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Characterization of residual stresses generated during
inhomogeneous plastic deformation
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Abstract: Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by
an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the resi-
dual elastic strains by neutron diffraction using two different (hkl ) reflections. Intergranular residual elastic
strains between subsets of grains are predicted numerically and verified by neutron diffraction. Subse-
quently, the measured residual strain profiles in the test samples are modified by the intergranular strains
and compared to the engineering predictions of the FE technique. Results compare well and verify the cap-
ability of the numerical technique as well as the possibilities of experimental validation using neutron dif-
fraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation
of more complicated plastic deformation processes resembling forming operations.

Keywords: residual stresses, plastic deformation, FE technique, neutron diffraction

NOTATION

ci acoustic wave speed
C damping matrix
d displacement vector
ḋn velocity vector
d̈n acceleration vector
...
dn time derivative of the acceleration vector
dhkl lattice spacing
dhkl

0 lattice spacing in virgin material
E Young’s modulus
Fextn external force vector
F int

n internal force vector
K stiffness matrix
Li characteristic element length
M mass matrix
nnodes number of nodes in an element
Dt time step
DtCourant critical time step

Γ anisotropy factor
dab Kronecker delta
« residual elastic strain
l eigenvalue
ri mass density
qmax highest frequency of FE mesh

Subscriptn denotes thenth time step and subscripti denotes
the ith element. Superscripthkl refers to thehkl Bragg
reflection given by Miller’s indices.

1 INTRODUCTION

Most forming operations used in industry involve some
degree of inhomogeneous plastic deformation, leading to
the generation of residual stresses which may be detrimental
to the structural integrity of the part. Residual stresses may
be predicted using numerical techniques like the finite ele-
ment (FE) technique; especially for forming operations
involving very large deformations explicit FE codes have
grown popular. The simulation of forming operations
involves some parameters that are non-trivial to quantify;
i.e. a process parameter like friction behaviour may need
to be estimated and the constitutive behaviour of the
material at processing temperatures and degrees of deforma-
tion may need to be extrapolated from uniaxial materials
data. Hence, the numerical results are prone to be uncertain
and an experimental evaluation of such predictions is called
for. The residual strains lend themselves to experimental
evaluation by the novel technique of neutron diffraction,
which can be used in a non-destructive manner to quantify
the bulk distribution of elastic lattice strains (see reference
[1]). The aim of this work is to study the evolution of resi-
dual stresses during a complex sheet metal-forming opera-
tion like deep drawing. However, this is approached
through a three-step process with increasing complexity
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both in the forming process and in the experimental evalua-
tion of the stress distributions. The present work constitutes
the first part of the study and focuses on a very simple
geometry and deformation process, namely a tensile testing
specimen with an inhomogeneous plastic deformation intro-
duced by the design of the specimen waist section.

2 THE SPECIMEN

The material selected for the present investigation is
oxygen-free copper of medium hardness supplied in 5 mm
thickness and with a grain size of 20–30mm. Pure copper
is rarely selected for structural parts because of its mechan-
ical properties. However, for the present investigation this
material is attractive. Copper shows good ductility and takes
relatively large plastic deformation at room temperature, it
displays a great deal of elastic and plastic anisotropy on a
microstructural level and has good neutron scattering prop-
erties, which is advantageous for the present experimental
characterization of residual strains. Materials data have
been extracted from tensile material tests according to DS/
EN 10130 [2] and DS/EN 10002-1 [3]. The true stress–
strain curve can be seen in Fig. 1. The sample geometry

was designed as a notched tensile test specimen with a
very short gauge section, as shown in Fig. 2. Uniaxial defor-
mation causes an inhomogeneous plastic deformation in the
gauge section, leading to the generation of residual stresses
across the specimen width upon unloading. Prior to defor-
mation, samples were annealed at 4508C for 30 min to
reduce possible residual stresses generated when samples
were manufactured. The samples were uniaxially loaded
to an extension of 0.5 mm (measured between the dashed
lines; see Fig. 2) and subsequently unloaded.

