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CHARACTERIZATION OF (r, s)-ADJACENCY GRAPHS OF
COMPLEXES

MARIANNE GARDNER AND FRANK HARARY

ABSTRACT. The (r, s)-adjacency graph of a simplicial complex K has been defined
as the graph whose nodes are the r-cells of K with adjacency whenever there is
incidence with a common s-cell. The (7, s)-adjacency graphs for r > s have been
characterized by graph coverings by Dewdney and Harary generalizing the result
of Krausz for line-graphs (r = 1, s = 0). We now complete the characterization by
handling the case r < s.

1. Introduction. Let S be a collection of distinct subsets called simplexes of a
nonempty finite set V' whose elements are called nodes. Then K = (¥, S) is a
(simplicial) complex if it satisfies the condition that every nonempty subset of a
simplex x € S is also a simplex.

The dimension of a simplex x in K is r = |x| — 1 and x is called an r-simplex or
sometimes an r-cell. The dimension of a complex K is the maximum dimension of a
simplex in it. A complex of dimension r is called an r-complex. Thus a 1-complex is
a graph which has at least one line. If the graph is totally disconnected, it is, of
course, a O-complex. A pure r-complex is one in which every maximal simplex has
dimension r.

Every complex K has an associated hypergraph whose edges are its maximal
simplexes. Conversely given any hypergraph, we can construct its complex by
including every nonempty subset of an edge as a simplex. Thus an r-complex is
known as an hereditary rank-r hypergraph.

The (r, s)-adjacency graph, r #+ s, of a complex K denoted by L, (K), in analogy
with the standard notation for the line-graph L(G), is the graph whose nodes are
the r-simplexes of K, with two of these nodes adjacent whenever their r-simplexes
are incident with a common s-simplex. Thus if K is a 1-complex, then L,i(K) is its
line-graph.

This concept was first suggested by Griinbaum [6] for s = r — 1 and has been
investigated for r > s by Dewdney and Harary [3], by Bermond, Sotteau, Heyde-
mann, Germa in a series [1], [2], [8], and for s = 0 and s = r — 1 by Gardner [4],
[5] and others.

Let x,, . . ., x, be simplexes of K, with no x; contained in x; for any i #j. Their
induced complex is the subcomplex K’ whose maximal simplexes are the x;.

2. Structural characterization of adjacency graphs. Krausz [9] characterized line-
graphs of 1-complexes by a suitable partition of the edges into complete subgraphs.
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In this statement, condition (i) is redundant because of the partition requirement,
but it is useful for later generalization.

THEOREM A (KRAUSZ). The graph G is a (1, 0)-adjacency graph if and only if the
edges can be partitioned into a family of complete subgraphs G, satisfying:

(i) Each edge is in exactly one G;.

(ii) Each vertex is in no more than two G;.

Griinbaum [6] conjectured that this characterization could be extended to graphs
which are (r, r — 1)-adjacency graphs. Necessary conditions which are not suffi-
cient are given in [2]. When r > s, necessary and sufficient conditions for (r, s)-
adjacency graphs were developed in [3].

THEOREM B (DEWDNEY AND HARARY). The graph G is an (r, s)-adjacency graph
with r > s if and only if there is a family G; of subgraphs of G satisfying the following
three conditions.

(i) Each edge lies in at most r and at least s + 1 of the graphs G,.

(ii) Each vertex lies in at most r + 1 of the graphs G,.

(iii) The intersection of any s + 1 of the graphs G; is either empty or a complete

graph.

The proof, in analogy with that of Krausz for line-graphs, constructs a complex
whose nodes (0-simplexes) are the G; and which has one r-simplex for each node v
of G. The r-simplex corresponding to v contains the O-simplex G; whenever node v
of G is in subgraph G..

A few comments are in order. The complete bipartite graph G = K(2, (*')) is the
(2r — 1, r — 1)-adjacency graph of some complex K. Such a complex K can be
constructed by taking 4r nodes, partitioning them into two sets x and y of size 2r
each and defining the (2r — 1)-simplexes to be x,y and all sets consisting of r
nodes from each of x and y. It is not possible however to cover the edges of G with
a set of complete graphs which satisfies condition (i) of Theorem B. Therefore we
cannot expect a characterization of the Krausz type which contains among the G; a
subset consisting of complete graphs which covers the edges of G.

