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Abstract

One of the most important characteristics of empirical
learning methods, such as AQ, ID3(CART), C4.5 and
CN2, is that they find variables which are relevant to
classification. In this paper, we define relevance in em-
pirical classifier as relevance of each given attribute to
apparent or predictive classification, and describe this
type of relevance in terms of rough sets and matroid
theory. The results show that these algorithms can be
viewed as the greedy algorithms searching for appar-
ent classification and that their weight functions may
play an important role in predictive classification.

1. Introduction

1.1 Motivations

One of the most important characteristics of empirical
learning methods, such as AQ (Michalski 1983; Michal-
ski 1985) ID3 (CART)(Breiman et al. 1984; Quinlan
1986), C4.5(Quinlan 1986), and CN2(Clark & Niblett
1989), is that they find some variables which are rele-
vant to classification.

These four classical methods consist of two main
procedures, splitting in ID3, which corresponds to IN-
DUCE method in AQ, and pruning in ID3, which cor-
responds to truncation in AQ. First, these methods
calculate combination of attribute-value pairs, which
is the best for classification of training samples. In
other words, the procedures derive solutions relevant
to classification of original samples, which we call ap-
parent relevance, or allocation relevance. However, the
induced results are only optimal to these given data,
and may not be optimal to the future cases. That
is, they are overfitting to the training samples. So,
in the second step, they remove some variables in or-
der to resolve this undesirable nature, which we call
overfit~ing irrelevance. These kinds of relevance and
irrelevance are discussed in the Machine Learning lit-
erature ( Breiman et al. 1984; Clark & Niblett 1989;
Michalski et ai. 1986; Quinlan & Rivest 1989).

However, there is also other kind of irrelevance.
While these empirical learning methods are powerful
in the case of training samples whose sample size is

small and which have a lot of attributes, their perfor-
mance will degrade when training samples have many
attributes. In the case of AQ, a large number of rules
consistent with training samples are derived, and in
the case of ID3, too little rules are obtained. We call
this irrelevance irrelevant rule generation.

In this paper, we focus on the former two types
of relevancies and irrelevancies in empirical learning
methods, and studying formal characterization of these
three irrelevancies. So our sense of relevance in this
paper is that "Relevance in empirical learning
methods (empirical classifiers) is defined as rel-
evance of each given attribute to apparent or
predictive classification.".

For the characterization, we introduce matroid the-
ory(Welsh 1976) and rough sets(Pawlak 1991) 
construct a common framework for empirical ma-
chine learning methods which induce knowledge from
attribute-value pattern database. Combination of the
concepts of rough sets and matroid theory gives us
an excellent framework and enables us to understand
these relevancies and irrelevancies and the differences
of these methods clearly.

Using this framework, we obtain four interesting
conclusions from our approach. First, AQ method is
equivalent to the greedy algorithm for finding bases
of Matroid from space spanned by attribute-value
pairs (ID3 method calculates ordered greedoids, which
are defined by weaker axioms than matroids.) Sec-
ond, according to the computational complexity of the
greedy algorithm, the efficiency of both methods de-
pends on the total number of attributes, especially,
dependent variables. Third, when we give a suitable
weight function, the greedy algorithm calculates com-
bination of attribute-value pairs which is optimal to the
weight function. Fourth, the induced results are opti-
mai to the training samples if and only if the conditions
on independence are hold. So if adding some new ex-
amples make independent attributes change their na-
ture into dependent ones, the condition of deriving op-
timal solution is violated.

The paper is organized as follows: in Section 2, the
elementary concepts of matroid theory are introduced,
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and several characteristics are discussed. Section 3
presents AQ method as the Greedy algorithm for AQ
matroid. Section 4 gives formulation of weight func-
tions. In Section 5, we consider about overfltting ir-
revalence as to weight functions.

