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Abstract: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the
current COVID-19 pandemic. SARS-CoV-2 is characterized by an important capacity to circumvent
the innate immune response. The early interferon (IFN) response is necessary to establish a robust
antiviral state. However, this response is weak and delayed in COVID-19 patients, along with massive
pro-inflammatory cytokine production. This dysregulated innate immune response contributes to
pathogenicity and in some individuals leads to a critical state. Characterizing the interplay between
viral factors and host innate immunity is crucial to better understand how to manage the disease.
Moreover, the constant emergence of new SARS-CoV-2 variants challenges the efficacy of existing
vaccines. Thus, to control this virus and readjust the antiviral therapy currently used to treat
COVID-19, studies should constantly be re-evaluated to further decipher the mechanisms leading to
SARS-CoV-2 pathogenesis. Regarding the role of the IFN response in SARS-CoV-2 infection, in this
review we summarize the mechanisms by which SARS-CoV-2 evades innate immune recognition.
More specifically, we explain how this virus inhibits IFN signaling pathways (IFN-I/IFN-III) and
controls interferon-stimulated gene (ISG) expression. We also discuss the development and use of
IFNs and potential drugs controlling the innate immune response to SARS-CoV-2, helping to clear
the infection.
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1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the
current COVID-19 pandemic that emerged in Wuhan, Hubei, China, in December 2019 [1].
SARS-CoV-2 belongs to the Coronaviridae family. It is an enveloped positive-sense single-
stranded RNA virus with a genome of 29,903 nucleotides that replicates entirely in the
cytoplasm. The SARS-CoV-2 genome is composed of thirteen recognized open reading
frames (ORFs) [2,3]. Upon the release of the SARS-CoV-2 genome into the cytoplasm,
ORF1ab is translated to polyproteins pp1a and pp1ab. These polyproteins are then cleaved
by viral chymotrypsin-like (3CLpro or NSP5) and papain-like (PLpro or NSP3) proteases to
give 16 nonstructural proteins (NSP) that encode the RNA-dependent RNA polymerase
(RdRp), helicase, and other components required for virus replication. Similar to other
coronaviruses, SARS-CoV-2 replication involves the synthesis by RdRp of positive- and
negative-sense full-length genomes. During its replication, SARS-CoV-2 also produces a
nested set of subgenomic RNAs (sgRNAs). SARS-CoV-2 sgRNAs encode four structural
proteins (S, spike; E, envelope; M, membrane; and N, nucleocapsid) and several accessory
factors (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, and ORF9b) [1,4–7].

Innate immunity is the first line of defense against pathogens. It plays a critical role
in controlling viral infections by mounting a rapid antiviral state and by mediating the
adaptive immune response [8]. Interferons (IFNs) are transcriptionally regulated cytokines
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that play a central role in the innate antiviral immune response and orchestrate adaptive
immunity. In some cases, this immune response could participate in the pathology. Indeed,
SARS-CoV-2 infection is characterized by a dysregulated innate immune response, which
contributes to the pathogenicity, leading in some individuals to a critical state [9–11]. An
early IFN response is needed to establish a robust antiviral state, but this response is weak
and delayed in severe COVID-19 patients, along with massive pro-inflammatory cytokine
production [12–14].

The first step of innate immunity is the recognition of pathogen associated molecular
patterns (PAMPs) by pattern-recognition receptors (PRRs) that initiates signaling cascades
leading to the production of IFN, pro-inflammatory cytokines, and chemokines [15]. Among
PRRs, Toll-like receptor 3 (TLR3), TLR7, TLR8, RIG-I-like receptors (retinoic acid-inducible
gene I (RIG-I)), and melanoma differentiation-associated protein 5 (MDA5) have been de-
scribed to recognize non-self RNA molecules [16,17]. RIG-I is specialized in the recognition
of the 5′-triphosphate end of relatively short double-stranded (ds)RNAs, while MDA5
recognizes long dsRNAs [18]. SARS-CoV-2 RNAs have been described to be recognized by
RIG-I and MDA5 [19,20], with MDA5 being the main cytoplasmic PRR capable of detecting
SARS-CoV-2 [21,22]. RIG-I and MDA5 are composed of an RNA helicase domain and a
C-terminal domain (CTD) involved in viral RNA recognition. The N-terminal caspase acti-
vation and recruitment domains (CARDs) of both RIG-I and MDA5 interact with adaptor
proteins of the mitochondrial-associated viral signaling proteins (MAVS) to trigger IFN
regulatory factor 3 (IRF3) and IRF7 phosphorylation and dimerization, leading to their
translocation to the nucleus and the transcription of IFN-I and IFN-III. The NF-κB signaling
cascade is also activated through the so-called canonical pathway by a set of receptors
that includes TLRs and RLRs, triggering the expression of pro-inflammatory cytokines
and chemokines, such as interleukin 6 (IL-6), IL-1B, tumor necrosis factor (TNF)- alpha,
and chemokine ligand 2 (CCL2) [23,24]. IFN-I and IFN-III play a central role in antiviral
immunity. IFN-α and β belong to IFN-I, while IFN-λ (IFN-λ: λ1, λ2, λ3, and λ4) belongs to
IFN-III. Both IFN-I and IFN-III are secreted by infected cells and are involved in inhibiting
viral infections. However, their action involves distinct receptors. IFN-α receptor 1 (IF-
NAR1) and IFNAR2, the two chains forming the heterodimer at the cell membrane surface,
are indispensable to IFN-I binding and subsequent signaling. Contrary to IFN-I receptors,
which are expressed by most cells, the IFN-λ: λ1, λ2, λ3, and λ4 (IFN-LR1) chain of the
IFN-III receptor (IFN-LR1/ IL-10R2 heterodimer) is expressed by a restricted subset of cells,
including epithelial cells [25]. IFN-I and IFN-III share an overlapping pathway of activation
and functions, but IFN-I has been described to exert a more potent and rapid response,
while IFN-III expression is more sustained and restricted to epithelial barriers. Both are
secreted by infected cells, leading to an autocrine and paracrine stimulation through the
JAK/STAT signaling pathway involving signal transducers and activators of transcription
(STAT1 and STAT2), protein phosphorylation by Janus kinase 1 (JAK 1) and tyrosine ki-
nase 2 (TYK2), and dimerization to interact with IRF9. Together, STAT1, STAT2, and IRF9
form transcription factor IFN-stimulated gene factor 3 (ISGF3), which translocates to the
nucleus and binds to IFN-stimulated response elements (ISREs) in interferon-stimulated
gene (ISG) promoters, resulting in their activation [26,27]. These ISGs play a crucial role
in repressing viral replication via various mechanisms. They prevent viral entry into the
cell and viral trafficking into the nucleus, inhibit viral replication along with viral tran-
scription/translation, and can also degrade viral nucleic acids and block viral particle
assembling [28,29].

