is,ϕ is a linear map such that for someλ > 1 we have
|ϕg| = λ|g| for all g ∈ R2. We call such aϕ anexpansion mapand refer toλ as the
sizeof the expansion. Clearly,λ = ‖ϕ‖ = √detϕ. Because it is orientation-preserving,
there can be no reflections, so if we viewR2 as the complex plane, the expansionϕ can
be identified with the multiplication by a complex numberζ, |ζ | = λ. We can define
the expansionϕT of a tiling T : it is the tiling given by∪T∈T (ϕ(supp(T)), l (T)).

Definition 2.8. Let ϕ: R2 → R2 be an expansion map. A repetitive FLC tilingT is
said to bepseudo-self-similar with expansionϕ if T is LD fromϕT . A repetitive FLC
tiling T is calledself-similar with expansionϕ if

(i) for any tile T = (A, l ) ∈ T , there is aT -patch whose support isϕ(A), formally
[int(ϕ(A))]T , and

(ii) if T ′ = T − g for two T -tiles T = (A, l ), T ′ = (A′, l ), andg ∈ R2, then

[int(ϕ(A′))]T = [int(ϕ(A))]T − ϕ(g).

Definition 2.9. A tiling T is said to benonperiodic if T − g 6= T for any nonzero
g ∈ R2.

Remark. It is easy to see that a self-similar tiling is pseudo-self-similar. In [14] it is
required that a pseudo-self-similar tilingT is MLD with ϕT . We will show that this
property holds wheneverT is nonperiodic. It is known (see Chapter 10 of [7]) that
nonperiodicity is necessary forϕT to be LD fromT . We should note that the property
“T andϕT are MLD” was already considered by Baake and Schlottmann [1] under the
name “inflation–deflation symmetry.”

For the characterization of pseudo-self-similar tilings, we recall the construction of
the derived Vorono¨ı family from [14].

Definition 2.10. Suppose thatT is a repetitive tiling ofR2. Let r > 0, Pr = [Br (0)]T

and create thelocator set

Lr = {q ∈ R2 such that there existsP ⊂ T with Pr = P − q}.
Let R(r ) be the repetitivity radius ofPr so that every ball of radiusR(r ) in T contains a
translate ofPr . Thederived Voronoı̈ tiling Tr has a tiletq for eachq ∈ Lr with support

supp(tq) = {x ∈ R2: |q − x| ≤ |q′ − x| for all q′ ∈ Lr };
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tq is labeled by the translational equivalence class of the patch [B2R(r )(q)]T . Thederived
Voronoı̈ family is defined byF(T ) = {Tr : r > 0}.

Given an expanding similitudeϕ: R2 → R2, we say a family of tilingsF is
ϕ-finite if there existS1, . . . ,SM inF so that for anyT ∈ F , there is ani ∈ {1, . . . ,M}
and aj ∈ Z+ with T = ϕ jSi . (Recall that we identify two tilings if they are equal up to
a one-to-one correspondence between the label sets.)

3. Results

Recall that all tilings considered in this paper are assumed to be repetitive.

Theorem 3.1. Let T be a pseudo-self-similar tiling of the plane with expansionϕ.
Then for any k∈ N sufficiently large there exists a tilingT ′ which is self-similar with
expansionϕk, such thatT is MLD withT ′. Moreover, all the tiles ofT ′ are topological
disks.

This settles a conjecture of E. A. Robinson (personal communication). Using the
methods of [14], we deduce from Theorem 3.1 the following result which was conjectured
in [14].

Theorem 3.2. A nonperiodic, repetitive tiling ofR2 is pseudo-self-similar if and
only if its derived Voronöı family isψ-finite for an expanding, orientation-preserving
similitudeψ .

Theorem 3.1 also allows us to extend many of the results available for self-similar
tilings to the case of pseudo-self-similar tilings.

Corollary 3.3. Suppose thatT is a pseudo-self-similar tiling ofR2 with expansionϕ.
Then

(i) T is linearly repetitive;
(ii) if T is nonperiodic, then it is MLD withϕT .

This corollary follows from Theorem 3.1 above and Lemma 2.3 and Theorem 1.1 of
[19].

A complex numberζ is called acomplex Perron numberif it is an algebraic integer
whose Galois conjugates, other thanζ , are all less than|ζ | in modulus.

Corollary 3.4. Suppose thatT is a pseudo-self-similar tiling of the plane with expan-
sionϕ corresponding to the multiplication by a complex numberζ . Thenζ is a complex
Perron number.

Proof. By Theorem 3.1 and Thurston’s characterization of expansion constants for
self-similar tilings [20, Theorem 10.1],ζ k is Perron for allk sufficiently large. However,
this implies thatζ itself is Perron, see Lemma 5 of [12].
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Combining Theorem 3.1 with Corollary 2.2 of [14] and the results of [18], one obtains
a wealth of information about translation dynamical systems associated with pseudo-
self-similar tilings. For instance, every such tiling dynamical system is uniquely ergodic
but not strongly mixing. If the complex expansion constantζ is a complex Pisot number
(i.e., all its Galois conjugates, other thanζ , are less than one in modulus), then the
associated tiling dynamical system is not weakly mixing.

