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Abstract

A good deal of molecular dynamics simulations aims at predicting and quantifying
rare events, such as the folding of a protein or a phase transition. Simulating rare
events is often prohibitive, especially if the equations of motion are high-dimensional,
as is the case in molecular dynamics. Various algorithms have been proposed for effi-
ciently computing mean first passage times, transition rates or reaction pathways. This
article surveys and discusses recent developments in the field of rare event simulation
and outlines a new approach that combines ideas from optimal control and statisti-
cal mechanics. The optimal control approach described in detail resembles the use of
Jarzynski’s equality for free energy calculations, but with an optimized protocol that
speeds up the sampling, while (theoretically) giving variance-free estimators of the rare
events statistics. We illustrate the new approach with two numerical examples and
discuss its relation to existing methods.

Keywords. rare events, molecular dynamics, optimal pathways, stochastic control,
dynamic programming, change of measure, cumulant generating function
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1 Introduction

Rare but important transition events between long lived states are a key feature of many
systems arising in physics, chemistry, biology, etc. Molecular dynamics (MD) simulations
allow for analysis and understanding of the dynamical behaviour of molecular systems. How-
ever, realistic simulations for interesting (large) molecular systems in solution on timescales
beyond microseconds are still infeasible even on the most powerful general purpose comput-
ers. This significantly limits the MD-based analysis of many biological equilibrium processes,
because they often are associated with rare events. These rare events require prohibitively
long simulations because the average waiting time between the events is orders of magnitude
longer than the timescale of the transition characterizing the event itself. Therefore, the
straightforward approach to such a problem via direct numerical simulation of the system
until a reasonable number of events has been observed is impractically excessive for most
interesting systems. As a consequence rare event simulation and estimation are among the
most challenging topics in molecular dynamics.

In this article we consider typical rare events in molecular dynamics for which confor-
mation changes or protein folding may serve as examples. They can be described in the
following abstract way: The molecular system under consideration has the ability to go from
a reactant state given by a set A in its state space (e.g. an initial conformation) to a product
state described by another set B (e.g. the target conformation). Dynamical transitions from
A to B are rare. The general situation we will address is as follows:

1



• The system is (meta)stable, with the sets A and B being two of its metastable sets in
the sense that if the system is put there it will remain there for a long time; transitions
between A and B are rare events.

• The sets A and B are separated by an unknown and, in general, rough or diffusive
energy landscape (that will be denoted by V ).

In addition, we will assume that the system under consideration is in equilibrium with respect
to the stationary probabability density

µ(x) =
1

Z
exp(−βV (x)).

We are interested in characterizing the transitions leading from A into B, that is, we are
interested in the statistical properties of the ensemble of reactive trajectories that go directly

from A to B (i.e. start in A without returning to A before going to B). In other words we
are interested in all trajectories comprising the actual transition. We would like to

• know which parts of state space such reactive trajectories visit most likely, i.e., where in
state space do we find transition pathways or transition channels through which most
of the probability current generated by reactive trajectories flows, and

• characterize the rare event statistically, i.e. compute the transition rate, the free energy
barrier, the mean first passage time or even more elaborated statistical quantities.

The molecular dynamics literature on rare event simulations is rich. Since the 1930s
transition state theory (TST) [1,2] and extensions thereof based on the reactive flux formalism
have provided the main theoretical framework for the description of transition events. TST
can, however, at best deliver rates and does not allow to characterize transition channels.
It is based on partitioning the state space into two sets with a dividing surface in between,
leaving set A on one side and the target set B on the other, and the theory only tells how
this surface is crossed during the reaction. Often, it is difficult to choose a suitable dividing
surface and a bad choice will lead to a very poor estimate of the rate. The TST estimate is
then extremely difficult to correct, especially if the rare event is of the diffusive type where
many different reaction channels co-exist. Therefore, many techniques have been proposed
that try to go beyond TST.

These different strategies approach the problem by sampling the ensemble of reactive
trajectories or by directly searching for the transition channels of the system. Most notable
among these techniques are (1) Transition Path Sampling (TPS) [3], (2) the so-called String
Methods [4], or optimal path approaches [5–7] and variants thereof, and (3) techniques that
follow the progress of the transition through interfaces like Forward-Flux Simulation (FFS)
[8], Transition Interface Sampling (TIS) [9], or the Milestoning techniques [10, 11], and (4)
methods that drive the molecular system by external forces with the aim of making the
required transition more frequent while still allowing to compute the exact rare event statistics
for the unforced system, e.g. based on Jarzynski’s and Crook’s identity [12,13]. All of these
methods consider the problem in continuous state space, i.e. through reactive trajectories
or transition channels in the original state space of the molecular system. They all face
substantial problems, e.g. if the ensemble of reactive trajectories and/or transition channels of
the system under consideration are too complicated (multi-modal, irregular, essentially high
dimensional), or they suffer from too large variance of the underlying statistical estimators.

Our aim is (A) to review some of these methods based on a joint theoretical basis, and (B)
to outline a new approach to the estimation of rare event statistics based on a combination
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of ideas from optimal control and statistical mechanics. In principle this approach allows
for a variance-free estimation of rare event statistics in combination with much reduced

simulation time. The rest of the article is organized as follows: We start with a precise
characterization of reactive trajectories, transition channels and related quantities in the
framework of Transition Path Theory (TPT) in Section 2. Then, in Sections 3–4, we discuss
the methods from classes (1)-(3) and characterize their potential problems in more detail. In
Section 5 we consider methods of type (4) as an introduction to the presentation of the new
optimal control approach that is outlined in detail in Sections 6–7, including some numerical
experiments.

Alternative, inherently discrete methods like Markov State Modelling that discretize the
state space appropriately and try to compute transition channels and rates a posteriori based
on the resulting discrete model of the dynamics will not be discussed herein and are considered
in the article [14] in a way related to the presentation at hand.