Bermond, Heydemann and Sotteau [1] defined the s-line-graph of a hypergraph
H, denoted L (H), as the graph whose nodes are the edges of H with two edges
adjacent if their intersection contains at least s nodes. Theorem B characterizes the
(s + 1)-line-graphs of rank-(r + 1) hypergraphs.

In an exact (r, s)-adjacency graph, two adjacent simplexes have a common
s-simplex but not a common (s + 1)-simplex. If (i) is replaced by

(i") Each edge lies in exactly s + 1 of the graphs G, then Theorem B char-
acterizes the exact (r, s)-adjacency graphs.

We now finish the characterization of all (r, s)-adjacency graphs by deriving
conditions for r < s.

THEOREM 1. A graph G is the (r, s)-adjacency graph of a simplicial complex with
r < if and only if the edges of G are covered by a set of complete subgraphs G; of
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s+1

order (;}) which are grouped into subsets S,, . . ., S, such that the G; and S; satisfy
the following conditions.

(i) The intersection of every subset of the G;’s has the form K, where b is a binomial
coefficient of the form ("1}) for some n > r. In this case there are exactly n + 1 sets
S; containing this subset of G;s.

(i) Each G, is in at most s + 1 sets S;.

PROOF. Let G be any graph with isolated nodes u,, . . ., u,. Represent the u; by
node-disjoint r-simplexes, one for each ;. Then G is an (r, s)-adjacency graph if
and only if G — {u,,...,u,} is. Assume without loss of generality that G is
connected.

We will first show that the conditions of the theorem are sufficient. We do this
by constructing a complex K with a maximal simplex x; for each graph G;. For
each G, define disjoint sets T; of cardinality s + 1 — |{S;: G; € S;}|. Set x; = {S;:
G, € §;} U T, Let K be the complex induced by the maximal simplexes x;.

We prove that L (K) = G by induction on ¢ — m, where ¢ is the number of G;’s.
For the induction hypothesis, suppose that there is a one-to-one map from the
nodes that lie in at least m + 1 G;’s onto the r-simplexes of K incident with at least
m + 1 maximal simplexes, that is, s-simplexes. In addition suppose that the map
has the property that a node u is mapped to an r-simplex x, with x =
{(SpoeesSpy) or x={8;,...,8,txps---stq} with ,,,..., 1 €T, for
somei,onlyif S, N --- NS, ={G:u € G}.

Let m = 0. The intersection of all the G,’s is K, with b = (71}). By condition (i),
there are exactly n + 1 S;’s containing all the graphs G; and there are therefore
exactly (*1]) r-simplexes lying in the intersection of all the x;’s. Fix any one-to-one
map between the nodes of the K, and these r-simplexes.

Now let m > 0 be given. Fix an m-set {G;, ..., G, }withH= G, n--- NG,
= K,, b = (?]). Using condition (i) again, there are exactly n + 1 S;’s containing
this subset of G;’s and therefore exactly (}1}) r-simplexes in x; N - - - Nx, =
{S;,...,S,, ) Some of these r-simplexes are already the image of a node of G
under the map defined by the induction hypothesis. The number of such r-
simplexes is equal to the number of nodes in the union of the graphs H N G,
taken over all i, ,, i, ..., i,. As this is just the number of r-simplexes in the
corresponding union of the x;, N - - - Nx; N x;  the map can be extended in a
one-to-one fashion to map the nodesof H = G; N --- NG, to the r-simplexes of
xil n o o . n x[m’

Observe that no unassigned node is in two distinct intersections of m graphs G;.
Thus the map will be well-defined if it is extended in this way and will cover all
nodes in any intersection of m graphs G,. The map is one-to-one by definition and
onto by construction.

Finally we verify that two r-simplexes are the image of adjacent nodes of G if
and only if the simplexes are incident with a common s-simplex. Let x and y be
two r-simplexes whose preimages in G are u and v. If ¥ and v are adjacent, then the
edge uv is in some G, and x and y are both incident with the s-simplex x;.
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Conversely, if x and y are incident with an s-simplex x; then their preimages must
be contained in G,.

To prove the necessity of the conditions, suppose that G is the (r, s)-adjacency
graph of a complex K. Let x; be an s-simplex of K. Then there are (%) r-simplexes
in x; and the image of x; in G is

K( s+ 1 ) -G
v+1 e
If m distinct r-simplexes overlap on n + 1 points, their images in G will be a

complete graph on (?1}]) nodes.

For each O-simplex j of K, define the set S; = {G;: x; is an s-simplex with
J € x;}. Clearly the S; satisfy conditions (i) and (i)). [
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