4. Proof of Theorem 3.1

Any sufficiently well-behaved tilingS has a well-definedboundary graph ∂S. For
convenience, we assume in the definition of this graph that the supports of allS-tiles are
convex polytopes. The boundary graph∂S hasverticesgiven by the points inR2 which
intersect supports of three or more tiles andedgesgiven by the connected sets inR2

which intersect supports of exactly two tiles. The graph∂S is connected, and we denote
the vertex and edge sets byV(∂S) andE(∂S), respectively.

Lemma 4.1. It is enough to prove Theorem3.1for tilings with the following additional
properties:

the supports of allT -tiles are convex polygons, (4.1)

every vertex of the boundary graph∂T has degree3. (4.2)

Proof. Fix r > 0 and consider the derived Vorono¨ı tiling Tr , as in Definition 2.10. It
is proved in 4.2 of [14] thatTr is MLD with T , so we also have thatϕT is MLD with
ϕTr . SinceT is LD from ϕT , and LD is a transitive relation, we obtain thatTr is LD
from ϕTr .

It is well known that the Vorono¨ı tiling has tiles that are convex polytopes intersecting
along whole faces (sides in our case). Some vertices may have degree larger than 3, so
for every vertexv with more than three edges going out, we create a new tile. We find
a > 0 less than one-third of the shortest edge ofTr and put new vertices at the distance
a of v on every edge going out ofv. We then connect them to get a closed convex curve
and delete everything inside (the pointv and the line segments going out of it). We
obtain a new tile with convex support. We enlarge the label set by addingnew labels
that are in one-to-one correspondence with the translational equivalence classes of the
patches [v]Tr .

It is clear that now every vertex has degree 3 and the supports of other tiles remain
convex. Denote the new tiling bỹT . Observe that̃T is MLD with Tr since this procedure
is reversible. Similarly,ϕT̃ is MLD with ϕTr . Thus,T̃ is a pseudo-self-similar tiling
with all the desired properties, and the lemma follows.

The key step in the proof of Theorem 3.1 is the construction of the function9

described in the next proposition. This map takes the graph ofT and “redraws” the
edges by approximating them with paths in the graph ofϕ−k ∂T .
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Denote by| · | the arc length measure on∂T ; this will be well defined for tilings
satisfying (4.1). LetdM = dM(T )= sup{diam(supp(T)): T ∈ T }, which is finite by FLC.

Proposition 4.2. LetT be a pseudo-self-similar tiling with expansion mapϕ satisfying
(4.1) and (4.2), and let ε > 0. Then for all k ∈ N sufficiently large there exists a
continuous injective map9: ∂T → ∂(ϕ−kT ) = ϕ−k ∂T which takes edges in∂T onto
unions of edges ofϕ−k ∂T and which satisfies:

(i) For all x ∈ ∂T , |x −9(x)| < ε.
(ii) There isρ ∈ (0,1) such that for any e∈ E(∂T ) and` ∈ 9(e) ∩ E(∂(ϕ−kT )),

the restriction9|9−1(`) is linear and|9−1(`)| ≤ ρ|e|.
(iii) There is R> 0 such that9 is LD fromT with a radius R.

Next we deduce Theorem 3.1, postponing the proof of the proposition to the next
section. Fixk, with λk > 2, and9, given by the proposition. Let

9(n) = ϕ−nk(ϕk9)n for n ≥ 1. (4.3)

Note that9 = 9(1). The map9(n): ∂T → R2 is well defined sinceϕk9(∂T ) ⊂ ∂T .
It is clear that9(n) are all continuous and injective. We have for alln ≥ 1 andx ∈ ∂T :

|9(n)(x)−9(n+1)(x)| = |ϕ−nk(ϕk9)n(x)− ϕ−(n+1)k(ϕk9)n+1(x)|
= |ϕ−nk((ϕk9)n(x)−9(ϕk9)n(x))| ≤ λ−nkε, (4.4)

by Proposition 4.2(i), sinceϕ is a similitude with expansion sizeλ. This implies that
the sequence9(n) converges uniformly to a continuous function9∞: ∂T → R2, and,
moreover,

|x −9∞(x)| ≤ ε

1− λ−k
< 2ε for all x ∈ ∂T . (4.5)

By the definition of9(n) we have9(n+1) = ϕ−k9(n)ϕk9, hence

9∞ = ϕ−k9∞ϕk9. (4.6)

This has several useful consequences. First, observe that

ϕk(9∞(∂T )) ⊂ 9∞(∂T ). (4.7)