2 Reactive Trajectories, Transition Rates, and Transi-
tion Channels

Since our results are rather general, it is useful to set the stage somewhat abstractly. We
shall consider a system whose state space is R

n and denote by Xt the current state of the
system at time t. For example, Xt may be the set of instantaneous positions and momenta
of the atoms of a molecular system. We assume that the system is ergodic with respect
to a probability (equilibrium) distribution µ, and that we can generate an infinitely long
equilibrium trajectory {Xt}t≥0. The trajectory will go infinitely many times from A to B,
and each time the reaction happens. This reaction involves reactive trajectories that can be
defined as follows: Given the trajectory {X(t)}t≥0, we say that its reactive pieces are the
segments during which Xt is neither in A or B, came out of A last and will go to B next. To
formalize things, let

t+AB(t) = smallest s ≥ t such that X(s) ∈ A ∪B
t−AB(t) = largest s ≤ t such that X(s) ∈ A ∪B

Then the trajectory {X(t)}t≥0 is reactive for all t ∈ R where R ⊂ [0,∞) is defined by the
requirements

Xt 6∈ A ∪B, Xt+
AB

(t) ∈ B and Xt−
AB

(t) ∈ A ,

and the ensemble of reactive trajectories is given by the set

R = {Xt : t ∈ R},
where each specific continuous piece of trajectory going directly from A to B in the ensemble
belongs to a specific interval [t1, t2] ⊂ R.

Given the ensemble of reactive trajectories we want to characterize it statistically by
answering the following questions:

(Q1) What is the probability of observing a trajectory at x 6∈ (A∪B) at time t, conditional
on t ∈ R?

(Q2) What is the probability current of reactive trajectories? This probability current is the
vector field jAB(x) with the property that given any separating surface S between A
and B (i.e. the boundary of a region that contains A but not B), the surface integral
of jAB over S gives the probability flux of reactive trajectories between A and B across
S.
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(Q3) What is the transition rate of the reaction, i.e. what is the mean frequency kAB of
transitions from A to B?

(Q4) Where are the main transition channels used by most of the reactive trajectories?

Question (Q1) can be answered easily, at least theoretically: The probability density to
observe any trajectory (reactive or not) at point x is µ(x). Let q(x) be the so-called committor
function, that is the probability that the trajectory starting from x reaches first B rather
than A. If the dynamics is reversible, then the probability that a trajectory we observe at
state x is reactive is q(x)(1 − q(x)), where the first factor appears since the trajectory must
go to B rather than A next, and the second factor appears since it needs to come from A
rather than B last. Now the Markov property of the dynamics implies that the probability
density to observe a reactive trajectory at point x is

µAB(x) ∝ q(x)(1 − q(x)µ(x),

which is the probability of observing any trajectory in x times the probability that it will be
reactive (the proportionality symbol ∝ is used to indicate identity up to normalization).

2.1 Transition Path Theory (TPT)

In order to give answers to the other questions, we will exploit the framework of transition

path theory (TPT) which has been developed in [15–18] in the context of diffusions and has
been generalized to discrete state spaces in [19,20]. In order to review the key results of TPT
let us consider diffusive molecular dynamics in an energy landscape V : R

n → R:

dXt = −∇V (Xt)dt+
√

2ǫ dBt , X0 = x . (1)

Here Bt denotes standard n-dimensional Brownian motion, and ǫ > 0 is the temperature of
the system. Under mild conditions on the energy landscape function V we have ergodicity
with respect to the stationary distribution µ(x) = Z−1 exp(−βV (x)) with β = 1/ǫ. The dy-
namics is reversible with respect to this distribution, i.e. the detailed balance condition holds.
We assume throughout that the temperature is small relative to the largest energy barriers,
i.e., ǫ ≪ ∆Vmax. As a consequence, the relaxation of the dynamics towards equilibrium is
dominated by the rare transitions over the largest energy barriers.

For this kind of dynamics, questions (Q2) and (Q3) have surprisingly simple answers:
The reactive probability current is given by

jAB(x) = ǫµ(x)∇q(x),

where ∇q denotes the gradient of the committor function q. Based on this, the transition
rate can be computed by the total reactive current across an arbitrary separating surface S:

kAB =

∫

S

nS(x)jAB(x)dσS(x)

where nS denote the unit normal vector on S pointing towards B and σS the associated
surface element. The rate can also be expressed by

kAB = ǫ

∫

(A∪B)c

(∇q(x))2µ(x)dx,
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where (A∪B)c denotes the entire state space excluding A and B. Given the reactive current,
we can even answer question (Q4): The transition channels of the reaction A → B are the
reagions of (A ∪B)c in which the streamlines of the reactive current, i.e. the solutions of

d

dt
xAB(t) = jAB

(

xAB(t)
)

, xAB(0) ∈ A

are exceptionally dense.
Figure 1 illustrates these quantities for the case of a 2d three well potential with two

main wells (the bottoms of which we take as A and B in the following) and a less significant
third well. The three main saddle points separating the wells are such that the two saddle
points between the main wells and the third well are lower in energy than the saddle point
between the main wells, such that in the zero temperature limit we expect that almost
all reactive trajectories take the route through the third well across the two lower saddle
points. We observe that the committor functions for low and higher temperatures exhibit
smooth isocommittor lines separating the sets A and B, as expected. The transition channels
computed from the associated reactive current also show what one should expect: For lower
temperature the channel through the third well and across the two lower saddle points is
dominant, while for higher temperature, the direct transition from A to B across the higher
saddle point is preferred.

These considerations can be generalized to a wide range of different kinds of dynamics in
continuous state spaces including e.g. full Langevin dynamics, see [15–18].

This example illustrates that TPT in principle allows to quantify all aspects of the tran-
sition behavior underlying a rare event. We can compute transition rates exactly and even
characterize the transition mechanisms if we can compute the committor function. Deeper
insight using the Feynman-Kac formula yields that the committor function can be computed
as the solution of a linear boundary value problem, which for diffusive molecular dynamics
reads

LqAB = 0 in (A ∪B)c, qAB = 0 in A, qAB = 1 in B,

where the generator L has the following form

L = ǫ∆ −∇V (x) · ∇, (2)

where ∆ =
∑

i ∂
2/∂x2

i denotes the Laplace operator. This equation allows the computation
of qAB in relatively low-dimensional spaces, where the discretization of L is possible based on
finite element methods or comparable techniques. In realistic biomolecular state spaces this is
infeasible because of the curse of dimensionality. Therefore, TPT gives a complete theoretical
background for rare event simulation but its application in high dimensional situations is still
problematic. As a remedy, a discrete version of TPT has been developed [19,20], which can
be used in combination with Markov State Modelling, see [21].

