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Abstract: Ricci solitons (RS) have an extensive background in modern physics and are extensively
used in cosmology and general relativity. The focus of this work is to investigate Ricci almost solitons
(RAS) on Lorentzian manifolds with a special metric connection called a semi-symmetric metric
u-connection (SSM-connection). First, we show that any quasi-Einstein Lorentzian manifold having
a SSM-connection, whose metric is RS, is Einstein manifold. A similar conclusion also holds for
a Lorentzian manifold with SSM-connection admitting RS whose soliton vector Z is parallel to
the vector u. Finally, we examine the gradient Ricci almost soliton (GRAS) on Lorentzian manifold
admitting SSM-connection.

Keywords: Lorentzian manifolds; symmetric spaces; semi-symmetric metric connection; Ricci soliton;
gradient Ricci almost soliton

MSC: 53C25; 53C20; 53C21; 53C65

1. Introduction

Let M be an n-dimensional pseudo-Riemannian manifold. A vanishing of torsion
tensor τ̂ associated to a linear connection D̂ on M, that is, τ̂(X1, X2) = D̂X1 X2 − D̂X2 X1 −
[X1, X2] = 0, then D̂ is called a symmetric connection. If it is not, then it is called non-
symmetric connection. Many geometers classify the linear connection D̂ into various
classes based on the different forms, for instance, a semi-symmetric (SS) if the following
condition holds:

τ̂(X1, X2) = u](X2)X1 − u](X1)X2, ∀ X1, X2 ∈ Γ(TM) (1)

where the one-form u] and the associated vector field u are connected through a pseudo-
Riemannian metric g by

u](X1) = g(X1, u). (2)

If we replace X1 by ϕX1 and X2 by ϕX2, where ϕ is a (1, 1) tensor field, in the RHS of
Equation (1),then D̂ becomes a quarter-symmetric connection. If D̂g = 0, then the connec-
tion D̂ is known as a metric connection, otherwise, it is non-metric [1]. A linear connection
is symmetric and metric if and only if it is the Levi–Civita connection. Hayden’s [2] in-
troduced a metric connection D̂ with a non-vanishing torsion on a Riemannian manifold,
which was later renamed as a Hayden connection. After Pak [3] proved that it is a SSM
connection, many questions remain about it. Yano [4] started studying a Riemannian
manifold with SSM connection D̂ and shown that it is conformally flat when curvature
tensor vanish. Recently, Chaubey et al. [5] initiate to study of the concept of SSM P-
connection on a Riemannian manifold, including its geometric properties. Further, this
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idea has been examined in [6]. After that, this notion was introduced on a Lorentzian
manifold by Chaubey et al. [7] and studied its geometrical and physical properties under
some classification.

Hamilton [8] introduced the concept of Ricci soliton (RS) in his seminal work, which
is a generalization of the Einstein metric. A pseudo-Riemannian manifold (M, g) is said to
be RS if there is a smooth vector field Z on M satisfying

1
2
LZg + Ricg = λg (3)

where L indicates the Lie derivative operator, Ricg is Ricci tensor and λ is a real number
(λ = 1

n (divZ + s), where n = dimM and s indicates the scalar curvature of (M, g)). If λ < 0,
the RS is referred to as expanding. Conversely, if λ > 0, it is referred to as shrinking. In
the case λ = 0, we obtain a steady RS. A Ricci soliton (RS) is known as a Gradient Ricci
soliton (GRS) if there is a potential function h that satisfies Z = gradh. In such a case
Equation (3) becomes