Second, we claim that9∞ is injective, provided thatε > 0 is sufficiently small. Indeed,
suppose thatx, y ∈ ∂T with9∞(x) = 9∞(y). By (4.5) we have that|x− y| ≤ 4ε. We
see from (4.6) that it is also true that9∞((ϕk9)nx) = 9∞((ϕk9)ny) for all n ∈ N, and
so it must be that|(ϕk9)nx − (ϕk9)ny| ≤ 4ε as well. Assume thatε ∈ (0,1) is such
that

4ε < min{dist(e1,e2): e1,e2 ∈ E(∂T ), e1 ∩ e2 = ∅}.
Then (ϕk9)nx and (ϕk9)ny are always on the same edge or adjacent edges in∂T .
Denote9̃ := ϕk9. Suppose first that̃9nx and 9̃ny are on the same edgè0. Then
9̃n−1x and9̃n−1y are on some edgè1 of ∂T , the points9̃n−2x and9̃n−2y are on the
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same edgè2 of ∂T , etc., until we get thatx and y are on some edgèn of ∂T . By
Proposition 4.2(ii),9̃n|`n is linear and|x − y| ≤ ρn|`n| ≤ ρn max{|e|: e ∈ E(∂T )}. If
9̃nx and9̃ny lie on adjacent edges, we get|x − y| ≤ 2ρn max{|e|: e ∈ E(∂T )} by a
similar argument, considering the common vertex of these edges. In either case, letting
n→∞, we obtain thatx = y. This proves that9∞ is injective.

Now we are ready to define the tiling which we will prove is self-similar. Since9∞

is injective, for each tileT = (A, l ) ∈ T the image9∞(∂A) is a Jordan curve. By the
Jordan curve theorem,9∞(∂A) separates the plane into precisely two components of
which9∞(∂A) is the common boundary. Denote the closure of the bounded component
by A′. It is homeomorphic to the closed disk and will be the support of a new tile. For
future reference note that

A′ ⊂ N2ε(A) (4.8)

by (4.5). Next we give a labeling to this tile. Recall thatR is the radius of LD of9 from
T . Clearly,9 is LD from T with any larger radius, so we can chooseR as large as we
wish without loss of generality. Assume that

R> (r + 2λk + dM + 2)/(λk − 1), (4.9)

wherer is the radius of LD ofϕkT ontoT . The labell ′ of A′ is defined as the translational
equivalence class of the patch [NR(A)]T with the marked tileT (see Definition 2.2).

Claim. T ′ := {T ′ = (A′, l ′): T ∈ T } is a tiling ofR2.

Proof. Denote supp(T ) = {supp(T): T ∈ T }. For any A ∈ supp(T ), by (4.5) at
least a portion of9∞(∂T \∂A) lies in the unbounded component ofR2\9∞(∂A). Since
∂T \∂A is connected, so is9∞(∂T \∂A). Thus by the injectivity of9∞ we have that
9∞(∂T \∂A) lies in the unbounded component ofR2\9∞(∂A). This implies that for
any B ∈ supp(T ), B 6= A, we have int(A′) ∩ int(B′) = ∅.

It remains to verify that supp(T ′) :=⋃ {A′: A ∈ supp(T )} = R2. Let A ∈ supp(T ).
By the Jordan–Schoenflies theorem (see Theorem 9.25 of [8]), the homeomorphism
9∞|∂A: ∂A → ∂A′ can be extended to the homeomorphismhA: A → A′. Then the
functionh: R2 → R2 given byh(x) := hA(x) for x ∈ A, is well-defined, continuous,
and one-to-one (here we use that int(A′) ∩ int(B′) = ∅ for A 6= B in supp(T )). We
also have|h(x) − x| ≤ dM + 2ε by (4.8). Since a one-to-one continuous mapping
of a compact space is a homeomorphism,h restricted to any compact subset ofR2

is a homeomorphism on its image. Letz ∈ R2, and consider the ballBt (z) for some
t > dM+2ε. Then the imageh(Bt (z)) is simply connected and the image of the boundary
h(∂Bt (z))must contain in its bounded component the pointz. Thusz is in the image of
h, so it is in the support of at least oneT ′-tile. Thus we have shown thatT ′ tilesR2, as
desired.

Next we show that the tilingT ′ is LD from T using the following lemma.

Lemma 4.3. Let ε ∈ (0,1), k ∈ N, 9, R be as in Proposition4.2,with R satisfying
(4.9),and let8 be another continuous function from∂T toR2, which is LD fromT with
the radius R. Then8̃ := ϕ−k8ϕk9 is LD fromT with the same radius R.
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Proof. Suppose thatx, y ∈ ∂T and

[BR(x)]
T = [BR(y)]

T + (x − y). (4.10)

Applying ϕk yields

[Bλk R(ϕ
kx)]ϕ

kT = [Bλk R(ϕ
ky)]ϕ

kT + ϕk(x − y).