2.2 Transition Path Sampling (TPS)

TPS has been developed in order to sample from the probability distribution of reactive tra-
jectories in so-called ”path space”, which means nothing else than the space of all discrete or
continuous paths starting in A and ending up in B equipped with the probability distribution
generated by the dynamics through the ensemble of associated reactive trajectories. Let PT

denote the path measure on the space of discrete or continuous trajectories {Xt}0≤t≤T of
length T . The path measure of reactive trajectories then is

PAB
T ({Xt}0≤t≤T ) =

1

ZAB

1A(X0)PT ({Xt}0≤t≤T )1B(XT ),
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where 1A denotes the indicator function of set A (that is, 1A(x) = 0 if x 6∈ A and = 1
otherwise).

TPS is a Metropolis Monte-Carlo (MC) method for sampling PAB
T ({Xt}0≤t≤T )) that

exploits explicit information like (3) regarding the path measure PT [22, 23]. It delivers an
ensemble of reactive trajectories of length T that (under the assumption of convergence of
the MC scheme) is representative for PAB

T and thus allows to compute respective expectation
values like the probability to observe a reactive trajectory or the reactive current. However,
its potential drawbacks are obvious: (1) A typical reactive trajectory is very long and rather
uninformative (cf. Fig. 1), i.e. the computational effort of generating an entire ensemble
of long reactive trajectories can be prohibitive, (2) convergence of the MC scheme in the
extremely high dimensional path spaces can be very poor, and (3) the limitation to a pre-
defined trajectory length T can lead to biased statistics of the TPS ensemble. Advanced TPS
schemes try to remedy these drawbacks by combining the original TPS idea with interface
methods [9].

Figure 1: Top left panel: Three-well energy landscape V as described in the text. Top right panel: Typical
reactive trajectory in the three-well landscape. Middle left panel: Committor functions qAB for diffusion
molecular dynamics with relatively high temperature ǫ = 0.6 for the sets A (main well, right hand side) and
B (main well, left hand side). Middle right panel: Committor qAB for the low temperature case ǫ = 0.15.
Bottom left panel: Transition channels for ǫ = 0.6. Bottom right panel: Transition channels for ǫ = 0.15. For
details of the computations underlying the pictures see [20].
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3 Finding Transition Channels

Whenever a transition channel exists, one can try to approximate the principal curve in the
center of the transition channel instead of sampling the ensemble of reactive trajectories. If
this principal curve is a rather smooth object then such a method would not suffer from the
extensive length of reactive trajectories. Several such methods have been introduced; they
differ with respect to the definition of the principal curve.

3.1 Action-based Methods

Rather than sampling the probability distribution of reactive pathways, one can try to obtain
a representative or dominant pathway, e.g. by computing the pathway that has maximum
probability under PT . For the case of diffusive molecular dynamics the path measure PT

has a probability density with respect to a (fictitious) uniform measure on the space of all
continuous paths in R

n, which reads

ℓ(ϕ) = exp

(

− 1

2ǫ
Iǫ(ϕ)

)

,

where Iǫ is the Onsager-Machlup action

Iǫ(ϕ) =

∫ T

0

{

1

2
|ϕ̇(s)|2 +

1

2
|∇V (ϕ(s))|2 − ǫ∆V (ϕ(s))

}

dt . (3)

The form of the path density ℓ has led to the idea that by minimizing the Onsager-Machlup
action over all continuous paths ϕ : [0, T ] → R

n going from A to B one can find the dominant
reactive path ϕ∗ = argminϕ I

ǫ(ϕ), often also called optimal path or most probable path. The
hope is that this path on one hand contains information on the transition mechanism and on
the other hand is much smoother and easier to interpret than a typical reactive trajectory.

In [7] a direct approach to this question using gradient descent methods has been given
for diffusive molecular dynamics, raising issues regarding the correct interpretation of the
minimizers of Iǫ (that need not exist) as most probable paths. In [5] the dominant reaction

pathway method has been outlined which uses a simplified version of the Onsager-Machlup
functional that leads to a computationally simpler optimization problem and is applicable
to large-scale problems, e.g., protein folding [6]. But even if the globally dominant pathways
can be computed and the optimization does not get stuck in local minima, the resulting
pathways in general do not allow to gain statistical information on the transition (like rates,
currents, mean first passage times).

Another action-based method that has been introduced in [24] is the MaxFlux method
which seeks the path that carries the highest reactive flux among all reactive trajectories
of a certain length. The idea is to compute the path of least resistance by minimizing the
functional

L(ϕ) =

∫ T

0

exp
(

ǫ−1V (ϕ(s))
)

ds .

Several algorithmic approaches for the minimization of the resistance functional L have been
proposed, e.g. a path-based method [25], discretization of the corresponding Euler-Lagrange
equation based on a mean-field approximation of it [26] or a Hamilton-Jacobi-based approach
using the method of characteristics [27]. Minimizing L for different values of T then yields a
collection of paths, each of which carries a certain percentage of the total reactive flux. The
method is useful if the temperature is small, so that the reactive flux concentrates around a
sufficiently small number of reactive pathways.
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3.2 String Method and Variants

There are several other methods that entirely avoid the computation of reactive trajectories
but try to reconstruct the less complex transition channels or pathways instead, analysing
the energy landscape of the system. One group of such techniques like the Zero Temperature
String method [28] or the Nudged Elastic Band method [29] concentrate on the computation
of the minimal energy path (MEP), i.e. the path of lowest potential energy between (a
point in) A and (a point in) B. Under diffusive molecular dynamics and for vanishing
temperature the MEP is the path that transitions take with probability one [30]. It turns
out that the MEP in this case is the minimizer of the Onsager-Machlup action (3) in the limit
ǫ → 0. For non-zero temperature and a rugged energy landscape the MEP will in general
be not very informative and must be replaced by a finite-temperature transition channel.
This is done by the finite-temperature string (FTS) method [31] based on the following
considerations: Firstly, the isocommittor surfaces Γα, α ∈ [0, 1], of the committor q are
taken as natural interfaces that separate A from B. Secondly, each Γα is weighted with the
stationary distribution µ to find reactive trajectories crossing it at a certain point x ∈ Γα,

ρα(x) =
1

Zα

q(x)(1 − q(x)µ(x), Zα =

∫

Γα

q(x)(1 − q(x)µ(x)dσα(x).

