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Abstract

Synaptic ribbons are presynaptic structures formed by the self-association of RIBEYE–the main structural component of
ribbon synapses. RIBEYE consists of two domains: a unique N-terminal A-domain and a C-terminal B-domain that is identical
to the transcription co-repressor C-terminal binding protein 2 (CtBP2). Previous studies in cell lines have shown that RIBEYE
A-domain alone is sufficient to form ribbon-like aggregates and that both A- and B- domains form homo-and heterotypic
interactions. As these interactions are likely the basis for synaptic-ribbon assembly and structural plasticity, we wanted to
examine how zebrafish Ribeye A- and B- domains interact with synaptic ribbons in vivo. To that end, we characterized the
localization of exogenously expressed Ribeye A- and B- domains and the closely related protein, CtBP1, in the hair cells of
transgenic zebrafish larvae. Unexpectedly, exogenously expressed Ribeye A-domain showed variable patterns of localization
in hair cells; one zebrafish paralog of A-domain failed to self-associate or localize to synaptic ribbons, while the other self-
assembled but sometimes failed to localize to synaptic ribbons. By contrast, Ribeye B-domain/CtBP2 was robustly localized
to synaptic ribbons. Moreover, both exogenously expressed B-domain/CtBP2 and CtBP1 were preferentially localized to the
basal end of ribbons adjacent to the postsynaptic density. Overexpression of B-domain/CtBP2 also appeared to affect
synaptic-ribbon composition; endogenous levels of ribbon-localized Ribeye were significantly reduced as hair cells matured
in B-domain/CtBP2 transgenic larvae compared to wild-type. These results reveal how exogenously expressed Ribeye
domains interact with synaptic ribbons, and suggest a potential organization of elements within the ribbon body.
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Introduction

Sensory receptors of the visual, auditory, and vestibular systems

contain presynaptic specializations that enable them to transmit

sensory information with high fidelity and for extended periods of

time [1,2]. These specializations, called dense bodies or synaptic

ribbons, are electron-dense structures that tether numerous

glutamate-filled vesicles and provide a scaffold for active zone

proteins [3,4]. Synaptic ribbons are thought to support the rapid

response of sensory receptors to stimuli by clustering presynaptic

calcium channels [5,6] and retaining a large, rapidly releasable

pool of synaptic vesicles at the active zone [7]. They also play a

critical role in responding to sustained stimuli by both priming

synaptic vesicles for release [8] and replenishing active sites with

vesicles for continuous release [9].

Sensory receptors in different organs and species have distinct

coding requirements, and synaptic ribbon architecture likely

contributes to synaptic function–synaptic ribbons are found in a

variety of different sizes and shapes, from generally spherical in

hair-cell synapses [10,11] to plate-like structures in photoreceptor

synapses [3]. Moreover, synaptic ribbon structures are dynamic;

synaptic ribbons in the retina and pineal gland change their shape

in response to illumination [12,13] or diurnal cycle [14], and this

structural plasticity is thought to optimize ribbon synapse function

for the corresponding sensory organs in dark versus light

conditions [15]. Since variations in synaptic-ribbon size and shape

appear to play an important role in optimizing the functional

properties of the synapse, different sensory receptors likely use

unique molecular mechanisms to establish and maintain their ideal

synaptic-ribbon structure. Yet one common mechanism of

synaptic-ribbon assembly and growth employed by all sensory

receptors is self-association of the unique ribbon synapse protein

RIBEYE [5,16,17].

RIBEYE is the main structural component of synaptic ribbons

[18,19]. It consists of two domains: an N-terminal proline-rich A-

domain and a C-terminal B-domain that is identical to C-terminal

binding protein 2 s (CtBP2s)–a splice isoform of the transcriptional

corepressor CtBP2 that lacks a nuclear localization signal and may
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play an important role in regulating intracellular membrane

dynamics [20]. Individual RIBEYE subunits form both homo- and

heterotypic interactions between three binding sites in their A-

domain and two binding sites in their B-domain [17]. Molecular

regulation of the homo- and heterotypic interactions between

RIBEYE A-domains and B-domains likely controls the assembly

and plasticity of synaptic ribbons [21]. Previous studies examining

heterologous expression of individual RIBEYE domains have

observed that the A-domain alone forms ribbon-like punctate

aggregates in cell culture, supporting a role for the A-domain as an

aggregation domain [17,18]. By contrast, heterologously expressed

B-domain appears diffusely distributed throughout the cells unless

co-expressed with the A-domain or full length RIBEYE. More-

over, interactions between the A-domain and B-domain have been

shown to be inhibited by low concentrations of NAD(H),

suggesting inhibition of heterotypic interactions between A- and

B-domains as a potential mechanism of regulating synaptic ribbon

assembly [17]. Yet the behavior of heterologously expressed

RIBEYE domains in cell culture may not reflect the native

behavior of individual RIBEYE domains within intact sensory

cells. Examining the localization of RIBEYE A- and B-domains in
situ; that is, within an intracellular milieu containing all the

necessary components to generate synaptic ribbons, should give

important further insight into how RIBEYE self-association is

regulated.