Therefore, by Lemma 2.5,

[Bλk R−r (ϕ
kx)]T = [Bλk R−r (ϕ

ky)]T + ϕk(x − y).

In view of Proposition 4.2(i), this implies

[Bλk R−r−λkε(ϕ
k9(x))]T = [Bλk R−r−λkε(ϕ

k9(x)+ ϕk(y− x))]T + ϕk(x − y).

On the other hand, since9 is LD from T with the radiusR, (4.10) implies9(x) =
9(y)+ (x − y) and hence

ϕk9(x) = ϕk9(y)+ ϕk(x − y). (4.11)

Combined with the previous equation, this yields

[Bλk R−r−λkε(ϕ
k9(x))]T = [Bλk R−r−λkε(ϕ

k9(y))]T + (ϕk9(x)− ϕk9(y)).

Sinceλk R− r − λkε > R by (4.9), we can use that8 is LD from T with the radiusR
and (4.11) to conclude that

8ϕk9(x) = 8ϕk9(y)+ ϕk(x − y).

Applying ϕ−k gives that̃8 is LD from T with the radiusR, as desired.

Now we apply Lemma 4.3 to the function8 = 9(n); then8̃ = 9(n+1). We get by
induction that9(n) are all LD fromT with the radiusR. Passing to the limit yields that
9∞ is LD from T with the radiusR. We are going to show thatT ′ is LD from T with
the radiusR+ dM + 2ε. Suppose that

[BR+dM+2ε(x)]
T = [BR+dM+2ε(y)]

T + (x − y). (4.12)

Let T ′1 = (A′1, l
′) ∈ [x]T

′
, where∂A′1 = 9∞(∂A1) for someT1 = (A1, l ) ∈ T . The

Hausdorff distance betweenA1 andA′1 is less than 2ε by (4.5). By (4.12),

T2 := (A2, l ) := T1+ (y− x) ∈ T . (4.13)

We haveNR(A1) ⊂ BR+dM+2ε(x). Thus by (4.12), [NR(A1)]T = [NR(A2)]T + (x− y)
and A1 = A2 + (x − y), which implies9∞(∂A1) = 9∞(∂A2) + (x − y) since9∞

is LD from T with the radiusR. Therefore,A′1 = A′2 + (x − y) and y ∈ A′2. By
(4.12) and (4.13), the patches with marked tiles([NR(A1)]T , T1) and([NR(A2)]T , T2)

are translationally equivalent, and henceA′2 has the same label asA′1. This proves that
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T ′2 = (A′2, l
′) ∈ [y]T

′
and concludes the proof thatT ′ is LD from T with the radius

R+ dM + 2ε.
Now we show thatT is LD from T ′ with the radius 2ε. Suppose that

[B2ε(x)]
T ′ = [B2ε(y)]

T ′ + (x − y). (4.14)

Let T1 = (A1, l ) ∈ [x]T and letT ′1 = (A′1, l
′) be the correspondingT ′-tile. Then

A′1∩B2ε(x) 6= ∅by (4.5), henceT ′1 ∈ [B2ε(x)]T
′
and (4.14) implies thatT ′2 = (A′2, l ′) :=

T ′1+(y−x) ∈ T ′. LetT2 be theT -tile corresponding toT ′2. By the definition ofT ′-labels,
the patches with marked tiles([NR(A1)]T , T1) and([NR(A2)]T , T2) are translationally
equivalent, hence

A1 = A2+ g and [NR(A1)]
T = [NR(A2)]

T + g (4.15)

for someg ∈ R2. Since9∞ is LD from T with the radiusR, we conclude thatA′1 =
A′2+ g, but we already know thatA′1 = A′2+ (x− y), henceg = x− y. We have shown
thatT1 = T2+ (x − y) andT2 ∈ [y]T , concluding the proof thatT is LD from T ′.

Lastly, we show thatT ′ is a self-similar tiling ofR2 with expansionϕk. By (4.7), for
anyT ′-tile (A′, l ′), the Jordan curveϕk(∂A′) is a subset of∂T ′. The interior of every
T ′-tile must lie entirely in one of the two components ofR2\ϕk(∂A′), thereforeϕk(A′) is
the support of aT ′-patch [int(ϕk(A′))]T

′
. LetT ′1 = (A′1, l ′) andT ′2 = (A′2, l ′) beT ′-tiles

with the same label. According to Definition 2.8, we must show that ifA′2 = A′1 − g′

for someg′ ∈ R2, then

[int(ϕk(A′2))]
T ′ = [int(ϕk(A′1))]

T ′ − ϕkg′. (4.16)

SinceT ′1 andT ′2 have the same label, we know that (4.15) holds for someg ∈ R2, where
Ai is such that∂A′i = 9∞(∂Ai ) for i = 1,2. From the fact that9∞ is LD from T with
the radiusR we conclude thatA′2 = A′1− g henceg′ = g. Now (4.15) implies

[Nλk R(ϕ
k A2)]

ϕkT = [Nλk R(ϕ
k A1)]

ϕkT − ϕkg.

