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Abstract. A new method for the reconstruction of 2D electron temperature
profiles in the presence of saturated MHD modes from the 1D ECE diagnostic
is presented. The analysis relies on harmonic decomposition of the electron
temperature oscillations through short time Fourier transforms and requires rigid
poloidal mode rotation as only assumption. The method is applicable to any
magnetic perturbation as long as the poloidal and toroidal mode numbers m and
n are known. Its application to the case of a (m,n) = (1, 1) internal kink mode on
ASDEX Upgrade is presented and a new way to estimate the mode displacement
is explained. For such modes, it is shown that the higher order harmonics usually
visible in the ECE spectrogram arise also for pure m = n = 1 mode and that
they cannot be directly associated to m = n > 1 magnetic perturbations. This
method opens up new possibilities for electron heat transport studies in the
presence of saturated MHD modes and a way to disentangle the impurity density
contributions from electron temperature effects in the analysis of the SXR data.
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1. Introduction

The experimental characterization of magneto-hydro-dynamic (MHD) instabilities in
the core of tokamak plasmas usually requires complex simulation and data analysis
tools. Of the various diagnostics available in modern tokamaks, magnetic pick-up
coils, soft X-ray diode (SXR) detector arrays and the electron cyclotron emission
(ECE) diagnostic are the most used. Each of these diagnostics measures different
properties of the plasma in different ways and deliver different information on the
MHD instabilities, each with its own advantages and disadvantages. Magnetic coils
measure the magnetic field perturbation at the plasma edge, so they are often not
suited for core MHD studies because of phase-folding problems with modes located
at the plasma edge [1]. SXR diodes are line-of-sight (LOS) integrated measurements
of the plasma emissivity in the soft X-ray range so can efficiently detect the core
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perturbations, but the integration along the LOS leads to higher harmonic oscillations
not directly related to higher harmonics modes in the plasma core [2]. The ECE
diagnostic [3] measures the electron temperature locally at different radii along the
plasma cross-section usually spanning the full minor radius, but its 1-dimensional
measurement can’t directly deliver global quantities of the studied instability. Recent
upgrades of this diagnostic to 2D imaging [4] have lead to powerful enhancements of
its capabilities, but, despite the most recent developments comprising of both low-
field-side (LFS) and high-field-side (HFS) detectors so to simultaneously measure on
both sides of the magnetic axis [5], it is still limited in radial coverage, spanning only
fractions of the minor radius.

In this paper, a new way to reconstruct 2-dimensional electron temperature
profiles on the full poloidal plane from the standard 1D ECE diagnostic is explained.
The method is applicable in cases in which the mode rotates rigidly and if the growth
rate of the instability is much smaller than the angular frequency of rotation of the
mode (γ << ω). A similar analysis has been performed in the past on TFTR with
an ECE diagnostic having channels on both HFS and LFS, re-mapping the measured
signals on the poloidal plane through interpolation of subsequent time-points during
the rotation of the mode [6, 7] and the same method has been more recently applied for
the characterization of electron density profiles (from reflectometry) in sawtoothing
plasmas on Tore Supra [8]. The new method presented in this paper relies instead
on reconstruction of the measured data from its frequency components characterized
through short time Fourier transform (STFT). In comparison to the analysis developed
on TFTR, this method is less prone to experimental errors since it naturally filters out
the noise in the measured signals which could strongly affect the interpolation. Even
for low intensity signals, very precise reconstructions can be performed. The radially
resolved amplitude and phase information of the oscillations furthermore enables the
reconstruction of the 2D profiles in any mode phase instead of being restricted to
the time-point under consideration. Since a few oscillation periods are needed to
characterize the perturbation, the time resolution is slightly lower than the TFTR
method.

The results obtained can be used for the characterization of magnetic perturbation
for any given (m,n) mode numbers and for the investigation of 2D electron heat
transport in the presence of saturated modes and of external sources. For (m,n) =
(1, 1) MHD perturbations, the resulting 2D profiles can be further used to evaluate
the mode displacement. This task is usually complex and requires intensive modeling,
while the present method evaluates the displacement from the experimental data
directly through a simple geometrical analysis of the 2D temperature contours

Moreover, the reconstruction of mode-resolved electron temperature profiles
gives the possibility of disentangling the impurity density and electron temperature
contributions from the analysis of the data of the soft X-ray diode (SXR) diagnostic.
This can then give the chance to investigate the mode-resolved impurity density
profiles instead of analysing only the SXR emissivity profiles obtained by tomographic
inversions.