Here we characterized the intracellular localization of stably

expressed exogenous Ribeye A-domain, B-domain, and the closely

related protein CtBP1 within hair cells of transgenic zebrafish

larvae at 3 and 5 days-post-fertilization (dpf). Our results indicate

that Ribeye A-domain alone does not efficiently localize to

synaptic ribbons and suggest a potential substructural organization

of CtBPs within synaptic ribbons.

Materials and Methods

Ethics Statement
This study was performed with the approval of the Oregon

Health and Science University Institutional Animal Care and Use

Committee as well as the Massachusetts Eye and Ear Infirmary

Animal Care Committee, and in accordance with NIH guidelines

for use of zebrafish.

Fish Strains
Transgenic lines were created and maintained in Tübingen,

Tupfel Long Fin, and WIK wild-type backgrounds. Adult

zebrafish strains were maintained as previously described [22].

Generation of transgenic lines
Plasmid construction was performed using the Tol 2/Gateway

kit (Kwan, 2007). The hair cell specific myosin6b promoter was

previously cloned into the 59entry vector, p5E, 228 (Kindt, 2012).

Ribeye domains were PCR amplified from cDNA containing full-

length ribeye a (NCBI Accession Number NM_001195491.1) or

ribeye b (NM_001015064.1), and ctbp1 was amplified from a

cDNA clone ID: 7995426 (Open Biosystems; NCBI Accession

Number BC045280.1). The following primers were used to PCR

amplify clones for insertion into the Tol2 Middle-entry vector

(pME, 237): ribeye a (full length) [59ggggacaagtttgtacaaaaaag-

caggctatgttgatctccagtaagcag39] and [59ggggaccactttgtacaa-

gaaagctgggtgggtatacattttgtcttgcaggcc39]; ribeye a (A domain)
[59ggggacaagtttgtacaaaaaagcaggctatgttgatctccagtaagcag39] and

[59ggggaccactttgtacaagaaagctgggtgacttgtgtctggtgatgc39]; ribeye b
(A domain) [59ggggacaagtttgtacaaaaaagcaggctatgatggcagtgcgag39]
and [59ggggaccactttgtacaagaaagctgggtgacttgtttccggtgaagc39]; ri-
beye a (B-domain/ctbp2s) [59ggggacaagtttgtacaaaaaagcaggctgccac-
catgataaggcctcagatcatgaat39] and [59ggggaccactttgtacaa-

gaaagctgggtgggtatacattttgtcttgcaggcc39]; ctbp1
[59ggggacaagtttgtacaaaaaagcaggctgccaccatggctctgatggacaaac39]

and [59ggggaccactttgtacaagaaagctgggtg ttggtcggaagggatgtctc39].

PCR products were confirmed by restriction digest and gel

electrophoresis. Middle-entry (pMe) vectors were generated by BP

reaction per the Tol2 Kit (Invitrogen Live Technologies). BP

reaction products were confirmed by sequencing with M16

forward and reverse primers. Injection plasmids were created by

using LR clonase enzyme (Invitrogen), and then subsequently

confirmed by multiple restriction digests and gel electrophoresis.

To generate transgenic fish, plasmid DNA and tol2 transposase

Figure 1. Design of Ribeye A-domain, B-domain/CtBP2s, and CtBP1 constructs. (A) Schematic representation of human and zebrafish
Ribeye proteins. Sequence similarity of the two Ribeye domains between human and both zebrafish paralogs are shown as percentages. Protein
alignments were performed using the ClustalW method. (B) Schematic representation of the five constructs expressed in the stable transgenic
zebrafish lines used in this study. The sequence similarity between Ribeye a B-domain and CtBP1 proteins is shown as a percentage. Hair-cell specific
expression of each construct was driven by the myo6b promoter [11].
doi:10.1371/journal.pone.0107256.g001
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mRNA were injected into zebrafish embryos as previously

described [23].

All nucleotide and protein alignments were performed using

Lasergene software (DNAStar).