SinceT is LD from ϕkT with the radiusr , we have from Lemma 2.5 that

[Nλk R−r (ϕ
k A2)]

T = [Nλk R−r (ϕ
k A1)]

T − ϕkg.

Using thatT ′ is LD fromT with the radiusR+dM+2ε andλk R−r−R−dM−2ε ≥ 2λkε

by the choice ofR (see (4.9)), we conclude that

[N2λkε(ϕ
k A2)]

T ′ = [N2λkε(ϕ
k A1)]

T ′ − ϕkg′.

Sinceϕk A′i ⊂ N2λkε(ϕ
k Ai ), i = 1,2, by (4.8) andϕk A′2 = ϕk A′1 − ϕkg′, this implies

(4.16) as desired.
It remains to note thatT ′ has FLC and is repetitive since these properties are preserved

by MLD. Thus we have constructed the tilingT ′ which is MLD fromT and which is a
self-similar tiling ofR2, finishing the proof of Theorem 3.1.
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5. Proof of Proposition 4.2.

For anya,b ∈ R2, denote by [a,b] the line segment froma to b. Recall thatdM is the
largest diameter of a support of aT -tile andNr (A) denotes the closed neighborhood of
A of radiusr .

Lemma 5.1. Let T be an FLC tiling satisfying(4.1) and a,b ∈ V(∂T ). Then there
exists a continuous, one-to-one mappingζ : [0,1]→ ∂T such thatζ(0) = a, ζ(1) = b,
ζ([0,1]) ⊂ NdM ([a,b]),

|ζ(t)− a− t (b− a)| ≤ 5dM for all t ∈ [0,1], (5.1)

and for anỳ ∈ ζ([0,1]) ∩ E(∂T ) the restrictionζ |ζ−1(`) is linear.

Note. There are several ways to prove this rather straightforward statement. We do not
claim that the constant 5 is optimal.

Proof. For x, y ∈ R2 let G[x, y] denote the union of boundaries of thoseT -tiles
whose supports intersect [x, y]. Clearly,G[x, y] is connected; we can consider this set
as a connected subgraph of∂T . Suppose first that|a − b| ≤ 4dM . Then we consider
the shortest path connectinga andb in G[a,b]. It is simple, and any piecewise linear
parameterizationζ of this path will have the desired properties.

Next suppose that|a− b| > 4dM . We can choose pointsa0 = a, a1, . . . ,an = b, so
thatai < ai+1 in the natural order on [a,b] and

2dM < |ai − ai+1| ≤ 3dM for i = 0, . . . ,n− 1.

Fix a′i ∈ V(∂T ) ∩ [ai ]T for i = 1, . . . ,n − 1 and leta′0 = a, a′n = b. Thena′i and
a′i+1 are vertices ofG[ai ,ai+1]. Let 0i be the shortest path connectinga′i anda′i+1 in

G[ai ,ai+1]. We have that0i is simple and0i ⊂ NdM ([ai ,ai+1]). The union
⋃n−1

i=0 0i

connectsa to b but it may fail to be a simple path, so we have to do some “pruning.”
Observe that

0i−1 ∩ 0i ⊂ NdM ([ai−1,ai ]) ∩ NdM ([ai ,ai+1]) = BdM (ai ),

and the neighborhoodsBdM (ai ) are disjoint for differenti ’s by construction.
Since0i is simple, it has a linear ordering witha′i being the smallest point anda′i+1

being the largest point. Fori = 1, . . . ,n − 1 let a′′i be the smallest point in0i−1 such
thata′′i ∈ 0i . Thena′′i is a vertex inBdM (ai )∩ V(∂T ) and taking the union of edges less
thana′′i in 0i−1 and edges greater thana′′i in 0i yields a simple path. Doing this for alli
yields a simple path0 connectinga andb in NdM ([a,b]).

Leta′′0 = a,a′′n = b, and defineϕ: [a,b] → 0 to be a continuous one-to-one mapping
such thatϕ([ai ,ai+1]) is mapped to the part of0 from a′′i to a′′i+1, for i = 0, . . . ,n− 1,
andϕ is linear on the preimage of each edge. Then

|ϕ(x)− x| ≤ dM + |ai − ai+1| ≤ 4dM for all x ∈ [ai ,ai+1].

The functionζ(t) = ϕ(a + t (b − a)) has all the desired properties and the proof is
complete.
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Fig. 2. The choice ofK .