The idea of the FTS method is that the ensemble of reactive trajectories can be characterized
by this distribution on the isocommittor surfaces. Third, one assumes that for each α the
probability density ρα is peaked in just one point ϕ(α) and that the curve ϕ = ϕ(α), α ∈ [0, 1]
defined by the sequence of these points forms the center of the (single) transition channel.
More precisely, one defines ϕ(α) = 〈x〉Γα

where the average is taken according to ρα along
the respective isocommittor surface Γα. Fourth, it is assumed that the covariance Cα =
〈(x − ϕ(α)) ⊗ (x − ϕ(α))〉Γα

—which defines the width of the transition channel—is small,
which implies that the isocommittor surfaces can be locally approximated by hyperplanes Pα.
The computation of the FTS string ϕ then is done by approximating it via ϕ(α) = 〈x〉Pα

,
where the average is computed by running constrained dynamics on Pα while iteratively
refining the hyperplanes Pα; see [32] for details. Later extensions [33] remove the restrictions
resulting from the hyperplanes by using Voronoi tesselations instead.

The FTS method allows to compute single transition channels in rugged energy landscapes
as long as these are not too extended and rugged. Compared to methods that sample the
ensemble of reactive trajectories, it has the significant advantage that the string—that is, the
principal curve inside the transition channel—is rather smooth and short, as compared to
the typical reactive trajectories. The FTS further allows to compute the free energy profile
F = F (α) along the string,

F (α) = −β−1 log

∫

Pα

µ(x)dσα(x),

that characterizes the transition rates associated with the transition channel (at least in the
limits of the approximations invoked by the FTS).

4 Computing Transition Rates

The computation of transition rates can be performed without computing the dominant
transition channels or similar objects. There is a list of rather general techniques, with
Foward Flux Sampling (FFS) [8], Transition Interface Sampling (TIS) [9] and Milestoning [10]
as examples, that approximate transition rates by exploring how the transition progresses
from one to the next interface that separate A from B.

8



4.1 Forward Flux Sampling (FFS)

The first step of FFS is the choice of a finite sequence of interfaces Ik, k = 1, . . . , N , in
state space between A and B = IN . The transition rate kAB comes as the product of two
factors: (1) the probability current JA of all trajectories leaving A and hitting I1, and (2)
the probability

P(B|I1) =

N−1
∏

j=1

P(Ik+1|Ik)

that a trajectory that leaves I1 makes it to B before it returns to A; here P(Ik+1|Ik) denotes
the probability that a trajectory starting in Ik makes it to Ik+1 before it returns to A. FFS
first performs a brute-force simulation starting in A which yields an ensemble of points at
the first interface I1 yielding an estimate for the flux JA (the number of trajectories hitting
I1 per unit of time). Second a point from this ensemble on I1 is selected at random and used
to start a trajectory which is followed until it either hits the next interface I2 or returns to
A; this gives P(I2|I1). This procedure then is iterated from interface to interface. Finally
the rate kAB = JA · P(B|I1) is computed. Variants of this algorithm are described in [34]
and [35], for example.

FFS has been demonstrated to be quite general in approximating the flux of reactive
trajectories through a given set of interfaces; it can be applied to equilibirium as well as
non-equilibirium systems and its implementation is easy. The interfaces used in FFS are, in
principle, arbitrary. However, the efficiency of the sampling of the reactive hitting probabili-
ties P(Ik+1|Ik) crucially depends on the choice of the interfaces. In practice the efficiency of
FFS will drop dramatically if one does not use appropriate surfaces, and totally misleading
rates may result from this. Ideally, one would like to choose these surfaces so as to optimize
the computational gain offered by FFS, but how to do so is not clear. The same is true for
TIS that couples TPS with progressing from interface to interface.

4.2 Milestoning

Milestoning [10] is similar to FFS in so far as it also uses a set of interfaces Ik, k = 1, . . . , N
that separate A and B = IN . In contrast to FFS and TIS, the fundamental quantities in
Milestoning are the hitting time distributions K±

i (τ), i = 1, . . . , N − 1, where K±
i (τ) is

the probability that a trajectory starting at t = 0 at interface Ii hits Ii±1 before time τ .
Trajectories that make it to milestone Ii must come from milestones Ii±1, and vice versa.
In the original algorithm these distributions are approximated as follows [10]: For each
milestone Ii one first samples the distribution µ constrained to Ii. Based on the resulting
sample, we start a trajectory from each point which is terminated when it reaches one of
its two neighboring milestones Ii±1. The hitting times are recorded and collected into two
distributions K±

i (τ).
These local kinetics are then compiled into the global kinetics of the process: For each

i, one defines Pi(t) as the probability that the process is found between Ii−1 and Ii+1 at
time t and that the last milestone hit was Ii. Milestoning is based on a (non-Markovian)
construction of Pi(t) from the K±

i (τ). Its efficiency comes from two sources: (1) It does not
require the computation of long reactive trajectories but only short ones between milestones
(which therefore should be ’close enough’). (2) It is easily parallelizable. Its disadvantage is
the dependence on the milestones that have to be chosen in advance: It can be shown that
Milestoning with perfect sampling allows to compute exact transition rates or mean first
passage times if the interfaces are given by the isocommittor surfaces (which in general are
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not known in advance) [36]; if the interfaces are chosen inappropriately the results can be
rather misleading.

5 Nonequilibrium Forcing and Jarzynski’s Identity

The computation of reliable rare event statistics suffers from the enormous lengths of reactive
trajectories. One obvious way to overcome this obstacle is to force the system to exhibit the
transition of interest on shorter timescales. So can we drive the molecular system to make
the required transition more frequently but still compute the exact rare event statistics for
the unforced system?

As was shown by Jarzynski and others, nonequilibrium forcing can in fact be used to
obtain equilibrium rare event statistics. The advantage seems to be that the external force
can speed up the sampling of the rare events by biasing the equilibrium distribution towards
a distribution under which the rare event is no longer rare. We will shortly review Jarzynski’s
identity before discussing the matter in more detail.

5.1 Jarzynski’s Identity

Jarzynski’s and Crook’s formulae [12,13] relate the equilibrium Helmholtz free energy to the
nonequilibrium work exerted under external forcing: Given a system with energy landscape
V (x), the total Helmholtz free energy can be defined as

F = −β−1 logZ with Z =

∫

exp(−βV (x))dx .