Antibodies
We used previously described [5,11] custom-generated anti-

bodies against Danio rerio peptide sequences of the A-domains of

Ribeye a (rabbit polyclonal; 1:250) and Ribeye b (mouse

monoclonal IgG2a; 1:10,000), and the N-terminal region of

Vglut3 (rabbit polyclonal; 1:1000). We also used clone 9E10

monoclonal and rabbit polyclonal purified antibodies (Sigma-

Aldrich) to label c-Myc and K28/86 purified antibody (mouse

monoclonal IgG1; 1:500; NeuroMab, Davis, CA) to label

MAGUK.

Immunohistochemistry
Immunohistochemistry was performed as previously described

[24] with slight modifications of the fixation times. Zebrafish

larvae were fixed with 4% paraformaldehyde/4% sucrose in

Figure 2. Ribeye A-domains inconsistently localize to synaptic ribbons at 3 dpf and 5 dpf. Representative confocal maximum-intensity
projection images of immunolabel or GFP in lateral line NM hair cells. Scale bars: 3 mm (main panels), 1 mm (D, inset). (A–A’) Ribeye a (A-domain)-myc
alone (A) and merged with Ribeye b labeling synaptic ribbons (A’) in posterior lateral line NM1 hair cells of a 3 dpf larva. (B) Ribeye a (A-domain)-myc
(cyan) and Vglut3 (magenta) immunolabel in a cross-section of an anterior lateral line NM at 5 dpf. (C–C’) Ribeye b (A-domain)-GFP alone (C) and
merged with Ribeye a immunolabel (C’) in NM1 hair cells of a 3 dpf larva. White boxes indicate regions used in (D–D’’). (D–D’’) Insets of region in C’
showing basally-localized Ribeye b (A-domain)-GFP in relation to synaptic ribbons labeled with an antibody to Ribeye a. (D) Two adjacent hair cells:
one with low Ribeye b (A-domain) expression next to another hair cell with moderate expression. A domain-GFP colocalizes with endogenous Ribeye
a. (D’) A hair cell with moderate Ribeye b (A-domain) expression. (A domain)-GFP colocalizes with endogenous Ribeye a. (D’’) A hair cell with high
Ribeye b (A-domain) expression. Read arrows indicate basally localized A-domain aggregates that do not colocalize with endogenous Ribeye. (E–E’’)
Ribeye a (A-domain)-myc (E), Ribeye b (A-domain)-GFP (E’), and merged with Ribeye b immunolabel (E’’) in NM1 hair cells of a 3 dpf larva. Note that
the Ribeye b antibody labels both endogenous Ribeye b and exogenous Ribeye b (A-domain).
doi:10.1371/journal.pone.0107256.g002
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phosphate buffer with 0.2 mM CaCl2 for 4 h (3 dpf) or 6 h (5 dpf)

at 4uC. Following rinse, larvae were permeabilized with ice cold

acetone and blocked with phosphate buffered saline (PBS)

containing 2% goat serum, 1% bovine serum albumin (BSA),

and 1% dimethyl sulfoxide (DMSO). Then they were incubated

with primary antibodies diluted in PBS buffer containing 1% BSA

and 1% DMSO overnight at 4uC, followed by diluted secondary

antibodies coupled to Alexa 488, Alexa 647 (Molecular Probes,

Invitrogen), or DyLight 549 (Jackson ImmunoResearch).

Confocal Imaging
Z-stack images of whole neuromasts (spaced by 0.5 mm over 7–

10 mm) were acquired as previously described [24] with either a

Zeiss LSM 700 laser scanning confocal microscope with a 6361.4

NA Plan-Apochromat oil-immersion objective or a Leica TCS

SP5 confocal microscope with a PL APO 6361.3NA glycerol-

immersion objective. For each experiment, the microscope

parameters were adjusted using the brightest wild-type specimen

such that just a few pixels reached saturation in order to achieve

the greatest dynamic range in our experiments.

Image processing
Digital images were processed using ImageJ software. 3D

isosurface renderings were created using Amira 3D Analysis

software (FEI Visualization Sciences Group). Subsequent image

processing for display within figures was performed using Photo-

shop and Illustrator software (Adobe).

Image analysis
Quantitative image analysis was performed on raw images using

Amira 3D Analysis software. To reduce background noise, a

Gaussian smoothing convolution was applied to each x-y image

within a stack with a kernel size of 3 and a s value of 0.4. To

quantitatively measure immunolabel intensity, a user-defined

inclusive threshold was applied to isolate pixels occupied by

immunolabeled Ribeye spheres or MAGUK patches. The

inclusive threshold values for each label were determined using

3D isosurface renderings, with the minimum threshold value

defined as the value above which the user could resolve two closely

adjacent spheres or patches. Minimum threshold values were

typically 80 (of 256) for Ribeye and 110 (out of 256) for MAGUK.