The quality of the reconstruction method has been tested for many different cases
and has been found to be reproducible. In this paper, an example of a (m,n) = (1, 1)
mode is used to describe the analysis method (section 2), to explain the reconstruction
of the 2D electron temperature profiles at any given mode phase (section 3) and the
evaluation of the mode displacement (section 4). In section 3 it will be also shown how
higher order harmonics in the ECE signals do not necessarily imply higher harmonic
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components in the magnetic perturbation but are a direct consequence of the ECE
measurement. Conclusions and an outlook on future applications are given in section
5.

2. Analysis principles

Any periodic signal can be decomposed into the sum of a constant (representing its
offset) and of harmonic components whose amplitude and phase can be calculated
through the use of Fourier transforms. If more than one data-set made up of the same
frequency components is analyzed, the phase shift between these sets, the cross-phase,
can also be evaluated. These four quantities (average value, amplitude, phase and
cross-phase of its frequency components) make up a complete set of variables through
which the data-sets can be fully reconstructed.

For the specific case of the reconstruction of ECE electron temperature data,
ASDEX Upgrade discharge # 25091 will be used as example. This is a low current
Ip = 0.6MA (figure 1a), low line-averaged density 〈ne〉 ∼ 2. · 1019 m−2 (1b), diverted
plasma discharge, whose flat-top geometry is shown in figure 3(c). Successive 100 ms
on-off cycles of 1.5MW ECRH power injection (1d) have been performed, depositing
the power on a flux surface at ∼ 8 cm from the magnetic axis. The effect of ECRH is
clearly visible in Te as diagnosed from the most central channel of the ECE diagnostic
(1c) which exhibits an increase of up to a factor 2 with respect to the ohmic phases.
Strong oscillations caused by a (m,n) = (1, 1) mode are also visible in the Te time trace
during ECRH injection, with sawtooth crashes (τST ∼ 40 ms) routinely interrupting
the cycles. One of these cycles (in time range [t0, t2] defined in figure 1) is shown
in figure 2 as diagnosed by two ECE channels at 〈r〉 ∼ 6 cm (a) and 12 cm (b),
where 〈r〉 = (RLFS − RHFS)/2 is the LFS-HFS averaged equilibrium minor radius
at the midplane. Their spectrograms (figures 2c and 2d) reveal various frequency
components, not equally intense at different radii, appearing very early in the ST-
cycle (τST /10) and fully saturated for more than half of it.
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Figure 1. Plasma parameters of AUG discharge # 25091: (a) plasma
current, (b) core (blue) and edge (red) LOS-integrated electron density, (c)
most central electron temperature measurement from ECE, (d) external
ECRH heating power (black) and total radiated power (blue).
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2.1. Fourier transform analysis

The spectrograms in figure 2 show the energy density Ed evaluated through the use
of continuous short time Fourier transforms [9] (STFT) using a Gaussian window
function (Gabor atom), implemented in custom IDL routine [10] †:

Ed(t
′, ω) =

∣
∣
∣
∣

∫
∞

−∞

Te(t) e
−ωt g(t− t′) dt

∣
∣
∣
∣

2

(1)

where g(t− t′) is the Gaussian function centered on t′. In order to apply a continuous
transform on discrete time signals, the transform has to be discretized. This is
achieved by replacing the integrals by sums and discretizing all variables with the
smallest possible steps, in the present case equal to dt ∼ 0.26 ms (equivalent to 8
data-points). The Gabor atom used has a sigma of 16 data points (σt ∼ 0.5 ms)
which determines the time-frequency resolution of the transform. Since the atom has
an infinite support it has to be truncated. To preserve the appealing properties of
the continuous transform, only the part where its values are under a few orders of
magnitude of the maximum is neglected. In figure 2 the truncation is done for 20
σt, leading to a frequency step df ∼ 49 Hz. The maximum frequency displayed in
the figure is the Nyquist frequency of the ECE acquisition system fNy = 15.625 kHz
(ECE sampling frequency fS = 31.25 kHz). The parameters of the STFT (window
width, time and frequency resolution) can be varied according to the process under
investigation.