Jarzynski’s equality [12] then relates the free energy difference ∆F = −β−1 log(Z1/Z0) be-
tween two equilibrium states of a system given by an unperturbed energy V0 and its per-
turbation V1 with the work W applied to the system under the perturbation: Suppose we
set Vξ = (1 − ξ)V0 + ξV1 with ξ ∈ [0, 1], and assume we set a protocol that describes how
the system evolves from ξ = 0 to ξ = 1. If, initially, the system is distributed according to
exp(−βV0) then, by the second law of thermodynamics, it follows that E(W ) ≥ ∆F where
W is the total work applied to the system and E denotes the average over all possible realiza-
tions of the transition from ξ = 0 to ξ = 1; equality is attained if the transition is infinitely
slow (i.e., adiabatically). Jarzynski’s identity now asserts that

∆F = −β−1 log E
[

exp(−βW )
]

.

Many generalizations exist: In [13], a generalized version of this fluctuation theorem, the
so-called Crook’s formula, for stochastic, microscopically reversible dynamics is derived. In
[37, 38] it is shown how one can compute conditional free energy profiles along a reaction
coordinate for the unperturbed system, rather than total free energy differences between
perturbed and unperturbed system.

Algorithmic application prohibitive. Despite the fact that Jarzynski’s and Crook’s for-
mulae are used in molecular dynamics applications [39], their algorithmic usability is limited
by the fact that the likelihood ratio between equilibrium and nonequilibrium trajectories is
highly degenerate, and the overwhelming majority of nonequilibrium forcings generate tra-
jectories that have almost zero weight with respect to the equilibrium distribution that is
relevant for the rare event. This leads to the fact that most rare event sampling algorithms
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based on Jarzynski’s identity have prohibitively large variance. Recent developments have re-
duced this problem by sampling just the reversible work processes based on Crook’s formula
but could not fully remove the problem of large variance. Because of this, we will approach
the problem of variance reduction subsequently.

5.2 Cumulant Generating Functions

In order to demonstrate how to improve approaches based on the idea of driving molecular
systems to make rare events frequent, we first have to introduce some concepts and notation
from statistical mechanics: Let W be a random variable that depends on the sample paths of
(Xt)t≥0, i.e. on molecular dynamics trajectories of the system under investigation. Further let
P be the underlying probability measure on the space of continuous trajectories as introduced
in Section 2.2 (but without the restriction to a given length T ). We define the cumulant

generating function (CGF) of W by

γ(σ) = −σ−1 log E[exp(−σW )] , (4)

where σ is a non-zero scalar parameter and E[f ] =
∫

f dP denotes the expectation value with
respect to P . Note that the CGF is basically the free energy at inverse temperature β as in
Jarzynski’s formula, but here is considered as a function of the independent parameter σ.1

Taylor expanding the CGF about σ = 0, we observe that γ(σ) ≈ E[W ]− σ
2 E[(W −E[W ])2],

hence, for sufficiently small σ, the variance is decoupled from the mean. Moreover it follows
by Jensen’s inequality that

γ(σ) ≤ E[W ] ,

where equality is achieved if and only if W is almost surely constant, in accordance with the
second law of thermodynamics.2

Optimal reweighting The CGF admits a variational characterization in terms of relative
entropies. To this end let Q be another probability measure so that P is absolutely continuous
with respect to Q, i.e. the likelihood ratio dP/dQ exists and is Q-integrable. Then, using
Jensen’s inequality again,

−σ−1 log

∫

e−σW dP = −σ−1 log

∫

e−σW+log( dP
dQ

) dQ

≤
∫

{

W + σ−1 log

(

dQ

dP

)}

dQ ,

which, noting that the logarithmic term is the relative entropy (or Kullback-Leibler diver-
gence) between Q and P , can be recast as

γ(σ) ≤
∫

W dQ+H(Q‖P ) . (5)

where

H(Q‖P ) = σ−1

∫

log

(

dQ

dP

)

dQ (6)

1Definition (4) differs from the standard CGF only by the prefactor σ−1 in front.
2This is the case, e.g., when W is the work associated with an adiabatic transition between thermodynamic

equilibrium states.
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and we declare that H(Q‖P ) = ∞ if Q does not have a density with respect to P . Again it
follows from the strict convexity of the exponential function that equality is achieved if and
only if the new random variable

Z = W + σ−1 log

(

dQ

dP

)

is Q-almost surely constant. This gives us the following variational characterization of the
cumulant generating function that is due to [40]:

Variational formula for the cumulant generating function. Let W be bounded from
above, with E[exp(−σW )] <∞. Then

γ(σ) = inf
Q≪P

{
∫

W dQ+H(Q‖P )

}

, (7)

where the infimum runs over all probability measures Q that have a density with respect to
P . Moreover the minimizer Q∗ exists and is given by

dQ∗ = eγ(σ)−σW dP .

6 Optimal driving from control theory

When Xt denotes stochastic dynamics such as (1), the above variational formula admits a
nice interpretation in terms of an optimal control problem with a quadratic cost. To reveal
it we first need some technical assumptions.

(A1) We define Q = [0, T ) × O where T ∈ [0,∞] and O ⊂ R
n is a bounded open set with

smooth boundary ∂O. Further let τ <∞ be the stopping time

τ = inf{t > t0 : (t,Xt) /∈ Q} ,

i.e. τ is the stopping time that either t = T or Xt leaves the set O, whichever comes
first.

(A2) The random variable W is of the form

W =
1

ǫ

∫ τ

0

f(Xt) dt+
1

ǫ
g(Xτ ) ,

for some continuous and nonnegative functions f, g : R
n → R which are bounded from

above and at most polynomially growing in x (compare Jarzysnki’s formula).

(A3) The potential V : R
n → R in (1) is smooth, bounded below, and satisfies the usual local

Lipschitz and growth conditions.

We consider the conditioned version of the moment generating function (which is just the
exponential of the cumulant generating function):

ψσ(x, t) = E[exp(−σW )|Xt = x] . (8)
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By the Feynman-Kac theorem, ψσ solves the linear boundary value problem

(

A− σ

ǫ
f
)

ψσ = 0

ψσ|E+ = exp
(

−σ
ǫ
g
) (9)

where E+ is the terminal set of the augmented process (t,Xt), precisely E+ = ([0, T ) × ∂O)∪
({T} ×O), and

A =
∂

∂t
+ L (10)

is the backward evolution operator associated withXt and L the generator of the dynamics
as introduced in (2). Assumptions (A1)–(A3) guarantee that (9) has a unique smooth solution
ψσ for all σ > 0. Moreover the stopping time τ is almost surely finite which implies that

0 < c ≤ ψσ ≤ 1

for some constant c ∈ (0, 1).