SARS-CoV-2 has developed multiple strategies to impede this innate immune response
and achieve efficient replication. The knowledge of the mechanisms by which SARS-CoV-2
interferes with innate immunity is crucial to apprehending this newly emerged virus and
developing vaccines and therapies. In this review, we describe recent advances in the
understanding of the circumvention of the innate immunity by SARS-CoV-2 (summarized
in Table 1 and represented in Figure 1) and explore some therapeutic options that were
developed and assessed for COVID-19 (Table 2).
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Figure 1. Model describing the pathways targeted by SARS-CoV-2 to antagonize the innate immune response. Figure 1. Model describing the pathways targeted by SARS-CoV-2 to antagonize the innate immune response.
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2. Evasion of Innate Immunity by SARS-CoV-2
2.1. Evasion of Sensing by Host Innate Immune Receptors

Coronaviruses, including SARS-CoV-2, shield their dsRNA replication intermediates
in double-membrane vesicles (DMVs) mediated by NSP3, NSP4, and NSP6, avoiding
dsRNA sensing by RIG-I, MDA5, and TLR3 [30,31]. Moreover, viral RNA capping is a
critical step to prevent PRR sensing. It is mediated by the RNA triphosphatase activity of
NSP13, the RdRp NSP12, the NSP14 N7-MTase activity, NSP10, and NSP16 2′-O-MTase
activity [32]. Since RIG-I recognizes RNA 5′-triphosphate, by harboring a ribose 2′-O-
methylation 5′-cap structure, SARS-CoV-2 evades innate immune recognition [33,34]. The
nucleocapsid (N) has been described to inhibit SARS-CoV-2 RNA recognition by RIG-I.
The first molecular mechanism has been proposed where RIG-I inhibition is mediated by
a direct interaction through its DExD/H helicase domain with the N protein [35]. This
domain has an ATPase activity playing a crucial role in RNA binding, suggesting N directly
blocks the RNA recognition.

The activation of PRRs can also be inhibited. ISG15, a ubiquitin-like protein that can
be covalently conjugated to lysine residues (ISGylation), plays an essential role in MDA5
activation. NSP3 cleaves ISG15 [36] and consequently antagonizes ISG15-dependent MDA5
activation, evading immune recognition [37]. Additionally, ISG15 acts as an antiviral
factor, modifying host and viral proteins, which interferes with viral assembly or function.
The other protease, NSP5, further mediates the inhibition of PRR functioning. RIG-I is
cleaved by NSP5 at the last 10 N-terminal amino acids, blocking its ability to signal through
MAVS [38]. In addition, other studies have described the suppression of IFN-β production
in the consequence of TRIM25’s interaction with the N protein [39,40]. The ubiquitination of
the RIG-I CARD domain by TRIM25 leads to the activation of RIG-I, leading to downstream
signaling. By this N-TRIM25 interplay, the signaling cascade is blocked [40,41].

2.2. Inhibition of Innate Immune Receptor Signaling and IFN Production

Strategies have been mounted by SARS-CoV-2 to inhibit the activation of PRRs down-
stream of the PAMPs sensing step. IFN-I and IFN-III responses are fundamental defenses
of the antiviral innate immunity in the clearance of infection. To establish a successful
infection of host cells, SARS-CoV-2 has developed various strategies to antagonize differ-
ent stages of the signaling leading to IFN production. Particularly, IFN-β production is
inhibited by NSP1, NSP3, NSP5, NSP12, NSP13, NSP14, NSP15, ORF3a, ORF3b, ORF6,
ORF7a, ORF7b, ORF8, ORF9b, N, and M, as reported by several studies [42–46]. These
proteins have been shown to reduce RIG-I-mediated IFN-β promoter activities, suggesting
they can suppress RLR-mediated signaling [19,42–44]. This is mediated by many molecular
strategies (Figure 1 and Table 1). Among them, are the inhibition of IRF3 phosphorylation
and its nuclear translocation, which are pivotal steps required for the activation of IFN-I
transcription [47,48]. NSP1 [49], NSP12 [50], NSP13, NSP14, NSP15, ORF3b [51], and
ORF6 [42] have been reported to inhibit the nuclear translocation of IRF3. For example, the
NSP12 inhibition of IRF3 nuclear translocation impairs downstream signaling of type-I IFN,
as ISRE and ISG56 promoters have been described to be inhibited in this way [50]. However,
in a study by Li et al., no IRF3 nuclear translocation inhibition was shown when NSP12 was
overexpressed [52]. This study demonstrated that NSP12 could reduce IFN-β luciferase
promoter activity via a yet-to-be-determined mechanism but cannot inhibit the IFN-β pro-
duction induced by Sendai virus infection (well-known RLR agonist) or another stimulus as
well as the downstream signaling. ORF6 has been described to bind importin karyopherin
α 2 (KPNA2). Since KPNA2 is an importin involved in importing IRF3, the inhibition of
IRF3 translocation in the presence of ORF6 has been suggested to be due to its interaction
with KPNA2 [44]. IRF3 activation and subsequent IFN production depend on the assembly
of the multiprotein complex containing RIG-I/MDA-5, MAVS, TNF receptor-associated
factor 3 (TRAF3), and TANK-binding kinase 1 (TBK1). TBK1 is a protein kinase that is
involved in IFN-I transcription by phosphorylating IRF3 [53]. The M protein prevents
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the formation of this complex [54] by association with TBK1 and its degradation via the
ubiquitin pathway, thereby inhibiting IRF3 phosphorylation and IFN production [55,56].
Besides, ORF7a reduces IRF3 nuclear translocation by destabilizing TBK1 [19]. NSP13
also inhibits TBK1 phosphorylation, resulting in decreased IRF3 activation and IFN-β
production [57]. NSP6 and NSP15 bind TBK1 to decrease IRF3 phosphorylation as well [44].
ORF9b interacts with the viral RNA sensors RIG-I, MDA-5, and the downstream signaling
factors that include, for example, MAVS, and TBK1, leading to TBK1 phosphorylation
inhibition, consequently inhibiting IRF3 phosphorylation, its nuclear translocation, and
types I and III IFN transcription [58]. Furthermore, ORF9b has been described to associate
with TOM70, an adaptor protein of the MAVS complex at the mitochondrial membrane,
inhibiting the triggering signal leading to IFN production [59]. Another antiviral role
of ORF9b is to interact with NF-κB essential modulator (NEMO) to block its K63-linked
polyubiquitination. This ubiquitylation is necessary to activate the IKKα/β kinase phos-
phorylation function of NEMO, leading to IKKα ubiquitylation and degradation and the
subsequent translocation of NF-κB subunit p65 into the nucleus to activate the transcription
of pro-inflammatory cytokines [60]. Furthermore, the translocation of p65 is repressed be-
cause of NSP9’s interaction with the nucleoporin NUP62 [61]. By its ability to alter nuclear
pore complex (NPC) composition, NSP9 is consequently capable of blocking the antiviral
immune response. Furthermore, NSP5 inhibits the pro-inflammatory NF-κB pathway [62].
Moreover, NSP5 also prevents the nuclear translocation of IRF3 without direct cleavage [63],
while other studies have demonstrated an IRF3 degradation promoted by NSP5 [62,64].
Additionally, NSP5 promotes the ubiquitination and proteasome-mediated degradation
of MAVS [38]. Besides, the direct cleavage of IRF3 by NSP3 has been demonstrated by
Moustaqil et al. [62]. This huge redundancy in antagonizing IFN production highlights the
importance of SARS-CoV-2 to shutting down the IFN response to the success of its infection.