† NTI Wavelet Tools, Institute of Nuclear Techniques (NTI) Budapest University of Technology and
Economics, https://deep.reak.bme.hu/projects/wavelet
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Figure 2. Time evolution of two ECE channels at 6 cm (a) and 12 cm

(b) from the magnetic axis in the time range [t0, t2] defined in figure 1.
Energy density of their STFT ((c) and (d) respectively) performed with
the parameters defined in the text. Dashed white horizontal lines are the
result of the maximum-search algorithm returning oscillation frequency and
amplitude of the first three frequency components.

https://deep.reak.bme.hu/projects/wavelet
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Since the window function used for the STFT is a Gaussian and its Fourier
transform is still a Gaussian, the energy density at the oscillation frequency will be
spread out on the frequency axis following a Gaussian curve whose sigma can be
evaluated from the σt[10]:

σf =
1

2πσt
(2)

Recovering the maximum in energy density for each frequency component through a
maximum-search algorithm, the amplitude in eV can be evaluated using the analytical
formula for the integral of a Gaussian, remembering that the energy density (equation
1) is the absolute-value-squared of the Fourier transform [10]:

A =

√

2Epeakσf
√
πdt

T
=

√

2Epeakσf
√
π (3)

where Epeak is the peak energy density at the oscillation frequency and T is the
investigated time interval, in this specific case coinciding with the spectrogram time
step dt.

Performing this for each ECE channel and evaluating the cross-phase of each
channel with respect to a chosen reference, the electron temperature oscillations of
all channels are completely characterized with respect to each other for all radial
measurements and for each time-point of the spectrogram. The amplitude and cosine
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Figure 3. Te oscillation amplitude (a) and cosine of the cross-phase (b)
of the first three frequency components (red, green and blue respectively)
at 2.474 s (labelled t1 in figure 2) for all ECE channels inside r < 0.4 m:
vertical dashed line is the approximate position of the inversion radius,
the black Gaussian curves the ECRH deposition position. Plasma poloidal
cross-section (c) at 2.4 seconds and measurement positions of the ECE
diagnostic (red dots).
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of the cross-phase of the three frequency components of all available channels inside
〈r〉 < 0.4 m at time t1 = 2.474 s (as defined in figure 2) are shown in figure 3a and 3b
respectively. By plotting cos(ϕcross), all channels with the same phase of the reference
will be equal to 1, while a value of −1 will correspond to a phase jump of π. Details
on the evaluation of the cross-phase will be given in the next section.

The error bars on the amplitude have been evaluated through Gaussian
propagation of the errors on the measured signals [10], assumed to be ∼ 7% of the
measured values. The dashed-dotted vertical line in 3a and 3b shows the position of
the inversion radius (rinv ∼ 0.15 m), defined as the position where, at the crash time,
for r < rinv the temperature drops while for r > rinv it rises. The black Gaussians
the ECRH deposition position evaluated through the TORBEAM code [11]. Figure
3c shows the plasma geometry from the EQI equilibrium reconstruction [12] and the
ECE measurement positions (red dots).

Since the maximum-search algorithm mentioned above returns amplitudes and
frequencies for each channel independently, a consistency check of the mode frequency
along the minor radius can be performed. Evaluating the mean 〈f1〉 and standard
deviation σf1 of the first harmonic frequency for all time-points analysed and
considering all channels inside the inversion radius r < rinv (eleven altogether), the
deviation is found to be σf1 < 1% 〈f1〉 for 2.446 < t < 2.481 (s), i.e. for the full time
range of mode existence (see figure 2).

2.2. Signal reconstruction in time

The reconstruction of the data of any channel in time is now straightforward. Since
95% of the signal energy of the Gaussian is concentrated in a 4 σt interval, the data
represented by the STFT at any time point t is contained in a time window 4 σt wide
and centered on t. This data-set (black points with error bars figure 4a and 4b) can
be reconstructed through its frequency components via the formula:

Te(t) = 〈Te(t)〉+
N∑

k=1

δTe(k) · cos(ωkt+ ϕk) (4)

where t is the time and 〈Te〉 is the average value over the time-window 4σt wide
centered on t; δTe(k), ϕk and ωk are the amplitude, phase and frequency of component
k respectively, and the sum is performed over all relevant frequency components. In
this case only the first three harmonics are considered (N = 3) since for N > 3
(4th harmonic visible in the spectrogram of the channel at 12 cm in figure 2d) the
amplitudes are low enough to be neglected. The frequencies ωk have been recovered
through the maximum-search algorithm used to find the maximum in energy density.
If the higher components are harmonics of the first one, as is the case of the present
example, then ωk = k · ω1, where ω1 is the oscillation frequency of the 1st harmonic.
In order to guarantee a precise phase evaluation, ϕk is not taken from the result of the
STFT, but is evaluated as a cross-phase with respect to a simulated reference signal
oscillating at the same frequency ωk. Since this reference is chosen with zero phase,
the resulting cross-phase will be exactly ϕk.