3 EXPLICIT FINITE ELEMENT ANALYSIS

When using an explicit FE method an acceleration of the
computation is required to find a solution in reasonable
CPU (central processing unit) time. One method is to
increase the loading rate whereby the total number of time
steps are decreased. However, when doing so care must
be taken not to introduce any severe inertia or rate effects
that are not part of the real process. One advantage of the
explicit FE method is the fact that it does not involve itera-
tions as it does when using an implicit FE method. This can
save CPU time as well as hard disk storage. However, expli-
cit codes are only conditionally stable, which means that
only very small time steps, on the order of microseconds,
are allowed. In the following a short introduction to the
explicit FE method will be given; for further details see
reference [4]. The implicit technique is well described in
reference [5] and will not be touched upon here.

3.1 The explicit FE method

Explicit FE techniques are often built on a central difference
scheme which explicitly solves the equation of motion with
respect to the nodal displacements. The equation of motion
at time tn can be written as:

M d̈n þ Cḋn þ F int
n ¼ Fext

n ð1Þ

HereM is the mass matrix,C is the damping matrix andF int
n

and Fext
n are the internal and external forces respectively.
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Fig. 1 True stress–strain curve for pure copper

Fig. 2 Geometry and dimensions of the specimen, thickness 5 mm. In the finite element analysis only the shaded
area of the specimen is modelled. Roller skates represent symmetry assumptions in the finite element model
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Furthermore,d̈n and ḋn are the acceleration and velocity
vectors respectively. The central difference method can be
derived from a Taylor series expansion around time step
tn to obtain the displacements:

dnþ1 ¼ dn þ Dt ḋn þ
Dt2

2
d̈n þ

Dt3

6

...
dn þ . . . ð2Þ

dn¹1 ¼ dn ¹ Dt ḋn þ
Dt2

2
d̈n ¹

Dt3

6

...
dn þ . . . ð3Þ

By adding equations (2) and (3) an expression for the accel-
erationd̈n is obtained by a minor rearrangement of the new
equation. Furthermore, subtraction of equation (3) from
equation (2) gives an expression for the velocityḋn; also,
here a minor rearrangement is required. Terms containing
Dt3 and higher powers are omitted. The velocity and accel-
eration vectors are then given by the expressions:

ḋn ¼
1

2Dt
ðdnþ1 ¹ dn¹1Þ ð4Þ

d̈n ¼
1

ðDtÞ2 ðdnþ1 ¹ 2dn þ dn¹1Þ ð5Þ

Combining equations (1), (4) and (5) provides an equation
for the external nodal forces at time steptn:

Fext
n ¼ M

ndnþ1 ¹ 2dn þ dn¹1

Dt 2

o
þC
ndnþ1 ¹ dn¹1

2Dt

o
þF int

n

ð6Þ

The above approximation is only of second-order accuracy
and has a finite stable time step (see Section 3.2), given by
the Courant limit. After a minor rearrangement equation (6)
provides an explicit expression for the displacement at time
tnþ1:

dnþ1 ¼
n

M þ
Dt
2

C
o¹1h

ðDtÞ2
n
¹F int

n þ Fext
n

o
þ2Mdn ¹

n
M ¹

Dt
2

C
o

dn¹1

i
ð7Þ

Now the displacements are expressed at timetnþ1 in terms
of the displacements at time stepstn andtn¹1. Solving equa-
tion (7) is a simple task when the mass matrixM and the
damping matrixC are diagonalized. The system of equa-
tions is uncoupled and it is not necessary to solve a set of
equations simultaneously. However, certain precautions
must be taken when the mass and damping matrices are
established (see Section 3.3).

3.2 Critical time step

Only very small time steps, on the order of microseconds,
are allowed in order to solve the equation of motion using
the central difference method, as this method is only

conditionally stable. However, from a computationally eco-
nomic point of view it is preferable to have as large time
steps as possible. Implicit solvers do not have this disadvan-
tage; here the time step is only limited by the required dis-
cretization in time. However, implicit solvers can cause
convergence problems where explicit solvers do not. This
justifies the use of an explicit FE technique in cases where
implicit solvers can be expected to run into problems. The
critical time step for an explicit FE scheme is given by

Dt <
2

qmax
ð8Þ

whereqmax is here the highest frequency of the determinant

detðK ¹ lM Þ ¼ 0 ð9Þ

The numerical results can be erroneous if the constraint of
equation (8) is not fully satisfied. However, it is not conve-
nient to calculate the highest frequency in this way as the
stiffness matrix is not directly available and it would also
make the computation time increase tremendously. To over-
come this problem the critical time step is calculated as the
Courant limit. The Courant limit is defined as the time in
which an acoustic wave can propagate through an FE ele-
ment in the mesh. The Courant limit is most easily explained
from beam theory.