2.3. Inhibition of IFN Signaling and ISG Expression

SARS-CoV-2 has also developed many strategies to antagonize the IFN response,
inhibiting IFN-α/β receptor signaling and ISG expression. The very early step of IFN
signaling is targeted by SARS-CoV-2. NSP14 mediates IFNAR1 lysosomal degradation,
blocking the activation of the transcription factors STAT1 and STAT2 [65]. Addition-
ally, the phosphorylation of STAT1 and STAT2 is counteracted by several viral proteins.
Xia et al. have described the capacity of NSP1, NSP6, NSP13, ORF3a, M, ORF6, ORF7a, and
ORF7b to suppress >40% of ISRE promoter activity by inhibiting STAT1 phosphorylation
for NSP1, NSP6, NSP13, ORF3a, ORF7b, M, ORF6, and ORF7a and STAT2 phosphorylation
for NSP1, ORF6, ORF3a, and M [44]. ORF6 impairs IFN production and has also been
described to block STAT1/2 nuclear translocation, a crucial step to activate the transcription
of ISGs [66]. Indeed, ORF6 interacts with the nucleopore complex Nup98 via its C-terminus,
thus blocking mRNA export [67]. This leads to the impairment of IFN mRNA nuclear
export and also transcription factor nuclear import. The ORF6 nucleopore complex interac-
tion has been proposed to clog the nuclear pore [68], explaining the inhibition of STAT1 and
IRF3 nuclear translocations [43,44]. The N protein has been demonstrated to competitively
bind to STAT1/STAT2, thus interfering with the interactions of STAT1 with JAK1 and
STAT2 with TYK2, respectively. This inhibits their phosphorylation and subsequent ISGs
production [69]. Moreover, ORF7a hijacks the host ubiquitin system. The host ubiquitin
system is usurped to form K63-linked ubiquitin chains, enhancing, in this way, its ability to
inhibit STAT2 phosphorylation and, hence, blocking ISGF3 complex translocation to the
nucleus to activate ISG transcription [70].

Thus, the IFN signaling pathway is blocked at different levels by several SARS-CoV-2
proteins, ensuring an advantage for viral replication. The ISGs produced are also targeted.
Viral proteases have been found to cleave IFN-stimulated antiviral proteins as soon as they
are produced. For instance, NSP3 cleaves ISG15 [36].
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Table 1. Summary of mechanisms applied by SARS-CoV-2 to antagonize innate immune responses.
The SARS-CoV-2 genome organization is represented, and proteins involved in host innate immunity
pathway regulation are colored in red.

Mechanism of Inhibition Viral
Proteins Refs.

Evasion of sensing by host innate immune receptors
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Table 1. Cont.

Mechanism of Inhibition Viral
Proteins Refs.

Inhibition of IFNs signaling and ISGs expression
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2.4. Inhibition of Host Protein Production by Targeting Post-Transcriptional and Translational Steps

NSP16 interferes with mRNA production. The critical step of mRNA splicing is me-
diated by the spliceosome, a complex of proteins and non-coding RNAs. NSP16 inhibits
the splicing of pre-mRNA by binding to U1 and U2, which are two small nuclear RNAs
involved in this complex. The ISG expression is then repressed [71]. mRNA export to the
cytoplasm has been described to be blocked by NSP1 [72]. Mechanistically, NSP1 interacts
with the host mRNA export receptor heterodimer NXF1-NXT1 [73]. This receptor is respon-
sible for the nuclear export of cellular mRNAs by binding to mRNA and docking at the
NPC. NSP1 binds to NXF1, reducing the interaction with the NPC and preventing mRNA
nuclear transport. Moreover, the NSP1 C-terminal domain binds to the small ribosomal
subunit (40S), more specifically to the 18S rRNA, disrupting 40S mRNA scanning and pre-
venting translation initiation, then blocking host protein production [71]. This impacts IFN
production without altering viral mRNA translation. Cryo-electron microscopy analyses
of the molecular interaction between NSP1 and the 40S ribosome subunit have revealed
that NSP1 is bound to the mRNA entry channel overlapping the mRNA path [74–77].
However, how viral mRNA containing the leader sequence passes through the translation
shut off triggered by NSP1 is not fully understood. Banerjee et al. have observed that
the common SARS-CoV-2 5′-leader sequence precisely positions viral mRNAs relative
to the NSP1-40S complex, enabling translation [71]. Mendez et al. demonstrated that
the alteration of NSP1-mRNA-40S complex by mutating residues within the N-terminal
domain of NSP1 makes a weaker association with the ribosome and mRNA, abrogating
the translational escape of viral leader-containing mRNAs. They suggested that these
NSP1 residues are important to allow the viral leader-sequence-triggered conformational
changes to NSP1 that support viral mRNA translation [78]. NSP8 and NSP9 disrupt protein
trafficking, leading to the degradation of newly translated proteins. The signal recognition
particle (SRP) is a complex that binds the 80S ribosome and identifies co-translationally
hydrophobic signal peptides present in secreted and membrane proteins, leading to their
translocation to the endoplasmic reticulum and their proper folding and expression at the
membrane. NSP8 and NSP9 bind to 7SL RNA, a non-coding RNA that is a part of the
SRP complex, leading to the inhibition of signal peptide recognition. This disruption of
protein trafficking suppresses the IFN response, as described by Banerjee et al. [71]. Thus,
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SARS-CoV-2 developed several strategies to alter general cellular processes involved in
post-transcriptional and translational processes.