Hesh + Ricg = λg, (4)

where Hesh denotes the Hessian of h. The mathematical community has taken a great
interest in the work of Pigola et al. [9] as they have expanded the concept of Ricci soli-
tons by adding the condition on λ in Equation (3) to be a smooth function on M. In this
setting, we refer to Equations (3) and (4) as being the fundamental equations of a Ricci
almost soliton (RAS) and gradient Ricci almost soliton (GRAS), respectively. The (gradient)
RAS structure links geometric details regarding the curvature through Ricci tensor and the
geometry of the potential function level sets by means of their second fundamental form.
Therefore, it is a natural problem to examine the (gradient) RAS structure under certain
curvature conditions. Many geometers have examined different examples, rigidity out-
comes, and characterizations related to (gradient) RS structure; for instance, Hamilton [10]
and Ivey [11] obtained several classification outcomes for compact case. Further, in [12],
certain results were established for the solitons of the Ricci flow on contact Riemannian
manifolds. Batat et al. [13] examined the existence of locally conformally flat Lorentzian
steady GRS structure of non Bryant type. Barros and Ribeiro [14] discussed the structure
equations for RAS structure. As a result of these equations, they proved that if a compact
non-trivial RAS with constant scalar curvature or a conformal associated vector field, then it
is isometric to a sphere. In [15], the authors examined GRS structure on locally conformally
flat Lorentzian manifolds by focusing on their local structure. Recently, Chaubey et al. [16]
characterized the RS structure on Lorentzian manifolds having a semi-symmetric non-
metric u-connection with Z = u. Some authors presented some crucial results related to
the special submanifolds in different spaces [17–29]. We can find more motivations of our
paper from several articles (see [30–45]). In this work, the RS and GRAS structure on a
Lorentzian manifold with a semi-symmetric metric u-connection are characterized and their
geometrical and physical properties are studied, inspired by the studies mentioned above.

2. Lorentzian Manifolds Admitting Semi-Symmetric Metric u-Connection

The Lorentzian manifold is a significant sub-class of pseudo-Riemannian manifolds
with a crucial role in mathematical physics, particularly in the theory of general relativity
and cosmology. A Lorentzian manifold is a doublet of a smooth connected para-compact
Hausdorff manifold M and Lorentzian metric g, which is a symmetric tensor of type (0,
2) that is non-degenerate and has signature (−,+,+, · · · ,+) for each point p ∈ M. A
non-zero vector field u ∈ Tp M is called timelike (resp. null, and spacelike) if gp(u, u) < 0
(resp. =, > 0).

The Levi–Civita connection D that corresponds to metric g on M defines a linear
connection D̂ on M and is given by

D̂X1 X2 = DX1 X2 + u](X2)X1 − g(X1, X2)u, ∀ X1, X2 ∈ Γ(TM). (5)
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Mishra et al. [46] and Chaubey et al. [47], studied an almost contact metric manifold
and characterized the case where u = ξ and D̂ξ = 0, which led to several significant
geometrical results. Later this notion was extended by Chaubey et al. [5,7] on both
Riemannian and Lorentzian manifolds, called semi-symmetric metric u-connection (shortly,
SSM u-connection).

Consider D̂u = 0, so that by virtue of Equation (5) one can obtain

DX1u = X1 + u](X1)u, (6)

where the associated vector field u defined by Equation (2) is a unit timelike vector field,
that is, g(u, u) = u](u) = −1. Utilizing this together with Equations (2) and (5), one can
easily obtain

(D̂X1 u])(X2) = (DX1 u])(X2)− g(X1, X2)− u](X1)u](X2).

Since (D̂X1 u])(X2) = 0, thus from the above relation we infer

(DX1 u])(X2) = g(X1, X2) + u](X1)u](X2). (7)

The restricted curvature with respect to the Levi–Civita connection D is stated as follows:

Lemma 1 (see [7]). A Lorentzian manifold of dimension n admitting SSM u-connection D̂ satisfies

R(X1, X2)u = u](X2)X1 − u](X1)X2, (8)

R(u, X1)X2 = g(X1, X2)u− u](X2)X1, (9)

g(R(X1, X2)X3, u) = u](X1)g(X2, X3)− u](X2)g(X1, X3), (10)

for X1, X2, X3 ∈ Γ(TM).

