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Abstract 
General form of continuous probability distribution is characterized through 
conditional expectation of contrast of order statistics, conditioned on a non-
adjacent order statistics and some of its deductions are discussed. 
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1. Introduction 
 

Let nXXX ,,, 21 K  be a random sample of size n  from a continuous population 
having the probability density function )()( xfpdf  with the distribution function 

)()( xFdf  over the support ),( βα  and let nnnn XXX ::2:1 K≤≤  be the 
corresponding order statistics. Then the conditional pdf  of nsX :  given 

,1,: nsrxX nr ≤<≤= is [4]  
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Conditional expectations of order statistics are extensively used in characterizing 
the continuous probability distributions. For a detailed survey one may refer to [1, 
3, 6, 7, 8, 9, 10 and 11] amongst others. Distributions have been characterized 
using conditional spacing conditioned on order statistics by Navarro et al. [5] and 
Khan et al. [2]. We in this paper have tried to characterize distributions through 
contrast of conditional expectation of order statistics, extending the earlier known 
results.  

 

2. Characterization theorem  
 
Theorem: 2.1: Let X  be an absolutely continuous random variable with the 

)(xFdf and the )(xfpdf on the support ),( βα , where α  and β  may be finite or 
infinite. Then for ,1 nsrm ≤<<≤  

 
1,

)(
11]|)}([{

1

:: −=
−

== ∑∑∑
−

===
il

jn
c

a
xXXhEc

l

mj

s

ri
inmnl

s

ri
i

  
i,           (2.1) 

if and only if  

  )(1)( xahexF −−= , ),( βα∈x , 0>a                                                                  (2.2) 

where ic   are  real numbers  ,sir ≤≤  satisfying 0=∑
=

s

ri
ic ,  0≠ic    for some i  

and )(xh is a monotonic and differentiable function of x  such that )(xF  is a df . 

Proof: First we will prove (2.2) implies (2.1). We have [1] 
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hence the ‘if’ part. 
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or, 
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  Integrating left hand side of (2.4) by parts treating )()](1[ yfyF in−− for 
integration and 1)]()()[( −−− mixFyFyh  for differentiation, we get 
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We can write equation (2.5) as  
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Differentiating (2.7) )( mi − times both sides ,.. xtrw  we get 
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That is,  
                    )](exp[1)( xahxF −−=    

and hence the Theorem. 

Remark 2.1:  Putting  1=sc   and 1−=rc    in the Theorem 2.1, we get 
characterizing results as obtained by Khan et al. [2] and at rm =  , we get the 
result as obtained by Khan and Abouammoh [1]. 
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Table 2.1:  Examples based on the distribution function )(1)( xhaexF −−= , 0>a  

Distribution    )(xF a )(xh  
Exponential xe θ−−1  

∞<< x0  

θ  x  

Weibull pxe θ−−1  
∞<< x0  

θ  px  

Pareto p

a
x −
⎟
⎠
⎞

⎜
⎝
⎛−1  

∞<< xa  

p
⎟
⎠
⎞

⎜
⎝
⎛

a
xlog  

Lomax kx −+− )1(1  
∞<< x0  

k  )1(log x+  

Gompertz 
)]1(exp[1 −−− xeμ

μ
λ  

∞<< x0  
μ
λ  1−xe μ  

Beta of the I 
kind 

px)1(1 −−  
10 << x  

p )1log( x−−  

Beta of the II 
kind 

1)1(1 −+− x  
∞<< x0  

1 )1log( x+  

Extreme 
value I 

]exp[1 xe−−  
∞<<∞− x  

1 xe  

Log logistic 1)1(1 −+− cx  
∞<< x0  

1 )1log( cx+  
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XII 

kcx −+− )1(1  
∞<< x0  

k  )1log( cx+  
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