Log transformation of the cumulant generating function. In order to arrive at the
optimal control version of the variational formula (7), we introduce the logarithmic transfor-
mation of ψσ as

vσ(x, t) = − ǫ

σ
logψσ(x, t) ,

which is analogous to the CGF γ except for the leading factor ǫ and the dependence on the
initial condition x. As we will show below, vσ is related to an optimal control problem. To
see this, remember that ψσ is bounded away from zero and note that

− ǫ

σ
ψ−1

σ Aψσ = Avσ − σ|∇vσ|2 ,

which implies that (9) is equivalent to

Avσ − σ|∇vσ|2 + f = 0

vσ|E+ = g .

Equivalently,

min
α∈Rn

{Avσ + α · ∇vσ +
1

4σ
|α|2 + f} = 0

vσ|E+ = g ,

(11)

where we have used that

−σ|y|2 = min
α∈Rn

{

α · y +
1

4σ
|α|2

}

.

(For the general framework of change-of-measure techniques and Girsanov transformations
and their relation to logarithmic transformations, we refer to [41, Sec. VI.3].)
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Optimal control problem. Equation (11) is a Hamilton-Jacobi-Bellman (HJB) equation
and is recognized as the dynamic programming equation of the following optimal control
problem: minimize

J(u, x) = E

[
∫ τ

0

{

f(Xt) +
1

4σ
|ut|2

}

dt+ g(Xτ )

∣

∣

∣

∣

Xt = x

]

(12)

over a suitable space of admissible control functions u : [0,∞) → R
n and subject to the

dynamics
dXt = (ut −∇V (Xt)) dt+

√
2ǫdWt . (13)

Form of optimal control. In more detail one can show (e.g., see [41, Sec. IV.2])) that as-
sumptions (A1)–(A3) above imply that (11) has a classical solution (i.e. twice differentiable in
x, differentiable in t and continuous at the boundaries), which satisfies vσ(x) = minu J(u, x),
i.e.

vσ(x, t) = E

[
∫ τ

t

{

f(Xs) +
1

4σ
|u∗s|2

}

ds+ g(Xτ )

∣

∣

∣

∣

Xt = x

]

, (14)

where u∗ is the unique minimizer of J(u, ·) that is given by the Markovian feedback law

u∗t = α∗(Xt, t)

with

α∗ = argmin
α∈Rn

{

α · ∇vσ +
1

4σ
|α|2

}

.

The function vσ is called value function or optimal-cost-to-go for the optimal control
problem (12)–(13). Specifically, vσ(x, t) measures the minimum cost needed to drive the
system to the terminal state when started at x at time t. We briefly mention the two most
relevant special cases of (12)–(13).

6.1 Case I: the exit problem

We want to consider the limit T → ∞. To this end call τO = inf{t > 0: Xt /∈ O} the first
exit time of the set O ⊂ R

n. The stopping time τ = min{T, τO} then converges to τO, i.e.

min{T, τO} → τO .

As a consequence (using monotone convergence), vσ converges to the value function of an
optimal control problem with cost functional

J∞(u, x) = E

[
∫ τO

0

{

f(Xt) +
1

4σ
|ut|2

}

dt+ g(XτO
)

∣

∣

∣

∣

Xt = x

]

(15)

In this case vσ = minu J∞ is independent of t and solves the boundary value HJB equation

min
α∈Rn

{Lvσ + α · ∇vσ +
1

4σ
|α|2 + f} = 0

vσ|∂O = g .

(16)
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6.2 Case II: finite time horizon optimal control

If we keep T < ∞ fixed while letting O grow such that diam(O) → ∞, where diam(O) =
sup{r > 0: Br(x) ⊂ O, x ∈ O} is understood as the maximum radius r > 0 that an open
ball Br(·) contained in O can have, it follows that

min{T, τO} → T

In this case vσ converges to the value function with a finite time horizon and cost functional

JT (u, x) = E

[

∫ T

0

{

f(Xt) +
1

4σ
|ut|2

}

dt+ g(XT )

∣

∣

∣

∣

∣

Xt = x

]

(17)

Now vσ = minu JT is again a function on R
n × [0, T ] and solves the HJB equation

min
α∈Rn

{Avσ + α · ∇vσ +
1

4σ
|α|2 + f} = 0

vσ(x, T ) = g(x) ,

(18)

with a terminal condition at time t = T .

6.3 Optimal control potential and optimally controlled dynamics

The optimal control u∗ that minimizes the functional in (12) is again of gradient form and
given by

u∗t = −2σ∇vσ(Xt, t)

as can be readily checked by minimizing the corresponding expression in (11) over α. Given
vσ, the optimally controlled dynamics reads

dXt = −∇U(Xt, t)dt+
√

2ǫdWt , (19)

with the optimal control potential

U(x, t) = V (x) + 2σvσ(x, t) . (20)

In case when T → ∞ (case I above), the biasing potential is independent of t.

Remarks. Some remarks are in order.

(a) Monte-Carlo estimators of the conditional CGF

γ(σ;x) = −σ−1 log E[exp(−σW )|X0 = x] ,

that are based on the optimally controlled dynamics have zero variance. This is so
because the optimal control minimizes the variational expression in (7), but at the
minimum the random variable inside the expectation must be almost surely constant
(as a consequence of Jensen’s inequality and the strict convexity of the exponential
function). Hence we have a zero-variance estimator of the conditional CGF.

(b) The reader may now wonder as to whether it is possible to extract single moments from
the CGF (e.g., mean first passage times). In general this question is not straightforward
to answer. One of the difficulties is that extracting moments from the CGF requires to
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take derivatives at σ = 0, but small values of σ imply strong penalization which renders
the control inactive and thus makes the approach inefficient. Another difficulty is that
reweighting the controlled trajectories back to the original (equilibrium) path measure
can increase the variance of a rare event estimator, as compared to the corresponding
estimator based on the uncontrolled dynamics. As yet, the efficient calculation of
moments from the CGF by either extrapolation methods or reweighing is an open
question and currently a field of active research (see, e.g., [42, 43])

(c) Jarzynski’s identity relates equilibrium free energies to averages that are taken over an
ensemble of trajectories generated by controlled dynamics, and the reader may wonder
whether the above zero-variance property can be used in connection with free energy
computations à la Jarzynski. Indeed we can interpret the CGF as the free energy of
the nonequilibrium work

Wξ =

∫ T

0

f(Xt, ξt) dt

where f is the nonequilibrium force exerted on the system under driving it with some
prescribed protocol ξ : [0, T ] → R; in this case the dynamics Xt depends on ξt as well,
and writing down the HJB equation according to (18) is straightforward. But even if
we can solve (18) we do not get zero-variance estimators for the free energy

F (ξT ) − F (ξ0) = −β−1 log E[exp(−βWξ)] .