Proof of Proposition4.2. We can takeε as small as we wish, so we assume thatε is less
than the minimal distance between the vertices of∂T . By FLC, we can chooseK ≥ 10
so that for any two edges̀1, `2 with a common vertexa,

Nε/K (`1) ∩ Nε/K (`2) ⊂ Bε/4(a), (5.2)

as seen in Fig. 2. Choosek ∈ N so that

λ−kdM < ε/(2K ) ≤ ε/20. (5.3)

For each vertexa ∈ V(∂T ) choose a vertexa′ ∈ V(ϕ−k∂T ) neara, so that|a′ − a| ≤
λ−kdM . Using thatϕ−kT is LD from T we make sure that the choice ofa′ depends only
on aT -patch of some fixed radius arounda (more precisely, there exists anR> 0 such
that for anya,b ∈ V(∂T ), if [ BR(a)]T = [BR(b)]T + (a− b) thena′ = b′ + (a− b).
We can takeR as the radius of LD ofT ontoϕ−kT ).

Next consider an edgè= [a,b] ∈ E(∂T ). Apply Lemma 5.1 to the tilingϕ−kT to
find a simple path0(`) ⊂ Nλ−kdM ([a

′,b′]), with a parameterizationζ`: [0,1] → 0(`)

satisfying

|ζ`(t)− a′ − t (b′ − a′)| ≤ 5λ−kdM for t ∈ [0,1],

which implies

|ζ`(t)− a− t (b− a)| ≤ 6λ−kdM for t ∈ [0,1] (5.4)

by the choice ofa′,b′. The same thing is done for all edges, again using LD to make sure
that the choice of0(`) andζ` depends only on aT -patch of some fixed radius around
the edge. Since we are consideringdirected edgeshere, we also use LD to ensure that

if ` = [a,b] and ¯̀ := [b,a], then ζ`(t) = ζ ¯̀(1− t) and 0( ¯̀) = 0(`).
(5.5)

Observe that

0(`) ⊂ Nλ−kdM ([a
′,b′]) ⊂ N2λ−kdM ([a,b]) ⊂ Nε/K ([a,b])

by (5.3). If`1 and`2 are two edges with a common vertexa, then0(`1)∩0(`2) ⊂ Bε/4(a)
by (5.2).
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Recall that each vertex of∂T has degree 3 by (4.2). Fix a vertexa and let`1, `2, `3

be the edges coming out of it. One can “prune” some edges from0(`1)∪0(`2)∪0(`3)

in order to make this union into a tree with three branches stemming from a vertex in
ϕ−k ∂T neara′. We show how to do it below (but note that there are many alternatives).

Let ζi = ζ`i for i ≤ 3. Recall thatζi (0) = a′ for i ≤ 3. Let

t2 = max{t ∈ [0,1]: ζ2(t) ∈ 0(`1)}
and consider0′(`2) = ζ2([t2,1]), so that0(`1) and0′(`2) intersect in a single point.
Next, let

t3 = max{t ∈ [0,1]: ζ3(t) ∈ 0(`1) ∪ 0′(`2)}
and consider0′(`3) = ζ3([t3,1]), so that0′(`3) intersects in a single point with0′(`2)∪
0(`1). Finally, let

t1 = min{t ∈ [0,1]: ζ1(t) ∈ 0′(`2) ∪ 0′(`3)}
and consider0′(`1) = ζ1([t1,1]), eliminating a possible “dead branch” (see Fig. 3). It is
easy to see that0′a := 0′(`1)∪0′(`2)∪0′(`3) is a subgraph ofϕ−k ∂T homeomorphic
to `1 ∪ `2 ∪ `3. It has a unique vertex of degree 3 which we denoteã; a typical scenario
is depicted in Fig. 3. It is clear thatã ∈ V(ϕ−k∂T ) ∩ Bε/4(a) and all the modifications
occurred inBε/4(a). These neighborhoods for different verticesa are disjoint by the
choice ofε. We make sure that this procedure is performed the same way near every
vertex depending only on aT -patch of some fixed radius around the vertex. Let0′ =⋃

a∈V(∂T ) 0
′
a. This is a subset ofϕ−k ∂T homeomorphic to∂T , and we define the map

9 as a specific homeomorphism from∂T to 0′.
Let ` = [a,b] ∈ E(∂T ) and letγ (`) be the simple path in0′ connectingã with

b̃ obtained from0(`) by the above described modification neara and b. Note that
0(`)∩ γ (`) forms the bulk ofγ (`) by construction. Equipγ (`) with the linear ordering
makingã the smallest element (thus, we consider` as a directed edge). Let

a′′ = min[γ (`) ∩ V(ϕ−k∂T )\Bε/4(a)],
that is,a′′ is the first vertex onγ (`)outsideBε/4(a). Considerγ (`,a′′) = {x ∈ γ (`): x ≤
a′′}, the initial part ofγ (`) from ã to a′′. Thenγ (`,a′′) is nonempty andγ (`,a′′) ⊂