First, we prove the following lemmas, which we used to prove our main results:

Lemma 2. An n-dimensional Lorentzian manifold M with SSM u-connection D̂ satisfies

(DX1 Q)u = (n− 1)X1 −QX1, (11)

(DuQ)X1 = −2QX1 + 2(n− 1)X1, (12)

where Q indicates the Ricci operator and is defined by Ricg(X1, X2) = g(QX1, X2).

Proof. Contraction of Equation (8) leads to

Ricg(X1, u) = (n− 1)u](X1), (13)

which provides Qu = (n− 1)u. Differentiating this along X1 and adopting Equation (6)
yields Equation (11). Now, differentiating Equation (8) along X3, calling back Equation (7)
entails

(DX3 R)(X1, X2)u = −R(X1, X2)X3 + g(X2, X3)X1 − g(X1, X3)X2.

Consider {Ei}n
i=1 as a local orthonormal basis on M. Replacing X1 = X3 = Ei in the above

equation and then summing over i leads to

n

∑
i=1

g((DEi R)(Ei, X2)u, X3) = Ricg(X2, X3)− (n− 1)g(X2, X3). (14)
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Applying the second Bianchi identity yields

n

∑
i=1

g(DEi R)(X3, u)X2, Ei) = g((DX3 Q)u, X2)− g((DuQ)X3, X2).

The above equation together with Equation (14) provides

g((DuQ)X3, X2) = −2{Ricg(X2, X3)− (n− 1)g(X2, X3)},

which yields Equation (12).

Lemma 3. An n-dimensional Lorentzian manifold with SSM u-connection D̂ satisfies

u(s) = 2{n(n− 1)− s}.

Proof. Taking g-trace of Equation (11) gives the desired identity.

Lemma 4. The scalar curvature s of a Lorentzian manifold M with SSM u-connection D̂ satisfies

grads = −u(s)u. (15)

Proof. Using Lemma 3, we may write Lus = 2{n(n− 1)− s}. After applying the exte-
rior derivative d and taking note of the fact Lu commutes with d to this equation, entails
Luds = −2ds. This can also be expressed in terms of the gradient operator as
Lugrads = −2grads. Employ Equation (6) to obtain

Dugrads = −grads + u(s)u. (16)

Further, it is worth mentioning that u(s) = g(u, grads) = 2{n(n− 1)− s}. Differentiating
this along X1 and employing Equation (6) gives

g(DX1 grads, u) = −3X1(s)− u(s)u](X1).

For a smooth function ν, it is well known that g(DX1gradν, X2) = g(DX2gradν, X1). By
virtue of this fact, the above equation can exhibit as

Dugrads = −3grads− u(s)u.

Employing the foregoing equation with Equation (16) gives the desired result.

If a Lorentzian manifold M of dimension n with non-vanishing Ricci tensor Ricg satisfy

Ricg = αg + βu] ⊗ u], (17)

for smooth functions α and β, where u] is a non-zero one-form, and the vector field
corresponding to the one-form u] is a unit timelike vector field, then it is referred to as
a perfect fluid space–time. However, some geometers are calling M quasi-Einstein [48].
Particularly, if β = 0 and α = constant, then M is called Einstein.

Lemma 5. A Lorentzian manifold of dimension n admitting SSM u-connection D̂ is a quasi-
Einstein if and only if the Ricci tensor satisfy

Ricg =

(
s

n− 1
− 1
)

g +

(
s

n− 1
− n

)
u] ⊗ u]. (18)
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Proof. We know that M is quasi-Einstein; g-trace of Equation (17) shows that the scalar
curvature s takes the form

s = nα− β. (19)

In addition, in light of Equation (13) in Equation (17) we see that α− β = n− 1. Com-
bining this with the above equation gives α =

( s
n−1 − 1

)
and β =

( s
n−1 − n

)
. Therefore,

the Equation (17) can be written as Equation (18).

3. Ricci Solitons on Lorentzian Manifolds with SSM u-Connection

In this section, we analyze the geometric properties of RS on Lorentzian manifold
carrying SSM u-connection, showing the following results.