The Material Statistics function was then used to measure the

cumulative intensity of fluorescent pixels (sum of the grayscale

values) within each individual sphere or patch. Ribbon-synapse

localized Ribeye spheres were identified as such by juxtaposing

MAGUK patches.

RT-PCR and qPCR
At 5 dpf, groups of 30 transgenic larvae or WT siblings were

anesthetized on ice and decapitated with fine surgical scissors to

separate the posterior lateral line hair cells of the tail from other

ribbon synapse containing tissue in the head. Larval tail tissue was

immediately placed into RNAlater (Applied Biosystems/Ambion)

and total RNA was extracted using the RNAqueous 4-PCR kit

(Applied Biosystems/Ambion). Reverse transcription (RT)-PCR

was performed the using 5 ug total RNA and the Sprint RT

Complete Oligo(dT) kit (Clontech). For qPCR, 0.2 ul cDNA in

SsoFast Supermix (Bio-Rad) with appropriate primers was used for

each qPCR reaction, and the reactions were run in 96-well plates

using a Bio-Rad CFX96 Real-Time System. The RNA level for

ribeye b was first calculated from a cDNA standard curve, then

normalized to b-actin RNA. Primers used for ribeye b transcript

are as follows: forward 59-agttgatgcgcaaaggag-39 and reverse 59-

atggtggacacgatgactg-3.

Figure 3. Ribeye B-domain/CtBP2s localizes to synaptic ribbons
at 3 dpf. Representative images of immunolabel or fluorescent tag in
posterior lateral line NM1 hair cells of 3 dpf larvae. Scale bars: 3 mm
(main panels), 1 mm (insets). (A) Ribeye (B-domain)-GFP (cyan) and
Ribeye a antibody labeling of synaptic ribbons (magenta). Note that B-
domain-GFP does not completely colocalize with Ribeye a immunola-
bel. (B) Ribeye (B-domain)-myc (cyan), Ribeye a (blue), and Ribeye b
(red) immunolabel. Dashed circles indicate nuclear localization of B-
domain. Note that Ribeye a and b immunolabel colocalizes with each
other (magenta), but only partially colocalizes with B-domain (white).
Red arrows indicate resolvable indentations in the synaptic ribbons that
do not contain exogenous B-Domain, but do contain Ribeye. (C) Ribeye
a (full length)-mcherry (cyan) and Ribeye b immunolabel (magenta). Full
length exogenous Ribeye a-mcherry appears throughout the synaptic
ribbon and colocalizes with Ribeye b immunolabel (white).
doi:10.1371/journal.pone.0107256.g003
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Figure 4. Ribeye B-domain/CtBP2s disrupts endogenous Ribeye retention at synaptic ribbons in 5 dpf hair cells. (A–B) Representative
images of immunolabel or fluorescent tag in posterior lateral line NM3 hair cells of 5 dpf larvae. Scale bars: 3 mm (main panels), 1 mm (insets). (A, A’)
Ribeye a (blue) and Ribeye b (red) antibody labeling of synaptic ribbons, and anti-myc antibody labeling of B domain-myc (cyan) in a WT (A) and a
transgenic (A’) larva. Dashed circles indicate weak nuclear localization of B-domain. (B, B’) Ribeye (B-domain)-myc (cyan), Ribeye b (magenta), and
MAGUK (yellow) immunolabel in a WT (B) and a transgenic (B’) larva. Red asterisks indicate strong nuclear localization of B-domain. Red arrows
indicate cells with moderate levels of B-domain in the cytosol. (C) Box plots of cumulative immunolabel intensities of presynaptic Ribeye
immunolabeled spheres and postsynaptic MAGUK immunolabeled patches in 5 dpf transgenic B domain-myc larvae and WT siblings. These plots
show the median value (horizontal bar), the upper and lower quartiles (box), and the range (whiskers). Whiskers indicate the 10th and 90th percentiles.
****P,0.0001, defined by a Mann-Whitney U Test. Each plot represents a population of intensity measurements collected from NM3 hair cells of 7–8
individual larvae. (D) Relative expression level of ribeye b transcripts in the posterior lateral line of 5 dpf transgenic B domain-myc larvae and WT
siblings. Expression data was normalized to b-actin expression. The level of gene expression in WT siblings was normalized to one. Error bars are
s.e.m.
doi:10.1371/journal.pone.0107256.g004
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Results

Zebrafish Ribeye A-domains differ in their self-association
and synaptic ribbon localization
The A-domain of RIBEYE contains three specific interaction

sites that are thought to mediate RIBEYE self-association [17].

When transfected into HEK293, COS, and R28 cells, the A-

domain has been shown to form discrete ribbon-like aggregates

[17,18], suggesting that the A-domain functions primarily as an

aggregation domain [18]. We therefore characterized the locali-

zation of stably expressed Ribeye A-domain in situ by examining

its localization in zebrafish stably expressing Ribeye A-domain in

lateral-line neuromast (NM) hair cells.