1.2 Notation and Some Assumptions

In this paper, due to the limitation of the space, we
only focus on inducing method of stars in AQ, re-
duction method in Rough Set Theory, and splitting
method in ID3, and we do not consider about general-
ization (Michaiski 1983), truncation (Michalski et 
1986) and pruning(Breiman et al. 1984; Quinlan 1986).
These methods are also formalized by matroid theory if
we strengthen our original matroid model, defined as
below, by providing some additional concepts. And,
moreover, we also have to omit the proofs of the theo-
rems because of the space limitation. For further infor-
mation, readers could refer to (Pawlak 1991; Tsumoto
1994; Welsh 1976).

Below in this subsection, we mention about the fol-
lowing four notations used in this paper. First, for
simplicity, we deal with classification of two classes,
one of which are supported by a set of positive exam-
ples, denoted by D+ and the other of which are by a
set of negative examples, D_ = U - D+, where U is
the total training samples. And the former class is as-
sumed to be composed of some small clusters, denoted
by Dj, that is, D+ = OjDj.

Second, we regard an attribute-vaiue pair as an el-
ernentary equivalence relation as defined in rough
sets (Pawlak 1991). We denote the combination 
attribute-value pairs, which is called the complex of
selectors in terms of AQ theory, by an equivalence re-
lation, R. A set of elements which supports R, which
is called a partial star in AQ, is referred to as an in-
discernible set, denoted by [X]R. For example, let
{1, 2, 3} be a set of samples which supports an equiva-
lence relation R. Then, we say that a partial star of R
is equal to {1, 2, 3} in terms of AQ. This notion can be
represented as [x]R = {1,2, 3} in terms of rough sets.

Third, when we describe a conjunctive formula, we
use the ordinary logical notation. Furthermore, when
an equivalence relation is described as attribute-value
pair, we denote this pair by [attribute = value]. For
example, if an equivalence relation R means "a=l and
b=0", then we write it as R = [a = 1] h[b= 0].

Finally, we define partial order of equivalence rela-
tions as follows:

Definition 1 (Partial Order of Relations) Let
A( Ri) denote the set whose elements are the attribute-
value pairs included in Ri. I] A(Ri) C_ A(Rj), then 
represent this relation as:

Ri d Rj.
For example, let Ri represent a conjunctive formula,
such as aAbAc, where a, b, c are elementary equivalence
relations. Then A(Ri) is equal to {a, b, c}. If we use

the notation of Michalski’s APC(Annotated Predicate
Calculus) (Michalski 1983), Ri can be represented 
say [a = 1]&[b = 1]&[c = 1], then A(Ri) is equ~d to a
set of selectors, {[a -- 1], [b = 1], [c = 1]}.

2. Matroid Theory

2.1 Definition of a Matroid

Matroid theory abstracts the important characteristics
of matrix theory and graph theory, firstly developed
by Whitney (Whitney 1935) in the thirties of this cen-
tury. The advantages of introducing matroid theory
are the following: 1)Since matroid theory abstracts
graphical structure, this shows the characteristics of
formal structure in graph clearly. 2)Since a matroid
is defined by the axioms of independent sets, it makes
the definition of independent structure clear. 3)The
greedy algorithm is one of the algorithms for acquiring
an optimal base of a matroid. This algorithm is stud-
ied in detail, so we can use well-established results in
our problem.

Although there are many interesting and attractive
characteristics of matroid theory, for the limitation of
space, we only discuss about duality, and the greedy
algorithm. For further information, readers might refer
to (Welsh 1976).

First, we begin with definition of a matroid. A ma-
troid is defined as an independent space which satisfies
the following axioms:

Definition 2 (Definition of a Matroid) The pair
M(E, ff) is called a matroid (or an independence
space),if

1) E is a finite set,
e)¢ e y c 2~,
3)x eJ, Y cX ~ Y eJ,
4) X,Y e y, card(Z) = card(Y)+ (q a e
X - Y)(Y U {a}) E ,7.

I] X E ,7, it is called independent, otherwise X is
called dependent. []

One of the most important characteristic of matroid
theory is that this theory refers to the notion of inde-
pendence using the set-theoretical scheme. As shown
in (Pawlak 1991), we also consider the independence
of the attributes in terms of rough sets, which uses the
set-theoretical framework. Therefore our definition of
independence can be also partially discussed using ma-
troid theory, which is discussed later.