An estimate of the maximum frequency of the finite ele-
ment mesh when the mass matrix of the system is lumped
can be given as

qmax ¼
2ci

Li
ð10Þ

whereci is the acoustic wave speed through thei th element,
which can be computed as

ci ¼

r
E
ri

� �
ð11Þ

andLi is the length of thei th beam or truss element in the FE
mesh. Thus, the Courant limit can be estimated by the
expression

DtCourant¼
Li

ci
ð12Þ

Keeping the time step below this limit will prevent the cen-
tral difference method from becoming numerically unstable.

3.3 A lumped mass matrix

With a lumped mass matrix the equation of motion is
uncoupled and it is not necessary to solve a set of equations
simultaneously. A lumped mass matrix can be calculated as

Maibj ¼ dabdij
1

nnodes

X
A

MA ð13Þ
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whereai refers to nodea and theith displacement andb
refers to nodeb and thej th displacement.MA is the mass
of elementA and nnodes is the number of nodes in the
element.

3.4 Increased loading rate

Using an increased loading rate decreases the total
number of time steps in the computation. This can reduce
the computation time significantly as it strongly depends
on the number of time steps. Performing a typical deep
drawing process takes 0.1–10 s and the simulation time
will then typically be in the range 0.001–0.1 s. The
operator has to verify that no severe rate or inertia effects
have been introduced when using an increased loading
rate. Another precaution to take when using an increased
loading rate is to avoid introducing spurious high-fre-
quency oscillation when using an inappropriate load
function. Imposing load using step functions will intro-
duce such unnecessary high-frequency oscillation. This
effect can be significantly reduced by using a smooth
load function where the load is imposed and removed
gradually. In the present computations this has been uti-
lized by means of a cosine function to specify the load–
time relationship.

3.5 Mass scaling

Another method to reduce the computation time is to scale
the mass matrix. This is done by minimizing the ratio
between the lowest and the highest eigenfrequency of the
finite element mesh. The method used in reference [6] is
to scan the mass matrixM element by element to select a
density for which the time stepDtnom will be the same for
all elements in the mesh. This is also called mesh homoge-
nization and the density is then computed as

Dtnom4
Li

ci
ð14Þ

which from equation (11) gives

ri ¼
Dtnom

Li

� �2

E ð15Þ

From the above equation a new element density is calcu-
lated. This element density is used for scaling the mass
matrix in order to homogenize the finite element mesh
with respect to the critical time step. When using mass scal-
ing, errors may be introduced as the mass in the physical
problem is rearranged, i.e. using higher and higher mass
scaling will cause larger and larger transfer from the original
physical problem to a non-physical problem. As is the case
when increasing the loading rate, the operator will have to
verify that no inertia effects are introduced when using
mass scaling.

3.6 The FE model

For this analysis the explicit finite element code LS-
Dyna3D, from Livermore Software Technology Corpora-
tion in the United States, has been used. The FE mesh of
the test specimen can be seen in Fig. 3. As symmetry was
assumed (see Fig. 2), only one-quarter of the specimen
was modelled. The specimen is modelled in three dimen-
sions and is composed of 4720 eight-node hexahedron solid
elements with 24 degrees of freedom. There are five ele-
ments through the thickness. After plastic deformation arti-
ficial damping has been imposed on the model. This is used
to damp out the dynamic response of elastic strains and
stresses in the FE model. Applying it after the plastic distor-
tion has ended prevents the results from being polluted by
any plastic distortion caused by the artificial damping force.
The von Mises isotropic yield criteria and a piecewise linear
approximation of the true stress–strain curve with isotropic
hardening have been used in the FE model. The mass was
scaled by a factor of 3.7 and the loading rate was increased
by a factor of 300.

All plastic distortion has been restrained to the notched
area and during loading and unloading the specimen has
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Fig. 3 FE mesh of the specimen, with five elements through the
thickness
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developed a non-homogeneous distribution of plastic strain-
ing in the notched area. This non-homogeneous plastic
straining causes the development of residual stresses in
the same area. The computed residual stress and elastic
strain profiles along the symmetry planex ¼ 0 are shown
in Fig. 4.