The reason for this is simple: Jarzynski’s formula requires that the initial conditions
are chosen from an equilibrium distribution, say, π0 the equilibrium distribution cor-
responding to the initial value ξ0 of the protocol, but optimal controls are defined
point-wise for each state (t,Xt) and

−β−1 log

∫

Rn

E[exp(−βWξ)|X0 = x] dπ0(x)

6= −β−1

∫

Rn

log E[exp(−βWξ)|X0 = x] dπ0(x) .

In other words:

F (ξT ) − F (ξ0) 6=
∫

Rn

Vβ(x, 0) dπ0(x) .

(d) A similar argument as the one underlying the derivation of the HJB equation from the
linear boundary value problem yields that Jarzynski’s formula can be interpreted as a
two-player zero-sum differential game (cf. [44]).

7 Characterize Rare Events by Optimally Controlled
MD

Now we illustrate how to use the results of the last section in practice. We will mainly
consider the case discussed in Sec. 6.1 regarding the statistical characterization of hitting a
certain set.
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7.1 First passage times

Roughly speaking, the CGF encodes information about the moments of any random variable
W that is a functional of the trajectories (Xt)t≥0. For example, for f = ǫ and T → ∞ we
obtain the CGF of the mean first exit time from O, i.e.,

−σ−1 log Ex[exp(−στO)] = min
u

Eu
x

[

τO +
1

4σ

∫ τO

0

|ut|2 dt
]

where we have introduced the shorthand Ex[·] = E[·|X0 = x] to denote the conditional
expectation when starting at X0 = x and the superscript “u” to indicate that the expectation
is understood with respect to the controlled dynamics

dXt = (ut −∇V (Xt)) dt+
√

2ǫdWt ,

where E = E0 denotes expectation with respect to the unperturbed dynamics.

7.2 Committor probabilities revisited

It is not only possible to use the moment generating function to collect statistics about
rare events in terms of the cumulant generating function, but also to express the committor
function directly in terms of an optimal control problem (see Section 2.1 for the definition of
the committor qAB between to sets A and B). To this end, let σ = 1 and suppose we divide
∂O into two sets B ⊂ ∂O and A = ∂O \ B (i.e., τO is the stopping time that is defined by
hitting either A or B). Setting

f = 0 and g(x) = −ǫ log 1B(x)

reduces the moment generating function (8) to

ψ1(x) = Ex[1B(XτO
)]

or, in more familiar terms,

ψ1(x) = P[XτO
∈ B ∧ XτO

/∈ A|X0 = x] = qAB(x).

According to (15) the corresponding optimal control problem has the cost functional

J(u) = E

[

1

4

∫ τO

0

|us|2 ds− ǫ log 1B(XτO
)

]

,

which amounts to a control problem with zero terminal cost when ending up in B and an
infinite terminal cost for hitting A. Therefore the HJB equation for v = v1 has a singular
boundary value at A; it reads

min
α∈Rn

{Lv + α · ∇v +
1

4
|α|2} = 0

v|A = ∞ , v|B = 0 .

Setting v(x) = −ǫ log qAB(x) yields the equality

− log qAB(x) = min
u

Eu

[

1

4ǫ

∫ τO

0

|us|2ds− log 1B(XτO
)

∣

∣

∣

∣

x0 = x

]

.

In this case, the optimally controlled dynamics (19) is of the form

dXt = −∇UAB(Xt)dt+
√

2ǫdWt ,

with optimal control potential

UAB(x) = V (x) − 2ǫ log qAB(x).
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Remarks. Some remarks on the committor equation follow:

(a) The logarithmic singularity of the value function at “reactant state” A has the effect
that the control will try to avoid running back into A, for there is an infinite penalty
on hitting A. In other words, by controlling the system we condition it on hitting
the “product state” B at time t = τO. Conditioning a diffusion (or general Markov)
process on an exit state has strong connection with Doob’s h-transform that can be
considered a change-of-measure transformation of the underlying path measure that
forces the diffusion to hit the exit state with probability one [45].

(b) The optimally controlled dynamics has a stationary distribution with a density propor-
tional to

exp(−βUAB(x)) = q2AB(x) exp(−βV (x)),

where we used β = 1/ǫ.

7.3 Algorithmic Realization

For the exit problem (”Case I” above), one can find an efficient algorithm for computing the
conditional CGF γ(σ;x) or, equivalently, the value function vσ(x) in [46]. The idea of the
algorithm is to exploit that, according to (19)–(20), the optimal control is of gradient form.
The latter implies that the value function can be represented as a minimization of the cost
functional over time-homogeneous candidate functions C for the optimal bias potential, in
other words,

vσ(x) = min
C

Ex

[
∫ τO

0

{

f(Xt) +
1

4σ
|∇Ct|2

}

dt+ g(XτO
)

]

, (21)

where the expectation E is understood with respect to the path measure generated by

dXt = − (∇C(Xt) + ∇V (Xt)) dt+
√

2ǫdWt .

Once the optimal C has been computed, both value function and CGF can be recovered by
setting

vσ(x) = −C(x)

2σ
and γ(σ;x) = −C(x)

2ǫσ
.

The algorithm that finds the optimal C works by iteratively minimizing the cost functional
for potentials C from a finite-dimensional ansatz space, i.e.

C(x) =

M
∑

j=1

ajϕj(x)

with appropriately chosen ansatz functions ϕj . The iterative minimization is then carried
out on the M -dimensional coefficient space of the a1, . . . , aM . With this algorithm we are
able to compute the optimal control potential for the exit problem in the two interesting
cases: first passage times and committor probabilities (as outlined in Sections 7.1 and 7.2).