Lemma 6. If a Lorentzian manifold M with SSM u-connection D̂ has a RS structure (g, Z),
then the soliton is shrinking and Ricci tensor satisfy

(LZRicg)(X1, u) = 0. (20)

Proof. Taking covariant derivative of Equation (3) along X3, we obtain

(DX3LZg)(X1, X2) = −2(DX3 Ricg)(X1, X2). (21)

By utilizing the symmetry of LZD in the commutation formula (see Yano [49]):

(LZDX1 g− DX1LZg− D[V,X1]
g)(X2, X3) = −g((LZD)(X1, X2), X3)

−g((LZD)(X1, X3), X2),

and through a simple computation, we derive

2g((LZD)(X1, X2), X3) = (DX1LZg)(X2, X3) + (DX2LZg)(X3, X1)

−(DX3LZg)(X1, X2). (22)

Utilizing Equation (21) in the expression Equation (22), we have

g((LZD)(X1, X2), X3) = (DX3 Ricg)(X1, X2)− (DX1 Ricg)(X2, X3)

−(DX2 Ricg)(X3, X1).

Switching X2 by u in the proceeding equation, calling back Equations (11) and (12) leads to

(LZD)(X1, u) = 2{QX1 − (n− 1)X1}. (23)

Differentiate Equation (23) along X2 and make use of Equation (6) in order to obtain

(DX2LZD)(X1, u) = −(LZD)(X1, X2)− 2u](X2)QX1 + 2(n− 1)u](X2)X1 + 2(DX2 Q)X1.

Employing this in the following identity (see [49]):

(LZR)(X1, X2)X3 = (DX1LZD)(X2, X3) + (DX2LZD)(X1, X3),

we achieve

(LZR)(X1, X2)u = 2(n− 1)(u](X1)X2 − u](X2)X1) + 2(u](X2)QX1 − u](X1)QX2

+(DX1 Q)X2 − (DX2 Q)X1). (24)
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Inserting X2 = u in Equation (24), utilizing Equations (11) and (12) we acquire (LZR)(X1, u)
u = 0. On the other hand, taking Lie differentiation of R(X1, u)u = −X1 − u](X1)u
(obtained form Equation (8)) gives

(LZR)(X1, u)u− g(X1,LZu)u + 2u](LZu)X1 + {(LZu])X1}u = 0, (25)

which by virtue of (LZR)(X1, u)u = 0 transforms

g(X1,LZu)u− 2u](LZu)X1 = {(LZu])X1}u. (26)

With the aid of Equation (13), the soliton Equation (3) takes the form

(LZg)(X1, u) = 2(λ− (n− 1))u](X1). (27)

Now, Lie differentiating u](X1) = g(X1, u) and g(u, u) = −1 along Z and calling Equation (27)
obtains

(LZu])X1 − g(X1,LZu) = 2(λ− (n− 1))u](X1),

u](LZu) = λ− (n− 1).

Utilizing the above relations in Equation (25) we infer λ − (n − 1)(X1 + η(X1)u) = 0.
Taking g-trace of this provides λ = n − 1, which means the soliton is shrinking. Now
g-trace of Equation (24) provides

(LZRicg)(X1, u) = −u(s)u](X1)− X1(s).

where we take the well-known formulae divQ = 1
2 grads and tracegDQ = grads. The above

equation together with Lemma 4, one can find (LZRicg)(X1, u) = 0.

Theorem 1. If quasi-Einstein Lorentzian manifold M with SSM u-connection D̂ has a RS
structure (g, Z), then M is Einstein.

Proof. Lie differentiation of Equation (13) along Z, recalling Equation (27) infers

(LZRicg)(X1, u) + Ricg(X1,LZu) = (n− 1){2(λ− (n− 1))u](X1) + g(X1,LZu)}.

In light of Equations (20) and (18), λ = n− 1 and u](LZu) = 0 in the previous equation,
we achieve

(s− n(n− 1))LZu = 0. (28)

Suppose that s 6= n(n− 1) in some open set U of M. Then on U , LZu = 0 = LZu]. Consider
the following well known formula (see Yano [49]):

(LZD)(X1, X2) = LZDX1 X2 − DX1LZX2 − D[Z,X1]
X2.