Using equation 4 with all three frequency components and the parameters as
described above, the reconstruction shown in figure 4a and 4b as a thick red line
overlapping the data is obtained. Its precision in both frequency and amplitude,
visible at first sight, can be mathematically quantified by evaluating the residuals
r = (data − fit)/error (where fit is the reconstructed signal) whose absolute
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(b)

(d)(c)

(a)

Figure 4. Reconstruction of the ECE data (black with error bars) using all
three frequency components (thick red line is the sum of all components)
at time t1 as labeled in figure 2. Light red, green and blue lines in (a) and
(b) show the 1st, 2nd and 3rd components respectively shifted in absolute
value for best visualization. Dashed black curve at the bottom of (a) and
(b) is the Gaussian curve used for the STFT. (c) and (d) show the residuals
of the reconstruction of (a) and (b) respectively.

(a) (b)

(d)(c)

Figure 5. As in figure 4 but for the last time-point previous to the sawtooth
crash at t ∼ 2.483 s.
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values always remain below 1 for both considered channels and for the full time range
(the same is found for the full radial range). Analysing the residual distribution
from a statistical point of view, if the ECE data is distributed following the normal
distribution then error in the formula of the residuals corresponds to the standard
deviation σ. For such a distribution one would expect ∼ 68% of all the data to fall
within |r| ≤ 1, ∼ 95% within |r| ≤ 2. Fitting a gaussian to the residual distribution
function, one obtains a standard deviation of ∼ 0.25. One can therefore conclude that
the errors on the ECE data are slightly overestimated, the statistical error on the ECE
data being of the order of 2% instead of the 7% assumed. The matching between the
reconstruction and the data can anyway be considered of very high accuracy.

As can be seen from the single frequency components plotted as narrow red, green
and blue lines respectively (slightly shifted in absolute value for best visualization),
the three components are found to be phase-locked with each other, so that maxima
in the first harmonic correspond to maxima in both second and third harmonics. This
well defined phase relation between the different harmonic components will enable us
to discard the phase ϕk of each component in the reconstruction of the profiles and
use only the cross-phase between channels as phase information.

For completeness, the reconstruction at the crash time is shown in figure 5.
As explained in the previous paragraphs, since the rate of change of the electron
temperature oscillation is in this case much faster than the angular frequency of
the mode and therefore much higher than the time resolution of the STFT, the
reconstruction clearly fails (see residuals in figure 5c and 5d). In this specific case,
the mode frequency is so low (∼ 2 kHz) that, as a result of the crash, the amplitude
goes to zero within a fraction of the mode rotation, making it impossible to resolve
the crash phase even through the use of the method developed at TFTR [6, 7] would
give the possibility of resolving the crash phase.

3. 2D profiles

Having demonstrated the high quality of the reconstruction in time, the second step
is to reconstruct the profiles at the different phases of the mode rotation. In this
case, the formula is similar to equation 4, but now includes only a phase term ϕrm

remapped to ϑ = 0 and a term dependent on the poloidal angle ϑ:

Te(r, ϑ) = 〈Te(r, t)〉+

(a) (b)

original equil.

displaced equil.

ECE channels

Figure 6. Correction of geometrical phase shifts of the ECE channels (a)
and of the mode phase to ϑ = 0.
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N∑

k=1

δTe,k(r) · cos[mk ϑ+ ϕcross
k (r)] (5)

The average 〈Te(r, t)〉 is performed over time as in equation 4, independently for each
radial channel, and the radial coordinate r is the distance of the ECE channel from
the original magnetic axis. Since the measurement is performed only on the LFS,
the reconstruction is performed assuming that the measurements are representative of
the electron temperature on the full poloidal plane. The poloidal angle term includes
the poloidal mode-number mk and no toroidal angle information is needed since the
toroidal position of all ECE channels is the same. Also the time-frequency term ωt is
neglected since we are not interested in knowing the exact phase of the mode in front
of the ECE diagnostic, but want to reconstruct the electron temperature profile at
any phase of the mode. This will in the future give the possibility to reconstruct the
2D profiles at the phase of measurement from any other diagnostic on the tokamak.