2.2 the Greedy Algorithm

Since it is important to calculate a base of a matroid in
practice, several methods are proposed. In these meth-
ods, we focus on the greedy algorithm. This algorithm
can be formulated as follows:

Definition 3 (the Greedy Algorithm) Let B be a
variable to store the calculated base of a matroid, and
E denote the whole set of attributes. We define the
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Greedy Algorithm to calculate a base of a matroid as
follows:

1.B~¢
2. Calculate "priority queue" Q using weight function
orE.
3.If B is a base of M(E, J) then stop. Else go to 4.
~.e ~ first(Q), which has a minimum weight in 
5. /[ B O {e} 6,7 then B ~ B U {e}. goto 2. []

This algorithm searches one solution which is optimal
in terms of one weight function. Note that a matroid
may have many bases. The base derived by the greedy
algorithm is optimal to some predetined weight func-
tion. So, for example, when we describe a weight func-
tion as a monotonic function of an apparent error rate,
the solution is optimal to an apparent rate, that is, in
the language of statistics, the algorithm calculates the
best class allocation of training samples. Hence if we
cannot derive a suitable weight function we cannot get
such aa optimal base. In the following, we assume that
we can define a good weight function for the greedy
algorithm, and we discuss about weight functions in
Section 4 and Section 5.

Under this assumption, this algorithm has the fol-
lowing characteristics:

Theorem 1 (Computational Complexity) The
complexity of the greedy algorithm is

O(mf(p(M)) lo g m)

where p(M) is equal to a rank of matroid M,m is equal
to the number of the elements in the matroid, IEI, f
represents a function of computational complexity of an
independent test, which is the procedure to test whether
the obtained set is independent, and is called indepen-
dent test oracle. []

Theorem 2 (the Optimal Solution) The optimal
solution is derived by this algorithm if and only if a
subset of the attributes satisfies the axioms of the ma-
troid. []

(For the limitation of the space, the proofs of these
theorems are not given in this paper. Readers might
refer to (Welsh 1976).) This theorem is very important
when we discuss about optimal solution of learning al-
gorithms. This point is discussed in section 5.

3. AQ as the Greedy Algorithm
Here we show that our "rough sets" reformulation of
AQ algorithm is equivalent to the greedy algorithm
for calculating bases of a matroid. Under the above
assumption we can constitute a matroid of AQ method,
which we call AQ matroid as follows:

Theorem 3 (AQ matroid) Let B denote the base of
a matroid such that [x]B = Dk. If we define an inde-
pendent set J(Dk) as {A(Ri)} which satisfies the fol-
lowing conditions:

2) [x]B 
3) VRi s.t. Ri -< Rj "< B, Di = [X]B C [x]R~ C [x]n,,

where the equality holds only if Rj = B. then this set
satisfies the definition of a matroid. We call this type
of matroid, M(E, J(Dk)),AQ matroid. 

The first condition means that a base is a maximal
independent set and each relation forms a subset of
this base. And the second condition is the charac-
teristic which satisfies all of these equivalence rela-
tions. Finally, the third condition denotes the rela-
tionship between the equivalence relations: Any rela-
tion Ri which forms a subset of A(Ri) must satisfy
[x]Rj C [x]R,. Note that these conditions reflect the
conditional part of AQ algorithm. For example, let
a and b elementary equivalence relations, and let [x]a
and [X]b be equal to {1,2,3} and {2,3,5}. If the set
which supports a target concept is D+ = {2}, then
D+ C [X]aAb(= {2, 3}) C [x]~(= {1, 2, 3}). Hence {a},
{b} and {a, b} belong to the independent sets for the
target concept. It is also notable that each Dk has ex-
actly one independent set J(Dk). Therefore the whole
AQ algorithm is equivalent to the greedy algorithm for
acquiring a set of bases of AQ matroid, denoted by
{J(Dk)}. Furthermore, since the independent test de-
pends on the calculus of indiscernible sets, is less than
O(p(M) 2)where n denotes a sa mple size , the com-
putational complexity is given as follows:

Theorem 4 (Complexity of AQ) Assume that we
do not use constructive generalization. Then the com-
plexity of A Q algorithm is less than

O(mn2p(M)) + m log m)

where p(M) is equal to a rank of matroid M, m is equal
to the number of the elements in the matroid, [EI. []

Hence the computational complexity of AQ depends
mainly on the number of the elements of a matroid,
since it increases exponentially as the number of the
attribute-value pairs grows large.