4 NEUTRON DIFFRACTION

As an experimental means of evaluating the numerical pre-
dictions described above, neutron diffraction is utilized.
Neutron diffraction for characterization of residual stresses
and strains has been evolving during the past 15 years (see
references [7], [8] and [9]), and is today an established non-
destructive technique finding widespread use in material
science as well as in engineering.

4.1 The neutron diffraction technique

The basis of the neutron diffraction technique is simple
Bragg scattering, where selected lattice plane spacings,
dhkl, are measured. Comparing to some reference lattice
plane spacing,dhkl

0 , a measure of the elastic strain is estab-
lished as follows:

« ¼
dhkl ¹ dhkl

0

dhkl
0

As the penetration power of neutrons is on the order of cen-
timetres in most common engineering materials, strains can

be evaluated non-destructively in bulk material. Further-
more, the gauge volume can be specified by an accurate
definition of incident and diffracted beam lines, and the
strain component of interest can be selected by proper orien-
tation of the sample relative to the scattering vector. Due to
the selective nature of the diffraction technique only the
subset of grains with an orientation and lattice plane spacing
fulfilling the Bragg condition is monitored.

4.2 Characterization of the lattice strain distribution

The neutron diffraction experiments were conducted on the
TAS-8 instrument of the research reactor at Risø National
Laboratory. Here the white neutron beam from the reactor
is monochromatized using a graphite monochromator. The
gauge volume is defined using slit systems in the incident
and diffracted beam lines, and the sample positioning is
done using an automated sample robot. The present investi-
gation deals with the characterization of the distribution of
lattice strains across the sample width at the notch and in
a direction parallel to the deformation axis. The set-up is
illustrated in Fig. 5 showing the gauge volume to cover
the entire specimen thickness and covering 1 mm along
the specimen width. As described in Section 4.1, specific
(hkl ) lattice planes are selected as the internal strain gauges,
and for the present investigation the (111) and (200) reflec-
tions are selected. For each reflection the gauge volume was
scanned half-way across the specimen width from the centre
( y ¼ 0) to the surface edge (y ¼ 10), and the symmetry of
the strain distribution was verified by two measurements at
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Fig. 4 (a) Residualx-stress and (b) residual elasticx-strain profiles along the symmetry planex ¼ 0
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negativey coordinates. As a reference for strain calculation
(see above) the lattice parameter distribution of an unde-
formed sample was characterized. The results in terms of
the elastic residual lattice strain distributions are presented
in Fig. 6. It can be seen that the data from the two reflections
differ noticeably with the results of the (200) reflection show-
ing the greatest amplitude; both sets do, however, follow

the expectations of the centre of the sample, being in tension,
while the edge is in compression. From the present data it is
evident that the interior deformation of the crystalline
material is quite complicated and that continuum mechanics
predictions are merely averages of the actual anisotropic
micromechanical deformation of the polycrystalline aggre-
gate. In order to deduce an engineering measure of the
residual strain distribution from the present data, an accurate
analysis is necessary, as described in Section 5 below.

5 ANALYSIS

The results presented in Fig. 6 clearly indicate that on a
microstructural level the lattice strains in a polycrystalline
aggregate of copper are quite anisotropic. Copper single
crystals show a very large degree of elastic anisotropy
with the h111i crystal direction having a Young’s modulus
of 191 GPa, whereas for theh200i direction it is 67 GPa
[10]. These are the extremes [10] and the macroscopic
modulus is found somewhere in between these values.
Furthermore, plastic anisotropy on a grain-size scale causes
the development of intergranular stresses and strains, as
some grains, with certain orientations, deform plastically
before others. The overall result of the deformation process
is a balance between the elastic and plastic anisotropy where
locally self-equilibrating intergranular residual stresses
evolve due to the microstructural anisotropy, and different
(hkl ) reflections show different levels of residual lattice
strain distributions as a result of the macroscopic inhomo-
geneity of the deformation process. The experimental data
of Fig. 6 reflect the combined result of these effects and,
for comparison with the continuum mechanics based FE
predictions, it is necessary to separate the contributions of
these intergranular effects.