3. Therapeutic Options

SARS-CoV-2 employs many strategies to impede the IFN response, as described above,
resulting in an imbalance in the innate responses, with excessive cytokine production [12–14].
A weak and delayed IFN response along with an exacerbated inflammatory response has
been associated with COVID-19 pathogenesis [9–11]. Patients with no IFN-α production
present poorer outcomes and show a longer intensive care unit stays [79]. Clinical data
support the implication of deficient IFN-I responses in the progression of COVID-19
toward a more severe manifestation [80]. Moreover, studies have shown that COVID-19
severity is enriched in patients with genetic defects in TLR3, IRF7, and TLR7, leading to a
deficient induction of IFN-I [81–83]. Besides, autoantibodies targeting IFN-I were found
in 10% of patients with severe COVID-19, while they were absent in asymptomatic or
mildly symptomatic patients. These antibodies were then identified as a risk factor for life-
threatening COVID-19 [84–87] and have been described to increase in patients over 60 years
old and cause about 20% of all fatal COVID-19 cases [88]. Many studies have exposed
the capacity of both IFN-I and IFN-III to inhibit SARS-CoV-2 in vitro or in vivo [13,89–93].
These observations highlight the crucial role played by the IFN response in controlling
SARS-CoV-2 infection and subsequent clinical implications. Therefore, IFN therapy was
naturally considered to support innate immunity and control the SARS-CoV-2 infection.
Below, we discuss studies that have been performed to test various IFN therapies, which
are also summarized in Table 2.

3.1. IFN-α

IFN-α has already been used in the viral infection context. Indeed, pegylated IFN-α2
(PEG-IFN-α2, a long-acting form of IFN-α2b) was used as the standard in the treatment of
chronic hepatitis C virus infection until it was replaced by antivirals and is still a therapeutic
option in mild to moderate chronic hepatitis B [94,95].

In the context of COVID-19, some studies testing IFN-α efficacy have been conducted.
Inhaled IFN-α2b administration significantly reduced the duration of SARS-CoV-2 detec-
tion in the upper respiratory tract by a reverse transcription-quantitative PCR (RT-qPCR)
test and blood levels of inflammatory markers such as IL-6 and C-reactive protein, as
reported in an exploratory study by Zhou et al. [96]. A reduction in viral load and clinical
status improvement in moderate COVID-19 cases after subcutaneous administration of
pegylated IFN-α2b was also reported in a phase II clinical trial and a phase III clinical
trial [97,98], but no difference was observed for inflammatory biomarkers or in the duration
of hospitalization. Furthermore, patients who have been administrated subcutaneous
IFN-α2b within 72 h following admission had shorter hospital stays compared with late
administration, as presented by B.Wang et al. [99]. However, the studies described above
are limited by the small number of subjects enrolled (40 in [97] and 41 in [99]). Additionally,
in the phase III study from N.Wang et al., a reduction in in-hospital mortality was observed
in patients who were given IFN-α2b by inhalation using an air compressor machine (neb-
ulized delivery) within 5 days of admission. However, late initiation of this therapy was
associated with increased mortality [100]. Similarly, in the study reported by Yu et al.,
early administration of IFN-α2b aerosol was associated with improved clinical outcomes
(such as a lower risk of disease progression and a shorter hospitalization time), but delayed
IFN-α2b intervention was associated with increased probabilities of adverse events [101].

At the molecular level, the SARS-CoV-2 receptor ACE2 was reported as an ISG upreg-
ulated by IFN-α [102], raising concerns about potential pro-viral effects of ACE2 induction
upon IFN treatment. Later, molecular characteristic studies demonstrated that IFNs only
induced the expression of a truncated product of ACE2 that is not able to bind the SARS-
CoV-2 spike protein [103–105].
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Thus, the timing of IFN-α administration seems to play a crucial role in its efficacy,
and early administration may lower the risk of worse outcomes. Because of the exclusion
of patients at risk in these studies, an understanding of the association between age,
comorbidities, the stage of the disease, timing, and the IFN-α treatment is still needed.
Furthermore, most clinical studies have been focused on nebulized IFN-α, but this form is
not yet approved by the United States Food and Drug Administration (FDA), and its use is
not recommended and is restricted in clinical studies by the World Health Organization
(WHO). Overall, IFN-α treatment remains controversial, even though the outcomes of early
administration of IFN-α are encouraging.

3.2. IFN-β

Since in vitro studies have reported that SARS-CoV-2 is more sensitive to IFN-β than
IFN-α [90], and autoantibodies against IFN-α but not against IFN-β have been found in
patients with severe disease [84], IFN-β seemed to be a more appropriate therapy than
IFN-α.

Different strategies are employed by SARS-CoV-2 proteins to specifically antagonize
IFN-β production, as described in Part 2 of this review. The direct delivery of IFN-β
could, in principle, overcome these evasion strategies. Indeed, IFN-β binds IFNAR and
initiates the JAK-STAT signaling pathway, thereby inducing ISG expression. IFN-β displays
anti-inflammatory properties by enhancing IL-10 expression, and it has been reported to
upregulate CD73 on endothelial cells, preventing vascular leakage [106] and inhibiting
leukocyte recruitment [107]. Besides, a study carried out before the COVID-19 pandemic
reported that IFN-β injection improves acute respiratory distress syndrome that occurs in
the presence of predisposing factors [108].