Replacing X2 by u in the foregoing equation, utilizing LZu = 0 = LZu] and Equation (6),
we have

(LZD)(X1, u) = LZX1 + {(LZu])X1}u + u](LZX1)u

+u](X1)LZu−LZX− u](LZX)u = 0.

Comparing of the above equation with Equation (23), one can see QX1 = (n− 1)X1. Taking
g-trace of this infers s = n(n− 1) on U . Thus, we arrive at a contradiction on U . Thus,
Equation (28) gives s = n(n− 1), and so, we can from Equation (18) that M is Einstein.

It is a known fact, as stated in [48], that any 3-dimensional Lorentzian manifold
is quasi-Einstein, and in higher dimensions, there are Lorentzian manifolds which are
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not quasi-Einstein. Studying RS structure on Lorentzian 3-manifold admitting SSM u-
connection becomes interested due to Theorem 1. Here, we prove the following outcome:

Theorem 2. Let M Lorentzian 3-manifold admitting SSM u-connection D̂. If (g, Z) is a RS,
then it is of constant curvature 1.

Proof. In dimension 3, the Riemannian curvature tensor is given by

R(X1, X2)X3 = g(X2, X3)QX1 − g(X1, X3)QX2 + g(QX2, X3)X1 − g(QX1, X3)X2

− s
2
{g(X2, X3)X1 − g(X1, X3)X2}. (29)

Setting X2 = X3 = u in Equation (29) and applying Equations (8) and (13), we obtain

QX1 =
( s

2
− 1
)

X1 +
( s

2
− 3
)

u](X1)u. (30)

By following the same steps as in the proof of Theorem 1 and utilizing the fact that
(LZR)(X1, u)u = 0, we can deduce that s = 6. Hence, from Equation (30) one can infer
QX1 = 2X1. This together with Equation (30) provides

R(X1, X2)X3 = g(X2, X3)X1 − g(X1, X3)X2,

which means M is of constant curvature 1.

Theorem 3. Let (M, g) be a Lorentzian manifold admitting SSM u-connection D̂. If (g, Z) is a
RS structure with Z = σu, then (M, g) is Einstein.

Proof. By our assumption: Z = σu for smooth function σ on M. Differentiating this along
X1 provides

DX1 Z = X1(σ)u + u{X1 + u](X1)u},

where we applied Equation (6). As a result of this, the fundamental Equation (3) becomes

2Ricg(X1, X2) + X1(σ)u](X2) + X2(σ)u](X1) = 2(λ− σ)g(X1, X2)

−2σu](X1)u](X2). (31)

Replacing X1, X2 by u in Equation (31) and recalling Equation (13) yields u(σ) = λ− (n− 1).
Taking into account of this, Equation (13) and putting X2 = u in Equation (31) gives
X1(σ) = −(λ− (n− 1))u](X1). This together with Equation (31) extracts

Ricg = (λ− σ)g + (λ− (n− 1)− σ)u] ⊗ u].

The g-trace of the foregoing equation provides λ− σ = r
n−1 − 1. Substitute this value in

the above equation to obtain

Ricg =

(
s

n− 1
− 1
)

g +

(
s

n− 1
− n

)
u] ⊗ u]. (32)

Consequently, g is quasi-Einstein. Employing Theorem 1 we conclude that g is Einstein.

4. Gradient Ricci Almost Solitons on Lorentzian Manifolds with SSM u-Connection

We consider the GRAS structure on Lorentzian manifolds with SSM u-connection
and prove the following outcome:
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Theorem 4. Let (M, g) be a Lorentzian manifold admitting SSM u-connection D̂. If (g, Z) is a
GRAS structure, then either M is Einstein or the potential vector field is pointwise collinear with u
on an open set U on M.