Remark. The minimization algorithm for the value function belongs to the class of expectation-
maximization algorithms (although here we carry out a minimization rather than a maxi-
mization), in that each minimization step is followed by a function evaluation that involves
computing an expectation. In connection with rare events sampling and molecular dynam-
ics problems a close relative is the adaptive biasing force (ABF) method for computing free
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energy profiles, the latter being intimately linked with cumulant generating functions or
value functions (cf. Section 5). In ABF methods (or its variants, such as metadynamics or
Wang-Landau dynamics), the gradient of the free energy is estimated on the fly, running a
molecular dynamics simulation, and then added as a biasing force to accelerate the sampling
in the direction of the relevant coordinates [47, 48]. The biasing force eventually converges
to the derivative of the free energy, which is the optimal bias for passing over the relevant
energy barriers that are responsible for the rare events [49].

7.4 Numerical Examples

In our first example we consider diffusive molecular dynamics as of (1) with ǫ = 0.1 and V
being the 5-well potential shown in Fig. 2. We first consider the CGF of the first passage time
as discussed in Section 7.1. The resulting optimal control potential as of (20) is displayed in
Fig. 2 for different σ. As the set O we take the whole state space except a small neighbourhood
of its global minimum of V , so that its complement Oc is identical to the vicinity of the global
minimum and the exit time τO is the first passage time to Oc. Fig. 2 shows that the optimal
control potential alters the original potential V significantly in the sense that for σ > 0 the set
Oc is the bottom of the only well of the potential, so that all trajectories started somewhere
else will quickly enter Oc.

Figure 2: Five-well potential (left) and associated optimal control potential for the first passage time to the
target set Oc given by a small ball around the main minimum x1 (right) for different values of σ (right).
ǫ = 0.1.

This case is instructive: For the unperturbed original dynamics the mean first passage
time Ex(τO) takes values of around 10.000 for x > −2. For the optimally controlled dynamics
the mean first passage times into Oc are less than 5 for σ = 0.1, 0.5, 1.0 so that the estimation
of Ex(τO) resulting from the optimal control approach requires trajectories that are a factor
of at least 1.000 shorter then the ones we would have to use by direct numerical simulation
of the unperturbed dynamics.

Figure 3 shows the optimal control potentials for computation of the committor qAB as
described in Section 7.2. We observe that the optimal control potential exhibits a singularity
at the boundary of the basin of attraction of the set A. That is, it prevents the optimally
controlled dynamics from entering the basin of attraction of A and thus avoids the waste of
computational effort by unproductive returns to A.

In our second example we consider two-dimensional diffusive molecular dynamics as of
(1) with the energy landscape V being the 3-well potential shown in Fig. 1. In Fig. 4 the
optimal control potential for computing the committors qAB between the two main wells for
two different temperatures ǫ = 0.15 and ǫ = 0.6 are displayed. As in our former experiment
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Figure 3: Optimally corrected potential for the case of J being the committor qAB for B being the set around
an 0.1-ball around the main minimum x1 of the potential. Left panel: A=ball with radius 0.1 around the
highest minimum x3. Right panel: A=ball with radius 0.1 around the second lowest minimum x2.

we observe that the optimal control potential prevents the dynamics from returning to A; in
addition it flattens the third well significantly such that the optimally controlled dynamics in
any case quickly goes into B. For ǫ = 0.15 a TPS sampling of reactive trajectories between
the two main wells, precisely from A to B with A and B as indicated in Fig. 4, results in
an average length of 367 for reactive trajectories based on the original dynamics. For the
optimally controlled dynamics we found an average length of 1.3.

Figure 4: Optimally corrected potential for the three well potential shown in Fig. 1 for the committor qAB

for the medium temperature ǫ = 0.6 case (left) and the low temperature ǫ = 0.15 case (right) and for the sets
A (ellipse in main well, right hand side) and B (ellipse in main well, left hand side).
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8 Conclusions

We have surveyed various techniques for the characterization and computation of rare events
occurring in molecular dynamics. Roughly, the approaches fall into two categories: (a)
methods that approach the problem by characterizing the ensemble of reactive trajectories
between metastable states or (b) path-based methods that target dominant transition chan-
nels or pathways by minimization of suitable action functionals. Methods of the first type,
e.g. Transition Path Theory, Transition Path Sampling, Milestoning or variants thereof, are
predominantly Monte-Carlo-type methods for generating one very long or many short trajec-
tories, from which the rare event statistics can then be estimated. Methods that belong to the
second category, e.g., MaxFlux, Nudged-Elastic Band or the String Method, are basically op-
timization methods (sometimes combined with a Monte-Carlo scheme); here the objectives
are few (single or multiple) smooth pathways that describe, e.g. a transition event. It is
clear that this classification is not completely unambiguous, in that action-based methods
for computing most probable pathways can be also used to sample an ensemble of reactive
trajectories. Another possible classification (with its own drawbacks) is along the lines of the
equilibrium-nonequilibrium dichotomy that distinguishes between methods that characterize
rare events based on the original dynamics and methods that bias the underlying equilib-
rium distribution towards a (nonequilibrium) probability distribution under which the rare
events are no longer rare. Typical representatives of the second class are methods based on
Jarzynski’s identity for computing free energy profiles. The problem often is that rare event
estimators based on an ensemble of nonequilibrium trajectories suffer from large variances,
unless the nonequilibrium perturbation is cleverly chosen.

We have described a strategy to find such a cleverly chosen perturbation, based on ideas
from optimal control. The idea rests on the fact that the cumulant generating function of a
certain observable, e.g. the first exit time from a metastable set, can be expressed as the so-
lution to an optimal control problem which yields a zero variance estimator for the cumulant
generating function. The control acting on the system has essentially two effects: (1) under
the controlled dynamics, the rare events are no longer rare, as a consequence of which the
simulations become much shorter, (2) the variance of the statistical estimators is small (or
even zero if the optimal control is known exactly). We should stress that, depending on the
type of observable, the approach only appears to be a nonequilibrium method, for the optimal
control is an exact gradient of a biasing potential, hence the optimally perturbed system sat-
isfies detailed balance which is one criterion for thermodynamic equilibrium. Future research
should address the question as to whether the approach is competitive for realistic molecular
systems, how to efficiently and robustly extract information about specific moments rather
than cumulant generating functions, and how to extend it to more general observables or the
calculation of free energy profiles.
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