Despite all these experimental pieces of evidence, clinical trial results for IFN-β are
controversial. Systemic or subcutaneous deliveries of IFN-β have been reported to be
efficient in shortening the duration of viral shedding and hospital stay [109], reducing
mortality [110,111] when combined with other antiviral drugs but only in the early stage
of the disease in mild to moderate cases. However, the SOLIDARITY randomized trial
reported that 2000 COVID-19 hospitalized patients who received subcutaneous IFN-β1a
or IFN-β1a together with the antivirals lopinavir-ritonavir experienced little or no effect
on clinical improvement [112]. In fact, the subcutaneous delivery of IFN-β1a to severe
COVID-19 patients failed to reduce mortality according to the WHO SOLIDARITY trial
outcomes [112] and as reported by Kalil and colleagues [113]. Worse outcomes after
treatment with IFN-β1a have also been reported, suggesting the potential harm of using
IFN-β in patients with severe disease, such as those on high-flow oxygen, noninvasive
ventilation, or mechanical ventilation [113]. Thus, the COVID-19 Treatment Guidelines
Panel does not recommend the use of systemic IFN-β for the treatment of hospitalized
patients with COVID-19 [114]. The administration of IFN-β directly in the respiratory tract
may result in a robust local anti-viral immune response, avoiding the inconvenience of
IFN-β systemic exposure. Inhaled IFN-β was examined in a randomized double-blind
placebo-controlled phase II trial [115]. Indeed, patients treated with nebulized IFN-β1a
showed significantly greater odds of clinical improvement across the WHO Ordinal Scale for
Clinical Improvement than those who received a placebo [115]. Still, in a study performed
on adult patients with moderate COVID-19, the administration of IFN-β1b by vapor
inhalation combined with an antiviral Favipiravir failed to provide benefits [116].

The combination with other treatments in many IFN-β trials makes it difficult to derive
a clear conclusion about the performance of IFN-β. Additionally, the size of the sample and
the stage of the disease when patients are recruited have to be considered when analyzing
all these clinical studies. More data are needed to settle if inhaled IFN-β could be used to
treat COVID-19. However, it has to be noted that nebulized IFN-β is not yet approved in
the USA and Europe, and the pharmacokinetics and pharmacodynamics of this mode of
administration are not fully known.
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3.3. IFN-λ

IFN-I is able to provide a systemic response along with a local one, whereas IFN-III
delivers a protection restricted to epithelial surfaces. Especially in the context of influenza
virus infection, type-III IFNs appear to be essential in controlling viral infection in the
upper respiratory tract, while IFN-I and IFN-III dispense functional redundancy in the
lower respiratory tract [117]. IFN-I triggers systemic and local inflammation by activating
and recruiting immune cells to the site of infection. In contrast, IFN-III has been shown to
limit viral activities at the local level without being associated with inflammation [118–120],
conversely restricting the neutrophil inflammatory functions then limiting tissue dam-
age [120–122]. In the context of SARS-CoV-2 infection, in vitro and in vivo studies have
demonstrated antiviral IFN-III activities in epithelial cells without excessive inflamma-
tion [89,91,92,123,124]. Furthermore, the protein expression of IFN-λ2/λ3 were reduced in
nasopharyngeal swab samples from COVID-19-positive individuals [125]. Additionally,
studies have demonstrated a downregulation of systemic IFN-λ1/λ2 in patients with se-
vere COVID-19, suggesting that a reduced level of IFN-III may impact the severity of the
disease [126–128].

Table 2. Summary of discussed clinical trials with IFN therapies and their outcomes.
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IFN-α 

Nebulized IFN-α2b with or  
without Arbidol 

Uncontrolled, 
exploratory study 

77 patients hospitalized with confirmed 
COVID-19 diagnosis (7 received IFN-α2b 

only, 46 IFN-α2b+ Arbidol) 

Time to negative RT-qPCR significantly shorter in patients 
receiving inhaled IFN-α2b. 
Significant reduction in the duration of detectable virus in the 
upper respiratory tract. 
Reduced blood levels of inflammatory markers (IL-6, CRP). 

[94] 

Nebulized IFN-α2b with or without 
Umifenovir 

Retrospective 
multicenter study 

446 patients with confirmed COVID-19 
diagnosis (242 received IFN-α2b, 216 early 

and 26 late) 

Nebulized IFN-α2b initiation within 5 days of admission: 
- Associated with reduced mortality. 
- Not associated with hospital discharge or computed 

tomography (CT) scan improvement. 
Late initiation of nebulized IFN-α2b therapy: 
- Associated with delayed recovery. 
- Associated with increased mortality. 

[98] 

Inhaled IFN-α2b 
Retrospective 

multicenter study 
1401 patients with confirmed COVID-19 

diagnosis (852 received IFN-α2b) 

Early administration (3–5 days after symptom onset), 
associated with improved clinical outcomes: 
- Lower risk of disease progression. 
- Shorter hospitalization time. 
Delayed IFN-α2b intervention (6–8 days after symptom 
onset): associated with increased probabilities of risk events. 

[99] 

PEG IFN-α2b (subcutaneous injection) 
in addition to standard of care 

[antipyretics, cough suppressants, 
antibiotics, steroids, vitamins, 

anticoagulants, hydroxychloroquine 
and antivirals (e.g., Remdesivir)] 

Multicenter, 
randomized, 

comparator-controlled, 
open-label phase 3 

study 

250 patients with moderate COVID-19 (120 
received PEG IFN-α2b + standard of care) 

Early viral clearance. 
Clinical status improvement. 
Decreased duration of supplemental oxygen. 

[96] 

IFN-α2b (subcutaneous injection) 
combined with Lopinavir/Ritonavir 

Exploratory study 
41 patients with confirmed COVID-19 

diagnosis (19 received IFN-α2b + 
lopinavir/ritonavir) 

Early administration of IFN-α2b within 72 h following 
admission- resulted in shorter hospital stay, (10 days 
compared with late administration - after 72 h following 
admission). 

[97] 

IFN-β 
Nebulized IFN-β1a (inhalation) - 

SNG001 
ClinicalTrials.gov Identifier: 

NCT04385095 

Double-blind 
randomized, placebo-

controlled, phase 2 
pilot study 

101 patients with confirmed COVID-19 
diagnosis (50 received IFN-β1a SNG001) 

Significantly greater odds of clinical improvement across the 
WHO Ordinal Scale for Clinical Improvement. 
Reduction of the odds of developing severe disease or dying. 