Proof. The equation of GRAS structure Equation (4) can be exhibited as

DX1gradh = −QX1 + λX1. (33)

Differentiating Equation (33) along X2 we achieve

DX2 DX1gradh = −(DX2 Q)X1 −Q(DX2 X1) + X2(λ)X1 + λDX2 X1. (34)

Employing Equations (33) and (34) in the definition R(X1, X2) = [DX1 , DX2 ]−D[X1,X2]
, one

can obtain

R(X1, X2)gradh = (DX2 Q)X1 − (DX1 Q)X2 + X1(λ)X2 − X2(λ)X1. (35)

Take inner product of the foregoing equation with u, call back Equations (8) and (11) to
obtain

X2(h)u](X1)− X1(h)u](X2) = X1(λ)u](X2)− X2(λ)u](X1).

Replacing X2 by u in the previous equation yields

X1(λ + h) = −u(λ + h)u](X1), (36)

from which one can deduce

d(λ + h) = −u(λ + h)u]. (37)

Now, setting X1 = u in Equation (35) and taking inner product with X3 infers

g(R(u, X2)gradh, X3) = Ricg(X2, X3)− (n− 1)g(X2, X3) + u(λ)g(X2, X3)− X2(λ)u](X3).

Again, taking inner product of Equation (10) with gradh reveals

g(R(u, X2)gradh, X3) = u](X3)X2(h)− g(X2, X3)u(h).

A comparison of the last two equations provides

Ricg(X1, X2) = {(n− 1)− u(λ + h)}g(X1, X2)− u(λ + h)u](X1)u](X2). (38)

Contraction of Equation (38) gives

u(λ + h) =
(

n− s
(n− 1)

)
. (39)

Employing Equation (39) in Equation (38), one can easily obtain Equation (18). On the other
hand, the g-trace of Equation (35) yields

Ricg(X1, gradh) =
1
2

X1(s)− (n− 1)X1(λ).

The previous equation together with Equation (18) implies

1
2

X1(s)− (n− 1)X1(λ) =

(
s

(n− 1)
− 1
)

X1(h)−
(

n− s
(n− 1)

)
u](X1)u(h). (40)
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Replacing X1 by X1 + u](X1)u in Equation (40), it follows from Lemma 3 and Equation (15)
that

(n− 1)(X1(λ) + u](X1)u(λ)) =
(

1− s
(n− 1)

)
{X1(h) + u](X1)u(h)}. (41)

Consideration of Equation (36) in Equation (41) implies(
n− s

(n− 1)

)
{gradh + u(h)u} = 0.

If s = n(n − 1), which is together with Equation (18) gives that Ricg = (n − 1)g, and
hence M is Einstein. Supposing s 6= n(n − 1) on some open set U of M, we obtain
gradh = −u(h)u, and this completes the proof.

5. Geometrical and Physical Motivations

Quasi-Einstein manifolds were first conceptualized while examining exact solutions
of the Einstein field equations as well as during investigation of quasi-umbilical hyper-
surfaces. For instance, the Robertson–Walker spacetimes are considered quasi-Einstein
manifolds. In particular, every Ricci-flat pseudo-Riemannian manifold is quasi-Einstein
(e.g., Schwarzschild spacetime). Quasi-Einstein spacetime is used as a model for a perfect
fluid space–time in cosmology. Consequently, in the evolution of the universe it determines
the final phase [50]. According to standard cosmological models, the matter content of
the universe working as a perfect fluid, which includes both dust fluid and viscous fluid.
Many geometers consider such space–time to investigate geometrical aspects in terms of
RS, Yamabe soliton (YS), etc., and characterize their importance in general relativity.