Zebrafish have two copies of the gene encoding Ribeye: ribeye a
and ribeye b [16], and both Ribeye paralogs are found in zebrafish

hair-cell synaptic ribbons [5]. As the sequence similarity between

the A-domains of the two Ribeye proteins is relatively low

(Figure 1A; 54%), we created constructs containing the A-domain

of each Ribeye paralog: ribeye a (A-domain) fused to a c-terminal

6x-myc tag and ribeye b (A-domain) fused to a c-terminal GFP tag

(Figure 1B). Expression of these constructs was driven by the hair-

cell specific myosin6b promoter [11]. In contrast to what was

observed when the A-domain was heterologously expressed in cell

lines, exogenously expressed Ribeye a (A-domain)-myc in hair cells

did not self-associate nor did it localize to synaptic ribbons

(Figure 2A, A’, B). Instead, it localized diffusely throughout the cell

bodies of both relatively immature (Figure 2A,A’) and mature

(Figure 2B) hair cells. In addition, Ribeye a (A-domain)-myc did

not colocalize with the synaptic vesicle marker Vglut3 (Figure 2B),

which supports that exogenous Ribeye a (A-domain) failed to

traffic to synaptic ribbons. By contrast, Ribeye b (A-domain)-GFP

localization in hair cells was variable; it was able to partially self-

associate (Figure 2C) and, when expression levels were moderate,

localize to synaptic ribbons (Figure 2C’, D, D’). However, we also

observed Ribeye b (A-domain)-GFP aggregates that did not

localize to synaptic ribbons (Figure 2D’’). These results reveal a

disparity between the two zebrafish paralogs of A-domain with

regards to their self-association and trafficking to synaptic ribbons

in zebrafish hair cells.

Because duplicate genes in zebrafish often recapitulate the

functions of a single ancestral gene [25], we examined whether co-

expression of both Ribeye (A-domain) paralogs would improve

their localization to synaptic ribbons. To test this, we crossed

transgenic carriers of both ribeye a (A-domain)-6xmyc and ribeye b
(A-domain)-gfp, then examined their localization to synaptic

ribbons. Because both of the antibodies we use to label synaptic

ribbons interact with the A-domains of each paralog of Ribeye [5],

we were unable to label synaptic ribbons without also labeling one

of the transgenes. Since labeling Ribeye a (A domain) appeared as

a strong cell fill and obscured intracellular structures, we used the

antibody against Ribeye b to label synaptic ribbons. In hair cells

also expressing Ribeye b (A-domain)-GFP we still observed no

synaptic localization of Ribeye a (A-domain)-myc (Figure 2E, E’’).

Furthermore, we did not observe any apparent improvement in

the synaptic localization of Ribeye b (A domain)-GFP when co-

expressed with the other A-domain paralog; that is, it appeared to

localize to ribbon synapses to a certain extent, but also was found

diffusely throughout the hair cells and accumulated at the apical

end of hair cells when expressed alone or with Ribeye a (A-

domain)-myc (Figure 2C, E’). These results suggest that the Ribeye

(A-domain) alone is not completely sufficient to localize to synaptic

ribbons.

Figure 5. CtBP1 localizes to synaptic ribbons, but does not
disrupt endogenous Ribeye. Representative images of immunolabel
in posterior lateral line NM3 hair cells of 5 dpf larvae. Scale bars: 3 mm
(main panels), 1 mm (insets). (A) Ribeye b antibody labeling of synaptic
ribbons (magenta) and MAGUK antibody labeling of postsynaptic
densities (yellow) in a WT sibling larva. Anti-myc (cyan) immunolabel
was performed as a negative control. (B–C) CtBP1-myc (cyan), Ribeye b
(magenta), and MAGUK (yellow) immunolabel in two representative
transgenic larvae. (B) CtBP1-myc (cyan) is strongly localized to the
nucleus with weak synaptic localization. The red arrow indicates a
synaptic ribbon containing CtBP1-myc. Note that Ribeye immunolabel
intensity in all four synaptic ribbons appears comparable. (C) CtBP1-myc
(cyan) is weakly localized to the nucleus with strong synaptic
localization. Presynaptic Ribeye immunolabel intensity is not reduced
compared to WT (A).
doi:10.1371/journal.pone.0107256.g005
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Ribeye B-Domain/CtBP2s localizes to synaptic ribbons in
developing zebrafish hair cells
We next examined the localization of Ribeye (B-domain)/

CtBP2s by creating transgenic zebrafish lines expressing ribeye a
(B-domain) fused to either 6x-myc or GFP in hair cells