[113] 

Nebulized IFN-β1b (inhalation 
through a vibrating mesh aerogen 

nebulizer-Aerogen Solo) combined with 
Favipiravir 

ClinicalTrials.gov Identifier: 
NCT04385095 

Randomized controlled 
open label study 

89 adult patients hospitalized with moderate 
to severe COVID-19 (44 received IFN-β1b) 

No significant differences in the inflammatory biomarkers at 
hospital discharge, in the overall lower hospital stay, 
transfers to the intensive care unit, neither in overall 
mortality. 

[114] 

IFN-β1b (subcutaneous injection) 
combined with Lopinavir, Ritonavir, 

Ribavirin 

Multicenter, 
prospective, open label, 

randomized, phase 2 
study 

127 patients with mild to moderate COVID-19 
(86 received IFN-β1b) 

Administration within 7 days of symptom onset: 
- Suppression of the shedding of SARS-CoV-2. 
- Significant reductions in duration of RT-qPCR 

positivity and viral load (RT-qPCR negative by day 8). 
- Shorter time in complete alleviation of symptoms 
reduction in duration of hospital stay. 

[107] 

IFN-β1a or IFN-β1b (subcutaneous 
injections) combined with 

Lopinavir/Ritonavir 
COVIFERON trial 

ClinicalTrials.gov Identifier: 
NCT04343769 

Randomized, open-
label, controlled study 

60 severely ill patients with positive RT-qPCR 
and Chest CT scans (20 patients assigned to 

IFN-β1a and 20 to IFN-β1b) 

IFN-β1a: significant shorter time to clinical improvement. 
IFN-β1b: no significant difference. 
Lower numerically mortality both of the intervention groups 
(20% in the IFN-β1a group, 30% in the IFN-β1b group vs 45% 
in the control group) but not statically significant. 

[108] 

IFN-β1a (subcutaneous injection) in 
addition to the national protocol 

medications (Hydroxychloroquine plus 
Lopinavir- Ritonavir or Atazanavir-

Ritonavir) 
Clinical Identifier: 

IRCT20100228003449N28 

Randomized, open-
label, controlled study 

92 patients with severe COVID-19 (42 
received IFN-β1a) 

No change the time to reach the clinical response. 
Length of intensive care unit and hospital stays and duration 
of mechanical ventilation not statistically different. 
Significantly increased discharge rate on day 14. 
Early administration significantly reduced mortality. 

[109] 

IFN-β1a (subcutaneous injection) 
combined with Remdesivir 
ClinicalTrials.gov Identifier: 

NCT04492475 

Randomized, double-
blind, placebo-

controlled study 

969 patients hospitalized COVID-19 patients 
with presence of radiographic infiltrates on 
imaging, a peripheral oxygen saturation on 

room air of 94% or less, or requiring 
supplemental oxygen (487 received IFN-β1a) 

No clinical improvement. 
Worse outcomes after treatment IFN-β1a in patients who 
required high-flow oxygen at baseline. 

[111] 

IFN-β1a (subcutaneous injection). For 
patients receiving high-flow oxygen, 

ventilation, or extra- corporeal 
membrane oxygenation: intravenous 

interferon.   

Randomized, double-
blind, placebo-

controlled study   
4127 (2063 received IFN-β1a) 

No effect on hospitalized patients (based on overall mortality, 
initiation of ventilation, and duration of hospital stay). 

[110] 

Clinical Trial Name Type of Trial Type of Patients Outcomes Refs.

IFN-α

Nebulized IFN-α2b with or
without Arbidol

Uncontrolled,
exploratory study

77 patients hospitalized with
confirmed COVID-19
diagnosis (7 received

IFN-α2b only, 46 IFN-α2b+
Arbidol)

Time to negative RT-qPCR significantly
shorter in patients receiving inhaled
IFN-α2b.
Significant reduction in the duration of
detectable virus in the upper respiratory
tract.
Reduced blood levels of inflammatory
markers (IL-6, CRP).

[94]

Nebulized IFN-α2b with or without
Umifenovir

Retrospective
multicenter study

446 patients with confirmed
COVID-19 diagnosis (242

received IFN-α2b, 216 early
and 26 late)

Nebulized IFN-α2b initiation within 5 days
of admission:

- Associated with reduced mortality.
- Not associated with hospital

discharge or computed tomography
(CT) scan improvement.

Late initiation of nebulized IFN-α2b
therapy:

- Associated with delayed recovery.
- Associated with increased mortality.

[98]

Inhaled IFN-α2b Retrospective
multicenter study

1401 patients with confirmed
COVID-19 diagnosis (852

received IFN-α2b)

Early administration (3–5 days after
symptom onset), associated with improved
clinical outcomes:

- Lower risk of disease progression.
- Shorter hospitalization time.

Delayed IFN-α2b intervention (6–8 days
after symptom onset): associated with
increased probabilities of risk events.

[99]

PEG IFN-α2b (subcutaneous injection)
in addition to standard of care

[antipyretics, cough suppressants,
antibiotics, steroids, vitamins,

anticoagulants, hydroxychloroquine
and antivirals (e.g., Remdesivir)]

Multicenter, randomized,
comparator-controlled,

open-label phase 3 study

250 patients with moderate
COVID-19 (120 received PEG
IFN-α2b + standard of care)

Early viral clearance.
Clinical status improvement.
Decreased duration of
supplemental oxygen.

[96]

IFN-α2b (subcutaneous injection)
combined with Lopinavir/Ritonavir Exploratory study

41 patients with confirmed
COVID-19 diagnosis

(19 received IFN-α2b +
lopinavir/ritonavir)

Early administration of IFN-α2b within
72 h following admission- resulted in
shorter hospital stay, (10 days compared
with late administration - after 72 h
following admission).

[97]
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Table 2. Cont.

Clinical Trial Name Type of Trial Type of Patients Outcomes Refs.

IFN-β

Nebulized IFN-β1a (inhalation) -
SNG001

ClinicalTrials.gov Identifier:
NCT04385095

Double-blind
randomized,

placebo-controlled,
phase 2 pilot study

101 patients with confirmed
COVID-19 diagnosis (50

received IFN-β1a SNG001)

Significantly greater odds of clinical
improvement across the WHO Ordinal
Scale for Clinical Improvement.
Reduction of the odds of developing severe
disease or dying.