5.1 Numerical and experimental predictions of
intergranular strain effects

The local intergranular stresses and strains in the polycrys-
talline aggregate have been determined both numerically
and experimentally. For the numerical predictions a self-
consistent scheme [11] based on reference [12], where the
polycrystalline aggregate is assumed to consist of an
agglomerate of single crystals, was implemented. In this
self-consistent modelling scheme each single crystal is con-
sidered as a spherical inclusion embedded in an effective
medium with the elastic properties determined as the aver-
age of the complete set of crystallites in the agglomerate.
The overall boundary conditions of the agglomerate are
those of a uniaxial stress state, with all other tractions
than the one along the deformation axis being equal to
zero. Through an iteration procedure it is confirmed that
when having considered all crystallites in the agglomerate
the macroscopic deformation is consistent with these
boundary conditions. Each single crystal deforms by crys-
tallographic slip and accommodates the deformation by
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Fig. 5 Set-up for the neutron diffraction measurements of lattice
strain distributions. The gauge volume is seen as the inter-
section of the incident and diffracted beams, and the map-
ping of strains is done by scanning the sample passing this
gauge volume

Fig. 6 Elastic residual lattice strain distribution across the sam-
ple width; solid lines are meant as guides to the eye
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combined slip on the usualf111gh110i family of slip sys-
tems in crystals of the f.c.c. structure. Uniaxial deformation
to 1, 1.8 and 2.4 per cent total strain were simulated, from
which the elastic lattice strains in the subset of grains having
their crystallographich111i, h200i or h220i directions
aligned along the deformation axis were selectively
deduced. From the elastic part of the deformation the effec-
tive Kröner stiffness of these subsets [13] was deduced; the
results are given in Table 1 together with the theoretical
single-crystal values. The Kro¨ner modulus should be used
for the subsequent conversion of lattice strain distributions
to stresses. The plastic part of the deformation gives rise
to local self-equilibrating intergranular residual stresses
and strains upon unloading. These predictions for the three
reflections mentioned in Table 1 are shown in Fig. 7 in terms
of an anisotropy factor (G) defined in the figure, which goes
from 0 for the (100) reflection to 0.33 for the (111) reflection
[10]. The subset of grains having theirh200i direction along
the deformation axis returns into a state of residual tension
upon unloading. So do the grains having theirh111i direc-
tion along the deformation axis, though to a smaller degree,
whereas those with theirh220i direction along the deforma-
tion axis return into compression. Furthermore, it is noted
that the numerical size of these local intergranular strains
are of the order of 1–4× 10¹4. For a further description of

this numerical approach to the prediction of intergranular
strains and stresses see reference [14]. In order to evaluate
such numerical predictions neutron diffraction experiments
are conducted. Using a stress rig developed for the TAS-8
spectrometer at Risø [15], the evolution of elastic lattice
strains are followed duringin situuniaxial straining of small
copper samples to 1 per cent total strain. The experimental
results for the (111), (220) and (200) reflections are shown
in Fig. 8 where the lines are merely meant as guides to
the eye. The anisotropic evolution of lattice strains is clearly
seen with the (200) reflection experiencing the largest lattice
strains, whereas the (220) reflection shows a lattice strain
evolution that is essentially linear, though with a tendency
towards a slope of infinity which is indicating a saturation
in the evolution of elastic strains. Upon unloading the devel-
opment is observed of intergranular residual lattice strains
with the (200) and (111) reflections returning into states
of tension, while the (220) reflection returns into a state of
compression, as illustrated by the numerical predictions
shown in Fig. 7. In terms of the sign and order of magnitude
of the residual intergranular lattice strains, these experimen-
tal observations substantiate the numerical predictions by
the modelling approach, as described above and in Fig. 7.
For a more detailed evaluation of the modelling schemes
by direct experimental observations and for further informa-
tion on the development of intergranular strains and stresses
in f.c.c. polycrystals and the effect of elastic and plastic
anisotropy see reference [16].

5.2 Modification of experimental strain profiles

As mentioned in Section 5, such intergranular strains ought
to be subtracted numerically from the results of Fig. 6 when
comparing with an engineering estimate given by the FE
calculations. In fact, the level of intergranular strains to be

S03797q IMechE 1998 JOURNAL OF STRAIN ANALYSIS VOL 33 NO 3

Table 1 Elastic stiffnesses in characteristic directions of a
copper single crystal, here compared to the Kro¨ner
averages for an untextured polycrystalline aggregate

E111 (GPa) E110 (GPa) E200 (GPa)