(Figure 1B). Because the sequence similarity between the two

zebrafish B-domain/CtBP2s paralogs is high (Figure 1A; 91%), we

only created constructs containing the B-domain of one Ribeye

paralog. As with the A-domain constructs, expression of B-domain

containing constructs was driven by the myosin6b promoter. In

developing 3-day-old NM hair cells, we observed robust localiza-

tion of B-domain/CtBP2s to synaptic ribbons within all hair cells

examined in both transgenic lines (Figure 3A, B). We also

observed weak localization of B-domain/CtBP2s-myc to hair-cell

nuclei (Figure 3B; outlined with dashed circles), which is similar to

what has been reported in CtBP2s-flag expressing HeLa and COS

cells [20]. Strikingly, the B-domain appeared to preferentially

localize to one side of ribbon bodies; ribbon-localized B-domain

puncta appeared juxtaposed to endogenous Ribeye-containing

puncta, but did not fully co-localize (Figure 3A, B; insets). To

address whether the apparent substructural localization of the B-

domain was an artifact of protein overexpression or the C-terminal

tag, we exogenously expressed full-length Ribeye a fused to

mCherry and saw complete co-localization of Ribeye a-mCherry

and endogenous Ribeye b immunolabel (Figure 3C). We also

previously observed comparable results with stably expressed

Ribeye b-GFP [5]. Collectively, these results demonstrate that

Ribeye (B-domain)/CtBP2s alone can localize to synaptic ribbons

and reveal that B-domain localizes to one side of synaptic ribbons.

The observation that exogenous B-domain was not distributed

throughout synaptic ribbons in a similar way to exogenous full-

length Ribeye is noteworthy because it suggests that B-domain

alone interacts with synaptic-ribbon components in a different way

than full-length Ribeye.

Ribeye B-domain/CtBP2s disrupts endogenous Ribeye
retention in the synaptic ribbons of relatively mature
zebrafish hair cells
To determine whether the pattern of B-domain localization in

hair cells persisted at later stages, we examined the localization of

Ribeye B-domain/CtBP2s in the relatively more mature hair cells

of 5 dpf zebrafish larvae [24,26]. Similar to what we observed in 3

dpf larvae, both B-domain/CtBP2s transgenes localized well to

synaptic ribbons (Figure 4A’, B’). In addition, B-domain/CtBP2s-

myc sometimes localized to hair-cell nuclei (17 out of 107 hair

cells), but in general was excluded from the nucleus in 5-day-old

NM hair cells (Figure 4A’, B’). Notably, the immunolabel intensity

of both endogenous Ribeye a and b at presumptive presynaptic

ribbons appeared reduced in B-domain/CtBP2s expressing hair

cells compared to WT siblings at 5 dpf (Figure 4A, A’), which we

did not observe at 3 dpf (Figure 3 A, B). To quantify the degree of

reduction in ribbon-synapse localized Ribeye, we used Amira

Figure 6. Ribeye B-domain/CtBP2s and CtBP1 localizes to the basal end of synaptic ribbons facing the postsynaptic density.
Isosurface renderings of ribbon synapses extrapolated from z-stack confocal images of Ribeye b (magenta), GFP or myc (cyan), and MAGUK (yellow).
Dashed arrows indicate the ribbon synapses used from the images to generate the 3D renderings. (A–A’) Ribeye (B-domain)-GFP (cyan) with Ribeye b
(magenta), and MAGUK (yellow) in 3 dpf larvae. Note that B-domain-GFP within synaptic ribbons appears adjacent to patches of MAGUK. (B–B’)
Ribeye (B-domain)/CtBP2s-myc (cyan) with Ribeye b (magenta), and MAGUK (yellow) in 5 dpf larvae. Note that B-domain-myc within synaptic ribbons
also appears adjacent to patches of MAGUK. (C–C’) CtBP1-myc (cyan) with Ribeye b (magenta), and MAGUK (yellow) in 5 dpf larvae. Synaptic ribbon
localization of CtBP1 appears comparable to Ribeye (B-domain)/CtBP2s.
doi:10.1371/journal.pone.0107256.g006
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image processing software to create 3D-renderings of confocal

stacks. We then measured the cumulative intensity of each Ribeye

immunolabeled sphere adjacent to a patch of postsynaptic density

labeled with an antibody against the PSD-95 family of membrane

associated guanylate kinases (MAGUKs) (Figure 4 B, B’). We

observed a significant reduction in the cumulative pixel intensity of

endogenous Ribeye at presynaptic spheres (Figure 4C; Mann

Whitney U test: P,0.0001) but not MAGUK at postsynaptic

patches (Mann Whitney U test: P = 0.2504). This indicates that

exogenous B-domain reduces endogenous Ribeye protein levels

within synaptic ribbons but does not disrupt postsynaptic

components. Because we observed nuclear localization of exoge-

nous B-domain/CtBP2s and CtBP2 is a transcriptional corepres-

sor, we sought to address whether B-domain overexpression

reduced transcript levels of ribeye in 5-day-old zebrafish hair cells.