[113]

Nebulized IFN-β1b (inhalation
through a vibrating mesh aerogen
nebulizer-Aerogen Solo) combined

with Favipiravir
ClinicalTrials.gov Identifier:

NCT04385095

Randomized controlled
open label study

89 adult patients hospitalized
with moderate to severe
COVID-19 (44 received

IFN-β1b)

No significant differences in the
inflammatory biomarkers at hospital
discharge, in the overall lower hospital stay,
transfers to the intensive care unit, neither
in overall mortality.

[114]

IFN-β1b (subcutaneous injection)
combined with Lopinavir,

Ritonavir, Ribavirin

Multicenter, prospective,
open label, randomized,

phase 2 study

127 patients with mild to
moderate COVID-19 (86

received IFN-β1b)

Administration within 7 days of
symptom onset:

- Suppression of the shedding of
SARS-CoV-2.

- Significant reductions in duration of
RT-qPCR positivity and viral load
(RT-qPCR negative by day 8).

- Shorter time in complete alleviation
of symptoms

reduction in duration of hospital stay.

[107]

IFN-β1a or IFN-β1b (subcutaneous
injections) combined with

Lopinavir/Ritonavir
COVIFERON trial

ClinicalTrials.gov Identifier:
NCT04343769

Randomized, open-label,
controlled study

60 severely ill patients with
positive RT-qPCR and Chest

CT scans (20 patients
assigned to IFN-β1a and 20

to IFN-β1b)

IFN-β1a: significant shorter time to
clinical improvement.
IFN-β1b: no significant difference.
Lower numerically mortality both of the
intervention groups (20% in the IFN-β1a
group, 30% in the IFN-β1b group vs 45% in
the control group) but not
statically significant.

[108]

IFN-β1a (subcutaneous injection) in
addition to the national protocol

medications (Hydroxychloroquine plus
Lopinavir- Ritonavir or
Atazanavir-Ritonavir)

Clinical Identifier:
IRCT20100228003449N28

Randomized, open-label,
controlled study

92 patients with severe
COVID-19 (42 received

IFN-β1a)

No change the time to reach the
clinical response.
Length of intensive care unit and hospital
stays and duration of mechanical
ventilation not statistically different.
Significantly increased discharge rate on
day 14.
Early administration significantly
reduced mortality.

[109]

IFN-β1a (subcutaneous injection)
combined with Remdesivir
ClinicalTrials.gov Identifier:

NCT04492475

Randomized,
double-blind,

placebo-controlled study

969 patients hospitalized
COVID-19 patients with
presence of radiographic
infiltrates on imaging, a

peripheral oxygen saturation
on room air of 94% or less, or

requiring supplemental
oxygen (487 received

IFN-β1a)

No clinical improvement.
Worse outcomes after treatment IFN-β1a in
patients who required high-flow oxygen
at baseline.

[111]

IFN-β1a (subcutaneous injection). For
patients receiving high-flow oxygen,

ventilation, or extra- corporeal
membrane oxygenation: intravenous

interferon.
ClinicalTrials.gov Identifier:

NCT04315948

Randomized,
double-blind,

placebo-controlled study
4127 (2063 received IFN-β1a)

No effect on hospitalized patients (based on
overall mortality, initiation of ventilation,
and duration of hospital stay).

[110]

IFN-λ

PEG IFN-λ (subcutaneous injection)
ClinicalTrials.gov Identifier:

NCT04354259

Randomized,
double-blind,

placebo-controlled study

60 outpatients with
COVID-19 (30 received PEG

IFN-λ)

Greater decline in RT-qPCR with viral
clearance by day 7.
Prevent clinical deterioration and shorten
duration of viral shedding.

[128]

PEG IFN-λ (subcutaneous injection)
ClinicalTrials.gov Identifier:

NCT04331899

Randomized,
double-blind,

placebo-controlled phase
2 study

120 outpatients with mild to
moderate COVID-19 (30

received PEG IFN-λ)

No shortened duration of SARS-CoV-2
viral shedding.
No improved of symptoms.

[129]

The abovementioned studies highlight the potential benefits of using IFN-λ2 as an
antiviral treatment for SARS-CoV-2. IFN-λ has been proposed to help clear the infection
and minimize the severity of COVID-19 [129]. Despite of all these promising benefits,
as of today only two clinical trials have been finalized [130,131], while few others are
still recruiting. In a randomized placebo-controlled trial reported by Jagannathan et al.
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on 120 patients with mild to moderate COVID-19, 60 received subcutaneous doses of
Peginterferon IFN-λ1a within 72 h of diagnosis. No difference has been observed between
the Peginterferon IFN-λ1a and placebo groups in SARS-CoV-2 viral shedding or in the
improvement of symptoms [131]. In contrast, the study by Feld et al. described the benefits
of subcutaneous Peginterferon IFN-λ in treating mild to moderate cases of COVID-19 who
were within 7 days of symptom onset or the first positive test if asymptomatic [130]. Further
studies are needed to validate the efficacy of IFN-III treatment of COVID-19.

It should be pointed out that in the context of influenza infection IFN-λ has been
reported to contribute to bacterial superinfections [132,133]. Since critically ill COVID-19
patients suffer from bacterial superinfections, caution should be exercised in using IFN-λ
as a COVID-19 treatment. Additionally, IFN-λ has not been approved by the FDA for any
use. These facts could explain the precautionary approach to limit the use of IFN-λ to
clinical trials.

4. Conclusions and Perspective

COVID-19 has been characterized by a dysregulation of the immune response that
can lead to severe acute respiratory distress syndrome in some people. Multiple strategies
have been evolved by SARS-CoV-2 structural, nonstructural, and accessory proteins to
counteract viral sensing, IFN production, and IFN signaling pathways. This redundancy
in evading innate immunity characterizes SARS-CoV-2 infection (Table 1) and underlines
the adaptation to the human host. The inhibition of the IFN response by SARS-CoV-2
viral factors, especially NSPs that are expressed early upon virus cell entry, promotes viral
replication and participates in the delay in the IFN response observed in COVID-19 patients.