Geometric flows are now a crucial aspect in both pseudo-Riemannian geometry and
general relativity. The study of the geometry of RS is highly pursued subject not only
because of its elegant geometry but also because of its wide range of applications in various
fields. Hamilton [8] provided a physical model of three distinct classes to study the kinetic
and potential behavior of relativistic space–time in cosmology and general relativity. These
classes give examples of ancient, eternal, and immortal solutions, namely, shrinking (λ > 0)
which exists on minimal time interval −∞ < t < a where a < ∞, steady (λ = 0) which
exists for all time and expanding (λ < 0) which exists on maximal time interval a < t < ∞.
In [51], Woolgar briefly explained how RS arises in the renormalization group (RG) flow
of a nonlinear sigma model. Duggal [52,53] states a necessary condition for a vector field
Z to be a curvature inheritance (CI) symmetry that PijRi

kme + PikRi
kme = 0 holds, where

Pij = LZgij. The general solution of this identity is LZgij = 2ψgij + φij, where φij is
a second-order symmetric tensor and ψ is a smooth function on a pseudo-Riemannian
manifold. Choosing φij = −2Ricgij results in Z being a RAS, which shows a relationship
between the CI symmetry and a class of RAS structure. This supports us in discussing the
many physical applications of a class of RAS space–time of relativity.

6. Conclusions

We use methods of local pseudo-Riemannian geometry to classify Einstein metrics in
such broader classes of metrics as RAs structure on Lorentzian manifolds, finding special
connections. Our main result (Theorem 1) reveals that any quasi-Einstein Lorentzian
manifold having SSM u-connection is Einstein, when g is RS. It is crucial to note that the
examination of quasi-Einstein Lorentzian manifolds holds significant importance as they
represent the third phase in the evolution of the universe. Therefore, the investigations of
quasi-Einstein manifolds provide a deeper understanding of the universe’s global nature,
including the topology, because the nature of the singularities can be defined from a
differential geometric viewpoint. Our investigation also paves the way for future research
opportunities in this domain, particularly in exploring many physical applications within
diverse spatial contexts like Lorentz and other space. Moving forward, we plan to delve
into the applications of our main results, integrating concepts from singularity theory,
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submanifold theory, and related fields [54–75]. By doing so, we anticipate uncovering a
plethora of novel findings and expanding the frontiers of knowledge.

Following this result, we can think about many physical applications. In our Theorem 3,
we assume that soliton vector field Z = σu means that Z is a material curve as it maps
flow lines into flow lines, which plays a vital role in relativistic fluid dynamics. So our
Theorem 3 gives the relation between material curves and Einstein manifolds. We delegate
for further study the following questions:

• Do Theorems 1 and 3 hold true in the absence of assuming the quasi-Einstein condition
or Z being collinear to the vector field u?

• Are the findings of this paper applicable to generalized m-quasi-Einstein Lorentzian
manifolds?
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19. Antić, M.; Hu, Z.; Moruz, M.; Vrancken, L. Surfaces of the nearly Kähler S3 × S3 preserved by the almost product structure. Math.

Nachr. 2021, 294, 2286–2301. [CrossRef]
20. Antić, M. Characterization of Warped Product Lagrangian Submanifolds in Cn. Results Math. 2022, 77, 1–15. [CrossRef]

http://doi.org/10.1016/j.geomphys.2020.103846
http://dx.doi.org/10.1007/s13324-020-00411-1
http://dx.doi.org/10.1016/0926-2245(93)90008-O
http://dx.doi.org/10.1007/s00022-008-2004-5
http://dx.doi.org/10.1112/blms/bdr057
http://dx.doi.org/10.1090/S0002-9939-2011-11029-3
http://dx.doi.org/10.1007/s12220-011-9283-z
http://dx.doi.org/10.1063/5.0090046
http://dx.doi.org/10.3390/math10132271
http://dx.doi.org/10.3390/math8091427
http://dx.doi.org/10.1002/mana.201900376
http://dx.doi.org/10.1007/s00025-022-01621-8


Symmetry 2023, 15, 1175 11 of 12
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22. Antić, M. A class of four dimensional CR submanifolds of the sphere S6(1). J. Geom. Phys. 2016, 110, 78–89. [CrossRef]
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38. Kojić, V.; Pavlović, M. Subharmonicity of | f |p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 2008,

342, 742–746. [CrossRef]
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63. Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2023,

52, 114–125. [CrossRef]
64. Li, Y.; Abdel-Salam, A. A.; Saad, M. K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [CrossRef]
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