We therefore performed qPCR and saw no difference in the

relative amount of ribeye b transcript in B-domain overexpressing

larvae versus wild-type (Figure 4D), supporting the notion that

exogenous B-domain/CtBP2s disrupts retention of Ribeye at

synaptic ribbons.

CtBP2 shares a high degree of sequence similarity with the

related transcriptional corepressor CtBP1 (Figure 1B; 79%).

CtBP1 has been shown to heterodimerize with CtBP2 [20] and

is also a component of synaptic ribbons [27,28,29,30]. Therefore,

we tested whether exogenously expressed CtBP1 would localize to

synaptic ribbons in a similar way as B-domain/CtBP2s in

zebrafish hair cells. We observed that exogenous CtBP1 also

localized to hair-cell nuclei and to synaptic ribbons (two examples

shown in Figure 5B, C). In contrast to what we observed with B-

domain/CtBP2s (Figure 4B’; inset), exogenous expression of

CtBP1 did not reduce endogenous Ribeye immunolabel at

synaptic ribbons (Figure 5B, C; insets). These data suggest that

the reduction of Ribeye at synaptic ribbons we observed in hair

cells expressing Ribeye B-domain/CtBP2s is specific to CtBP2s

and not just a consequence of excessive CtBP at the synaptic

ribbon.

B-domain/CtBP2s and CtBP1 localize to the basal end of
synaptic ribbon bodies adjacent to postsynaptic
densities
Our experiments indicated that B-domain/CtBP2s is enriched

on one side of synaptic ribbons in 3 dpf larvae (Figure 3 A, B). To

visualize the localization of the B-domain/CtBP2s with respect to

the postsynaptic density, we generated 3-D isosurface renderings

of ribbon synapses in the hair cells of both 3- and 5-day-old

transgenic larvae. While full-length endogenous Ribeye was

generally found throughout the synaptic ribbon, B-domain/

CtBP2s-GFP and B-domain/CtBP2s-myc were localized to a

section of the ribbon body adjacent to the postsynaptic density at

both larval ages examined (Figure 6A, B). Moreover, CtBP1-myc

also localized to an area of synaptic ribbons adjacent to

postsynaptic densities (Figure 6C), suggesting that, in general,

endogenous ribbon-localized CtBPs may be preferentially segre-

gated to the basal end of synaptic ribbons in zebrafish hair cells.

Discussion

Self-association of the protein RIBEYE, which is mediated by

homo- and heterotypic interactions between its two domains [17],

is critical to synaptic-ribbon formation and plasticity. While

regulation of RIBEYE domain interactions appears to play an

important role in synaptic ribbon assembly [3], the behavior of

individual RIBEYE domains within sensory cells has not been

previously described. In the present study, we characterized the

localization of exogenously expressed Ribeye A- and B-domains

and the closely related protein CtBP1 within lateral line hair cells

of stable transgenic zebrafish. We observed that (i) Ribeye a (A-

domain) fails to self-associate or localize to synapses, (ii) Ribeye b
(A-domain) incompletely self-associates, but generally localizes to

synapses, (iii) both B-domain/CtBP2s and CtBP1 localize to the

nucleus, the cytosol, and synaptic ribbons, (iv) B-domain/CtBP2s

disrupts endogenous Ribeye retention at synaptic ribbons in 5-day-

old hair cells, and (v) CtBP1 and B-domain/CtBP2s localize to the

basal end of synaptic ribbons adjacent to the postsynaptic density.

Collectively, these results suggest that zebrafish Ribeye A-domains

do not contain all the required elements needed to completely

localize to synaptic ribbons, while Ribeye B-domain contains

elements that enable effective localization to synaptic ribbons such

that it may displace endogenous Ribeye in mature zebrafish hair

cells.