The direct use of IFN therapy in the context of COVID-19 has been expected to
resolve a weak early innate immune reaction and restore a strong and well-timed IFN
response capable of inhibiting the virus replication before the immunopathology takes
place. However, the IFN response is a fine-tuned process that is not fully understood,
and clinical trials reveal disparate results depending on time of treatment initiation and
severity state. These contradictory results of IFN therapy’s benefits in handling COVID-19
underline that two central factors should be considered: the time from the beginning of
the treatment and the route of administration. Some in vitro and in vivo studies have also
described differences in efficacy upon IFN-I pretreatment and post-infection treatment,
underlying the interest in using models to calibrate IFN therapies [134–136]. Besides, a
study showed that high IFN-III expression at the protein level in the upper respiratory
tract is associated with a mild disease and, hence, could be protective [137], while another
study demonstrated an increase at the transcriptional level for IFN-I/IFN-III mRNA but
a decrease of the corresponding proteins [125]. Along the same line, single-cell RNA
sequencing on nasopharyngeal swabs of COVID-19 patients has revealed a robust IFN-I-
specific gene signature in patients with mild to moderate disease in contrast to an impaired
one in severe cases [138]. Conversely, some studies have reported a potent IFN response in
critical cases. Elevated IFN-I and III in the lower airways at both the transcriptional and
protein levels have been reported in patients with severe COVID-19 [137]. Moreover, a
sustained production of IFN-α in the blood has been reported in severe COVID-19 cases
in a longitudinal study [139], along with an IFN-I transcriptome signature co-existing
with the inflammatory one [140]. Thus, IFNs could play a direct role in exacerbating
the inflammatory response to SARS-CoV-2 infection. One hypothesis that could explain
the opposite roles played by IFN-I/III during COVID-19 pathogenesis is that the IFN
response is blocked by the SARS-CoV-2 counteracting strategy in infected epithelial cells,
leading to a massive replication and the subsequent high viral load observed. Then, the
produced viral particles could stimulate innate immune cells (monocytes, dendritic cells,
and macrophages), which produce substantial amounts of IFNs. Thus, the side-effect
observed by late IFN administration could be explained by a potential contribution to
the cytokine storm, emphasizing the inflammatory state. Furthermore, the ambivalent
properties that depend on the anatomical location of various IFN-producing cells and viral
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tropism to the upper and low respiratory tracts have to be taken into consideration. This
underlines the complex role of IFNs in COVID-19 pathogenesis, and further investigations
are needed to decipher their exact implication in the immunopathology and to state the
appropriate conditions for the therapy.

The understanding of the mechanisms underlying the host and virus interactions
is crucial to the development of drugs and vaccines. In particular, apprehending the
process of innate immune response establishment and SARS-CoV-2 evasion could help
the development of drugs such as immunomodulators or antiviral drugs that directly
target viral immune counteractors. The inhibition of those viral components may atten-
uate pathogenicity by increasing the naturally early host antiviral response. However,
a particularity of SARS-CoV-2 among other coronaviruses is to entertain high mutation
capacities [141] that give rise to variants, thus challenging drug development and vaccine
efficacy. Targeting conserved proteins is needed because they are less prone to undergo
mutations. Conducting a computational screening of FDA-approved drugs against such
conserved proteins makes a rapid and efficient method to identify effective treatments that
can be tested in vitro and in vivo. In this regard, NSP1 appears to be an attractive target
since it is a very conserved protein [142] playing a central role in antagonizing the innate
immune response, as described in this review [46,57,73,76]. Montelukast sodium hydrate
(which is an FDA-approved drug that stably binds to NSP1) has shown antiviral activity
against SARS-CoV-2, with reduced viral replication in cell lines in vitro [143]. GRL0617, an-
other FDA-approved drug, which is a non-covalent inhibitor of SARS-CoV-2’s NSP3 [144],
displays promising issues on SARS-CoV-2′s NSP3 [145]. GRL0617 has been demonstrated
to block the binding of SARS-CoV-2 NSP3 to ISG15 [36], inhibiting its deubiquitinase activ-
ity [146]. These examples underline the benefits of investigating the area of SARS-CoV-2’s
conserved proteins that are implicated in innate immunity evasion.

Currently, few antiviral drugs and immunomodulators are approved by the WHO
Therapeutics and COVID-19: living guideline in the treatment of COVID-19 [114]. Among
them, remdesivir, an analog of adenine inhibiting RdRp was first recommended to treat
severe cases and has been described to show a higher efficacy early in the course of the
disease, during the viral replication phase of COVID-19, and to not be so useful during
the immunopathology phase [114]. In contrast, immunomodulators were shown to be
effective to harness inflammation. IL-6 blockers such as the JAK1/JAK2 inhibitor Baricitinib
or the monoclonal antibody Tocilizumab, which antagonizes the membrane-bound and
soluble forms of the IL-6 receptor, have been recommended to treat severe or critical
COVID-19 patients [114]. Nevertheless, ideal drugs for the treatment of COVID-19 are
yet to be discovered. Regarding the emergence of several variants of concern since the
beginning of the COVID-19 pandemic, challenging the efficacy of currently developed
vaccines, therapies targeting conserved viral proteins and adjusting the effective innate
immune response to SARS-CoV-2 should be priorities.
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Abbreviations

CARD caspase activation and recruitment domain
CCL2 chemokine ligand 2
3CLpro protease 3C-like
DMV double-membrane vesicle
dsRNA double-stranded RNA
E envelope
FDA United States Food and Drug Administration
IFN interferon
IFNAR IFN-α receptor
IL interleukin
IFN-LR1 IFN-l receptor 1
IKKα/ß inhibitor of nuclear factor kappa-B kinase
IRF IFN-regulatory factor
ISG IFN-stimulated gene
ISRE IFN-stimulated response element
ISGF IFN-stimulated gene factor
JAK Janus-associated kinase
KPNA2 importin karyopherin α 2
M membrane
MAVS mitochondrial-associated viral signaling protein
MDA5 melanoma differentiation-associated protein 5
N nucleocapsid
NEMO NF-κB essential modulator
NF-kB nuclear factor kB
NPC nuclear pore complex
NSP nonstructural protein
ORF open reading frame
PAMP pathogen-associated molecular patterns
PLpro papain-like protease
PRR pattern-recognition receptors
RIG-I retinoic acid-inducible gene I protein
RdRp RNA-dependent RNA polymerase
RT-qPCR reverse transcription-quantitative PCR
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
sgRNA subgenomic RNA
S spike
SREBP1 sterol regulatory element-binding protein 1
SRP signal recognition particle
STAT transducer and activator of transcription
TBK1 TANK-binding kinase 1
TLR Toll-like receptor
TNF tumor necrosis factor
TRAF TNF receptor-associated factor
TYK tyrosine kinase
WHO World Health Organization
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