4. Heuristics as Weight Functions
Other rule induction methods, such as C4.5 and CN2,
and induction of decision trees, such as ID3, can be de-
scribed in the framework. The main difference among
these methods is what kinds of weight functions are
used. Actually, these weight functions are described
as functionals f(aR(D+)) of the accuracy measure,
aR(D+) which is defined as:

card [X]l~, N D+c~Ri (D+ ) 
card [x]R,

For example, the information-theoretic entropy mea-
sure, which is used in ID3 and CN2, can be rewritten
as:

log2
~={+,-}
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Also, the significant measure, which is defined in CN2
and can be viewed as a variant of the Kullback-Leibler
measure, is also rewritten as:

aR, (Dj)
E aR’(Dj)l°ga eR,(Dj)

3={+,-}

where eR,(Dj) = card Dj/card U. As mentioned
above, the greedy algorithm searches an optimal so-
lution which is exactly optimal to a weight function.
Therefore classificatory power, or predictive accuracy
strongly depends on this weight function, which seems
to be dependent on applied data. We discuss about
this issue in the next section.

5. Optimal Solution
As discussed in the above section, when we adopt
a weight function which is described as a monotonic
function of apparent error rate, we obtain an optimal
solution which is the best for apparent error rate. So,
in this case, Theorem 3 tells us that an optimal solution
is obtained only when relations between training sam-
ples and attributes-value pairs satisfy the conditions of
AQ matroid.

However, this assumption is very strict, since ap-
parent error rate depends on only given training sam-
ples. In practice, it is often violated by new additional
training samples. For example, when in the old train-
ing samples, Ri -~ Rj implies [x]R~ C [x]R,, additional
samples cause the latter relation to be [x]Rj = [X]R,.
In other words, additional samples cause independent
variables to be dependent. In this case, the former de-
rived solution is no longer optimal to this weight func-
tion. This problem is also discussed from the viewpoint
of predictive error rate &R~ (D) defined in the following
equation:

card {(Ix]R, N D+) U([x]~, N D~)}
&R,(D+) 

card {[x]R, [.J[x]~,)

= ER, aR,(D+) + (1 -- eR,)a~,(D~_)

where eR~ denotes the ratio of training samples to to-
tal population, aR~ (D+) denotes an apparent accuracy,
and c~ (D+) denotes the accuracy of classification for

Xcunobserved cases, [ ]R, and D~_.
Therefore the value of eR~ determines whether

aR~(D) is suitable to predictive classification or not.
On one hand, if eR~ is near to 0, then &R,(D+) may
be quite different from aR~(D+). So, in this case, an
optimal solution based on apparent accuracy is less
reliable. On the other hand, if eR~ is near to 1, then
&R,(D+) may be equal to aR((D+). So, in this case, 
optimal solution based on apparent accuracy is much
reliable. As shown in the above formula, since ER~
is dependent on sampling from total population, pre-
dictivity depends on sampling from total population.
Hence it is a very important factor whether sampling
is good or not.

The above formula also suggests that, if we have a
weight function which is a monotonic function of pre-
dictive error rate, then we derive a base optimal to it.
Unfortunately, it is impossible to derive such function,
since we can only estimate predictive error rate. Some
approaches discuss about these functions, which are
known as MDL function (Quinlan & Rivest 1989), and
their usefulness is ensured in their papers.

Due to the limitation of the space, we cannot fully
discuss about the relation between the solutions by
MDL function and matroid theory. Recent research
shows that weight function must be satisfied with some
important constraints derived by matroid theory and
greedoid theory, and that the new concepts of ma-
troid rigidity are closely related with these relations.
In (Tsumoto 1994), some results on the above rela-
tions are partially discussed. To apply fully these facts
to our formalization of learning methods will be our
future work.
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