Single crystals 191 130 67
Kröner estimates 150 137 99

Fig. 7 Numerical predictions of the intergranular residual strains after 1, 1.8 and 2.4 per cent total deformation, here
given as a function of theG parameter defined in the graph
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subtracted depends on the degree of plastic deformation and
hence varies across the specimen width. The present FE pre-
dictions show that the entire sample cross-section experi-
ences plastic deformation, with the maximum being 2.4
per cent at the sample edge (y ¼ 10) and the minimum
being 1.8 per cent at the sample centre (y ¼ 0). For the pre-
sent analysis the intergranular strains are assumed to vary
linearly from the sample edge to the sample centre using
the numerically predicted levels for 2.4 and 1.8 per cent
plastic strain. The data from Fig. 6 are subsequently modi-
fied by these intergranular strains and the resulting profiles
are shown in Fig. 9.

5.3 Comparison of FE and neutron diffraction results

In the present case experimental results are only available in
terms of thex component of residual elastic lattice strains,
and hence the comparisons to be made are based on this
component alone. From the detailed numerical results the
average values can be deduced for regions corresponding
to the gauge volumes used in the neutron diffraction experi-
ments. The numerical results are presented in Fig. 9 together
with the residual elastic strain profiles measured using the
(111) and the (200) reflections. It is observed that both
sets of experimental results follow the trend of the numeri-
cal predictions. Note that in particular the (200) reflection
follows closely the numerical predictions, though some dif-
ferences are observed especially near the outer edge at
y ¼ 10 mm. The stiff (111) reflection is typically monitoring
numerically lower strains as calculated. It is in particular
worth while noticing, when comparing the numerical pre-
dictions with the experimental results prior to being
modified by the residual intergranular strains (see Fig. 6),
that the differences here are far greater. Especially the
(200) reflection, which is strongly affected by residual
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Fig. 8 In situ neutron diffraction characterization of lattice strains during uniaxial straining of small tensile
specimens

Fig. 9 Lattice strain distributions of the (111) and the (200)
reflections now modified by the intergranular strains as
calculated by a self-consistent modelling scheme and
compared to the FE results
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intergranular strains, shows results that differ greatly from
the numerical predictions.

6 CONCLUSIONS

In the present investigation a simple sample geometry and a
simple deformation mode which was simulated by explicit
FE calculations were deliberately selected. The numerical
results have been verified by non-destructive neutron dif-
fraction characterization of the residual lattice strains. By
means of this diffraction technique, which probes the elastic
lattice strains in selected subsets of grains, it has been
verified that on a microstructural level there is a noticeable
degree of anisotropy in stresses and strains. By a self-
consistent modelling scheme the levels of intergranular
strains generated during plastic deformation have been
determined, and the numerical results have been substan-
tiated by neutron diffraction. Through the analysis of the
experimental data it has been shown how to separate these
intergranular residual strains from those arising from the
macroscopic inhomogeneity of the deformation, and resi-
dual strain profiles, used to validate the accuracy of the
FE predictions, have been determined experimentally.

The experimental results for the notched specimen show
that the grains oriented with their crystallographich200i
direction along the deformation axis experience much
higher residual strains than those with theirh111i direction
along this axis. Hence, the results display the balance
between elastic and plastic anisotropy present on a micro-
structural level in a polycrystal, information that is not
revealed through continuum mechanics-based FE
simulations.

The observed differences between numerical predictions
and experimental observations in Section 5 are not meant
to judge the correctness of one approach or the other.
Rather, the essential conclusion to be drawn is that a firm
understanding of the anisotropy effects present on a micro-
structural level is necessary for a fair comparison with a
continuum mechanics-based numerical technique. Through
this understanding the experimental observations can be
modified in order to render results that resemble the numer-
ical predictions. However, this does not remove the truth in
the observations presented in Fig. 6 that the (200) oriented
grains in the aggregate are strained to far higher levels
than the macroscopic average predicted by the continuum
mechanics-based technique. In the centre of the specimen
the (200) oriented grains are in fact observing strains in
excess of two times those of the numerical predictions.
Such high local strains levels ought to be of importance
for more fatigue and damage oriented aspects of materials;
such aspects are, however, beyond the scope of the present
investigation.

The present investigation, and especially the presented
analysis of diffraction results, will in future work be utilized
for more complicated parts and deformation processes, with
the ultimate goal being a validation of the capabilities of the

explicit FE technique for predicting residual stresses in
sheet metal forming operations.
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