The incomplete self-assembly and variable association of Ribeye

A-domains with synaptic ribbons suggest that multiple cellular

mechanisms regulate A-domain association with itself and/or full-

length Ribeye in vivo, which is in contrast to the robust and

complete self-assembly of RIBEYE A-domain observed in cell

culture. However, the two zebrafish paralogs of A-domain share

only ,50% sequence similarity both with each other and with

human RIBEYE A-domain (Figure 1A), which may explain why

they differ greatly in their self-association and localization to

synaptic ribbons As both zebrafish paralogs of Ribeye are

distributed throughout hair-cell synaptic ribbons and the assembly

of each paralog is comparably regulated during hair-cell ribbon

maturation [24], it is conceivable that an additional level of

cellular regulation exists in zebrafish to coordinate the assembly of

both paralogs of Ribeye that may differ from the regulation of

mammalian RIBEYE A-domain assembly in vivo.
By contrast, zebrafish Ribeye B-domain, which shares a high

degree of sequence similarity with mammalian B-domain, appears

to associate with synaptic ribbon structures in hair cells in a similar

way as previously described in heterologous expression systems;

that is, it associates with full-length Ribeye [17]. There are,

however, a couple of notable and interesting differences. One

difference is that ribbon-localized B-domain did not distribute

evenly throughout synaptic ribbons and did not completely

overlap with full-length Ribeye. Rather, B-domain accumulated

to the basal side of synaptic ribbons facing the post-synaptic

density (Figure 6A, B). Another difference observed was that as

hair cell matured, the B-domain appeared to disrupt endogenous

Ribeye accumulation at synaptic ribbons (Figure 4A–C). Cumu-

latively, these data suggest additional cellular mechanisms

regulating molecular interactions of the B-domain with other

components of the synaptic ribbons.

The observation that exogenous B-domain/CtBP2s and CtBP1

accumulated within synaptic ribbons adjacent to postsynaptic

densities may reflect the behavior of endogenous CtBP proteins in

sensory hair cells. Both CtBP1 and CtBP2s have been found to

localize to conventional presynapses throughout the brain [27,31],

supporting that CtBPs may be generally conserved active zone

molecules. With regards to ribbon synapses, CtBP1 is also a

component of synaptic ribbons, and both CtBP1 and B-domain/

CtBP2s directly interact with each other and with Bassoon–an

active-zone protein that is required for maintenance of synaptic-

ribbon attachment to the plasma membrane [27,32,33]. Specu-

latively, enrichment of exogenous B-domain/CtBP2s and CtBP1

at the base of hair-cell synaptic ribbons may reflect their

interaction with Bassoon near the plasma membrane. It is

important to note that, in contrast to what we observed in hair-

cell synaptic ribbons, a previous study examining synaptic ribbon
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components in photoreceptors reported enrichment of Bassoon

immunogold labeling at the base of synaptic ribbons, yet CtBP1

immunogold labeling was present throughout photoreceptor

synaptic ribbons in EM micrographs [27]. Further studies

examining the localization of endogenous CtBP1 in hair cells will

clarify whether the substructural synaptic localization of exoge-

nous CtBP1 that we observed truly reflects its native localization in

hair-cell synapses.

While CtBP1is indisputably part of the synaptic ribbon protein

complex, there exist conflicting reports as to whether CtBP2 is also

a component of synaptic ribbons [28,29,30]. As sensory hair cells

certainly contain CtBP2 [6,34] and considering that B-domain/

CtBP2s appears to disrupt native Ribeye localization at ribbon

synapses, there are likely regulatory mechanisms within hair cells

that limit or exclude CtBP2 from synaptic ribbons. It may be that

our exogenously expressed B-domain/CtBP2s overrode these

presumptive regulatory mechanisms either by overabundance of

the protein or because the B-domain/CtBP2s transgene we used

lacks the N-terminal nuclear localization signal, which has been

reported as the main determinant of sorting CtBP2 to the nucleus

instead of the presynaptic active zone [31]. Interestingly, the

notion that B-domain/CtBP2s outcompetes native Ribeye is

supported by evidence that physiological levels of NAD(H)

negatively regulate heterotypic interactions between Ribeye A-

domain and B-domain [17], thereby favoring homodimerization

between the B-domains. Because synaptic-ribbon size is tightly

regulated in zebrafish hair cells [24], we speculate that B-domain/

CtBP2s may occupy a number of the limited slots for Ribeye via

homotyptic interactions between full-length endogenous Ribeye’s

B-domain and exogenous B-domain.

In conclusion, our results suggest that multiple mechanisms exist

in sensory cells that regulate both Ribeye self-association and

Ribeye’s interaction with CtBP1 at synaptic ribbons. Our results

also raise the possibility that the organization of CtBP proteins

within synaptic ribbons may be compartmentalized. It is important

to note that overexpression of Ribeye subunits or CtBP1 did not

grossly affect 5-day-old zebrafish hearing or balance, however we

did not test for subtle defects in auditory or vestibular function.

Future studies addressing whether and how an overabundance of

CtBP1 or CtBP2 affect ribbon-synapse activity could give

important insight into the functional organization of synaptic

ribbons.
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