Since the ECE channels measure at different poloidal angles (e.g. the black
dots in figure 6a), this will lead to phase shifts between the channels due solely to
the measurement geometry. The phase ϕk of each channel and of each frequency
component as evaluated in the previous section is corrected for such shifts by
remapping each channel to the LFS mid-plane (figure 6a), where the poloidal angle
is equal to ϑ = 0 following the AUG convention, with ϑ increasing positively in the
counter-clockwise direction:

ϕrm
k (r) = ϕk(r)−mkϑr (6)

where ϑr is the poloidal angle of the ECE channel at position r from the plasma centre.
If the temperature profile is peaked in the centre (as it almost always is), the remapped
phase of the first frequency component ϕrm

1 (r) from equation 6 is also the phase of the
mode in the laboratory frame at the toroidal position of the ECE antenna. Since our
aim is to reconstruct the mode at any given phase, after the geometrical correction
performed through equation 6, the phase is further remapped as if the mode were at
ϑ = 0 (figure 6b):

ϕcross
k (r) = ϕrm

k (r)− ωk

ω1
ϕrm
1 (rref )

= ϕrm
k (r)− nϕrm

1 (rref ) (7)

where ωk/ω1 accounts for the periodicity of the higher harmonics components, and n
is the toroidal mode number. This remapping guarantees that any phase shift between
single channels and between harmonic components remain unaltered. This is therefore
a cross-phase not only between channels at the same frequency, but also a cross-phase
between frequency components. The result of equation 7 is the phase used for the
profile reconstruction.

Finally, the mapping on the poloidal plane along ϑ in equation 5 is performed
along the surfaces of the original magnetic equilibrium since these are the trajectories
of rotation of displaced fluid elements. The reconstruction is performed assuming rigid
poloidal mode rotation, i.e. on the geometrical ϑ. A discussion of the consequence
of this assumption is given at the end of this section where the rigidity condition is
relaxed and the reconstruction is performed on the straight field angle ϑ∗ as poloidal
coordinate [13].
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3.1. Higher order δTe harmonics

It is clear from equations 5 and 6 that in order to reconstruct the 2D electron
temperature profiles, the poloidal mode numbers must be known. By performing
mode-number analysis on the magnetic coils and SXR diodes, the first frequency
component has been found to be a (m,n) = (1, 1) mode. Comparing the spectrogram
of one ballooning coil (B31−12) which measures the radial component of the magnetic
perturbation, with that of the ECE channel at r ∼ 12 cm, the higher frequency
components visible in the ECE spectrogram (figure 7a) are not visible in that of the coil
(figure 7b). While the amplitudes of the 2nd and 3rd harmonic in the two ECE channels
considered (figure 7c) are only fractions of the first one, in the magnetic measurement
their values are at noise level (figure 7d). Since the higher frequency components in
the ECE spectrum are higher harmonics of the first one, at double and three times the
main frequency, it could be sensible to assume that the three frequency components
are in direct relation to (m,n) = (1, 1), (2, 2) and (3, 3) magnetic perturbations. If
this were the case, then an estimate of the mode displacement due to each harmonic
could be evaluated through [14]:

ξmn ∼ − δTmn
e

∇〈Te〉
(8)

where the gradient is performed on the equilibrium electron temperature. It will be
clear in the next paragraphs and in the next section that the higher harmonics in
equation 5 should be modeled with mk = 2 and mk = 3, but that they cannot be
directly associated with higher order harmonics in the magnetic perturbation since
they can arise even from a pure (m,n) = (1, 1) mode. Let us for the moment
assume that equation 8 holds and try to understand the relation between the ECE
and magnetic measurements, and higher order displacements in the plasma core.