Fig. 3. Defining0′(`i ) andã.
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Bε/3(a) sinceλ−kdM < ε/(2K ) < ε/3− ε/4. Sincea′′ 6∈ Bε/4(a), we havea′′ ∈ 0(`)
and there ist`,a ∈ (0,1)such thatζ`(t`,a) = a′′. When we do this procedure for¯̀ = [b,a],
we similarly getb′′ ∈ γ ( ¯̀) ∩ 0( ¯̀) = γ (`) ∩ 0(`) nearb andt ¯̀,b ∈ (0,1). Now let

9(a+ t (b− a)) = ζ`(t) for t`,a ≤ t ≤ t ¯̀,b. (5.6)

This is unambiguous due to (5.5). Next we define9 on [a,a + t`,a(b − a)] to be a
continuous one-to-one map ontoγ (`,a′′) such that9(a) = ã, 9(a+ t`,a(b−a)) = a′′,
and9 is linear on the preimage of every edge inE(∂ϕ−kT ). Again we make sure that
everything depends only on aT -patch of some fixed radius around the edge, which is
possible sinceϕ−kT is LD from T . Notice that9 will be defined on the whole of̀,
since the part of the edge nearb is taken care of when we consider¯̀. Since∂T is a union
of its edges,9: ∂T → 0′ is now completely defined.

We claim that9 has all the desired properties. We check condition (i) of Proposi-
tion 4.2. By (5.4) and (5.3) we have that|9(x)− x| < ε on the part of the edge where
(5.6) applies. Letx = a + t (b− a) ∈ `, with 0 ≤ t ≤ t`,a. Sincea′′ = ζ`(t`,a), we
have by (5.4) that|a′′ −a− t`,a(b−a)| ≤ 6λ−kdM , and so the triangle inequality yields
|t`,a(b− a)| − |a′′ − a| ≤ 6λ−kdM . Sincea′′ ∈ Bε/3(a), by (5.3),

|x − a| = |t (b− a)| ≤ |t`,a(b− a)| ≤ ε/3+ 6λ−kdM ≤ ε/3+ 6ε/20< 2ε/3.

On the other hand,9([a,a+ t`,a(b− a)]) = γ (`,a′′) ⊂ Bε/3(a), so|9(x)− a| ≤ ε/3
and hence|9(x)−x| < ε. This concludes the verification of Proposition 4.2(i). It is clear
that the preimage of anỳ∈ 9(∂T ) is a proper subset of the edgee∈ ∂T it is inside; by
the finiteness property of our construction we can chooseρ as the largest proportion of
|9−1(`)| to |e|; clearly,ρ < 1. By construction,9 is linear on the preimage of every edge
in E(ϕ−k∂T ). It remains to note that9 is LD from T since our construction depended
only on aT -patch of fixed radius in a translation-invariant way.

6. Proof of Theorem 3.2

Recall the construction of the derived Vorono¨ı family F(T ) from Definition 2.10. We
restate Theorem 3.2:

A nonperiodic, repetitive tiling ofR2 is pseudo-self-similar if and only if its derived
Voronöı family isψ-finite for an expanding, orientation-preserving similitudeψ .

Proof. The sufficient condition is proved in Theorem 5.2 of [14]. We show that ifT is
a nonperiodic pseudo-self-similar tiling with expansion mapϕ, then the familyF(T ) is
ϕm-finite for somem ∈ N.

We use Theorem 3.1 to obtain an integerk ≥ 1 and a self-similar tilingT ′ with
expansion mapϕk that is MLD with T . Suppose thatR > 0 is chosen to be the radius
of MLD between the two tilings, and letρ be the radius of MLD ofϕkT ′ with T ′ (the
latter are MLD by [19] sinceT ′ is nonperiodic).

We use a “core argument” like that used in [14] to show that every tiling inF(T ) is the
same, up to similarity, as one given by a finite list of “extensions” that come fromT ′. The
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core is given byE = [0]T
′
, which will be present inside any central patchP′r = [Br (0)]T

′
.

Write the locator set for a patchP ⊂ T ′ asL′(P) = {q ∈ R2 such that there existsP′ ⊂
T ′ with P = P′ − q}. We establish that there is a list ofT ′-patchesF1, F2, . . . , Fm and
vectorsq1,q2, . . . ,qm so that for allr sufficiently large there existi1, . . . , i n, l ∈ Z with

Lr = ϕlk

(
n⋃

j=1

L′(Fi j )+ qi j

)
(6.1)

and that the tiles ofTr can be relabeled (in a one-to-one fashion) by the elements of
2{i1,...,in}.

Fix r ≥ R+ ρ, and find thel ∈ N such that

R+
l∑

i=0

λikρ ≤ r < R+
l+1∑
i=0

λikρ, (6.2)

whereλ = ‖ϕ‖. (We do not need to considerr < R+ ρ, as the number of derived
Voronoı̈ tilings with suchr is finite by FLC.)

Now Pr = [Br (0)]T forcesP′r−R = [Br−R(0)]T
′
in the sense that for anyx ∈ R2

such thatPr + x appears inT , we have thatP′r−R + x appears inT ′. Note that this
impliesLr ⊂ L′(P′r−R). TheT ′-patch P′r−R in turn forces the centralϕkT ′-patch of
radiusr −R−ρ, which forces the centralϕ2kT ′-patch of radiusr −R−ρ−λkρ, and so
on until finally theϕlkT ′-patch ofBη(0) for someη ≥ 0 is determined. In particular, the
T -patchPr forces the core patchϕlk(E) in ϕlkT ′, and so we have thatLr ⊂ ϕlk(L′(E)).

We can put an upper bound on the repetitivity radiusR(r ) of theT -patchPr as a
constant multiple ofr sinceT is linearly repetitive by Corollary 3.3. So we choose a
numberA > 0 so thatR(r ) ≤ λlk A for all r . We use this number to define a radiusM
for the extensions as follows:

λlk M − R≥ 2λlk A ≥ 2R(r ) for all l ∈ N. (6.3)

The extensionsF1, F2, . . . , Fn are defined to be representatives of the translation equiv-
alence classes of [BM(q)]T

′
for all q ∈ L′(E). Let q1,q2, . . . ,qm be the elements of

L′(E) with Fi − qi ∩ E = E. Note that

L′(E) = (L′(F1)+ q1) ∪ (L′(F2)+ q2) ∪ · · · ∪ (L′(Fm)+ qm). (6.4)

Since we know thatLr ⊂ ϕlk(L′(E)), we can examine eachϕlk(Fi ) to determine whether
or not it forces a copy ofPr inT . SinceFi = [BM(qi )]T

′
, theϕlkT ′-patchϕlk Fi forces the

patch [Bλlk M(ϕ
lkqi )]T

′
(here we use thatT ′ is self-similar, so anyϕkT ′-patch subdivides

in a prescribed way into aT ′-patch), which in turn forces the patch [Bλlk M−R(ϕ
lkqi )]T .

By (6.3),λlk M − R ≥ 2R(r ), and henceϕlk Fi not only determines whether there is
a copy ofPr at ϕlkqi , but if so, it also determines the label of the tiletϕlkqi in Tr . Let
i1, . . . , i n be the indices which correspond to extensions that forcePr . We see now that
(6.1) holds for this choice of indices, and the labeling of theTr -tiles is also determined.
(Note that several distinct patches [Bλlk M(ϕ

lkqi j )]
T ′ may force [B2R(r )(ϕ

lkqi )]T , while
the translational equivalence class of the latter is the label oftϕlkqi ∈ Tr . We can relabel by
the subset of{i1, . . . , i n} consisting of thosei j which force [B2R(r )(ϕ

lkqi )]T ; clearly this
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is a one-to-one relabeling.) Sinceϕlk is a similitude, the Vorono¨ı tilings corresponding
to any locator setL and its expansionϕlkL areϕlk-similar, and there are only a finite
number of ways the relabelings could have been chosen for tiles inTr . Since the choice
of extensions was independent ofr , we see that the familyF(T ) is ϕlk-finite.

7. Concluding Remarks

1. We believe that our results generalize to tilings ofRd whend > 2. Derived Vorono¨ı
tilings exist in higher dimensions, and they keep their convenient geometric and com-
binatorial properties, but the addition of more dimensions brings more elements to the
combinatorial structure than the usual vertices, edges, and facets. It is probably possible
to extend the algorithm which redraws the edges of tiles to a redrawing of higher-
dimensional tile boundaries, but the details can get quite involved.

2. It would be interesting to extend our results to the case of tilings in which rotations
of prototiles are allowed along with translations. Of course, if only rational (moduloπ )
rotations occur, we can increase the number of prototiles and still deal with translational
equivalence classes. Radin and others have contributed to the theory of substitution tilings
in which prototiles occur in infinitely many orientations; see [15], [16], and references
therein.

Note that FLC would now have to be defined up to translation and rotation, and the
definition of LD would have to be modified. LetG be the group of Euclidean motions of
the plane preserving orientation;G is generated by translations and rotations. We would
say thatT2 is LD from T1 if there existsR> 0 such that for everyx, y ∈ R2 andg ∈ G
with g(y) = x,

[BR(x)]
T1 = g [BR(y)]

T1 ⇒ [x]T2 = g [y]T2.

In the definition of a self-similar tiling (Definition 2.8) replace the last condition by

(ii ′) if T ′ = g(T) for someg ∈ G, thenP(ϕT ′) = (ϕgϕ−1)P(ϕT).

Much of the proof of Theorem 3.1 extends to this setting, but there are some difficulties,
so the question remains open. Note that throughout the paper we referred to a number
of results on tilings in translational-FLC setting, among them the characterization of
expansion constants for self-similar tilings, the (absence of) mixing results for asso-
ciated dynamical systems, the unique composition property, and the implicationfinite
Voronöı family⇒pseudo-self-similar. None of these is known in the more general setting
discussed here.
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