B31-12(b)

(d)

ECE (r~12 cm)(a)

(c)

Figure 7. Spectrogram of ECE channel at 12 cm from the plasma centre (a)
and of the ballooning coil B31-12 positioned at 56 cm from the magnetic
axis (b). The time evolution (c) of the 3 harmonics (color code as in 3)
for the two ECE channels (full lines 6 cm, dashed 12 cm) and for the
ballooning coil (d).
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3.2. Comparison with magnetic measurements

If equation 8 is applicable to the case of an internal kink (m,n) = (1, 1) with higher
order harmonics, then an estimate of the radial magnetic field perturbation amplitude
at the resonant surface can be calculated from the displacement values through the
relation:

B̃mn
r,s ∝ 2nBφ

R
ξmn (9)

where R = 1.65 m is the plasma major radius, n = 1, 2 or 3 the toroidal mode number
and Bφ = 2.5 T the toroidal equilibrium magnetic field. Equation 9 is obtained by
assuming a typical internal kink top-hat displacement function with dξ/dr = 0 [15],
and solving Maxwell’s equation B̃s = ∇× (ξ×B0) for the perturbed radial magnetic
field r̂ B̃r,s, where B0 is the equilibrium magnetic field.

Applying equation 8 at t = 2.475 s, the time where the mode is fully saturated
but still far enough from the sawtooth crash time to allow us to trust the harmonic
analysis, one obtains a displacement value of 4 cm for the m = 1 harmonic (table
1, labeled ECE). The higher harmonics, given as ratios with respect to the value
of the 1st one, are 1/2 and 1/4 of the ξ11. For comparison, typical values shortly
before the sawtooth crash evaluated through modeling of SXR-diode measurements
[16] are also given in table 1 (labeled SXR). The values from the two methods are
consistent for the 1st harmonic while the 2nd and 3rd harmonics are extremely high
for typical sawtooth precursors, respectively 2 and 14 times larger than the typical
values just before the crash. The resulting relative magnetic perturbation amplitude
at the resonant surface calculated using the displacement in table 1 and equation 9
are given in table 2 for the 2nd and 3rd harmonics.

ξ11 ξ22/ξ11 ξ33/ξ11

(cm)

ECE 4 0.5 0.25
SXR 6 0.25 0.017

Table 1. Displacement of the first three harmonic components of the
m = n = 1 mode, evaluated using ECE and typical values obtained from
modeling of SXR-diode measurements [16]. The m = 2 and m = 3 are
normalized with respect to m = 1 value.

B̃22
r,s/B̃

11
r,s B̃33

r,s/B̃
11
r,s

ECE 1 0.75
SXR 0.5 0.05

Table 2. Magnetic field perturbation amplitudes of the m = 2 and m = 3
harmonics at the resonant surface normalized to amplitude of the m = 1,
evaluated using equation 9 with the displacement values in table 1.

The displacements in table 1 derived using SXR are evaluated by modeling the
experimental SXR data using an MHD-interpretation code and reconstructing the
displacement eigenfunctions [16]. On the other hand, equation 8 has been calculated
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for the so-called outer-region, i.e. for radii far from the resonance surface [14]. It is
therefore clear that the estimates obtained using SXR given in tables 1 and 2 are to
be considered more precise than those evaluated using ECE data. Moreover, in the
next paragraphs it will be clear that the 2nd and the 3rd harmonics present in the
ECE data are not in direct relation to the structure of the magnetic perturbation, but
are a consequence of the ECE measurement.

In order to compare the results in table 2 with the coil measurements performed
at the plasma edge, the decay of the magnetic perturbation across the plasma has to
be evaluated. This can be calculated by solving Maxwell’s equation ∇ × B̃ = µ0j̃ b̂
for the perturbed magnetic field B̃ assuming the perturbed toroidal current j̃ b̂ is
negligible outside the resonant surface r > rs [17]. Writing the perturbed magnetic
field in large aspect ratio approximation in the form of the poloidal flux function:

B̃r = − 1

rR

∂ψ

∂ϑ
B̃ϑ =

1

R

∂ψ

∂r
(10)

and assuming a perturbation of the form e(mϑ−nφ), substituting equations 10 in
Ampére’s law, one obtains the tearing mode equation for the outer region:

1

r

d

dr

[

r
dψ

dr

]

− m2

r2
ψ =

djφ/dr
Bθ

µ0

(
1− nq

m

)ψ (11)

︸ ︷︷ ︸

vacuum

︸ ︷︷ ︸

plasma

where the left hand side is the vacuum contribution, the right hand side the
contribution from the plasma. In vacuum approximation (i.e. setting the right
hand side to zero), this equation has an analytical solution ψ ∝ r−m. The decay
of the magnetic field perturbation can then be calculated substituting this solution in
equation 10, obtaining:

B̃m,n ∝ r−(m+1) (12)

where r is the distance from the magnetic axis and m is the poloidal mode number.
Since this solution is exact apart from a constant, the decay rate from the resonant
surface to the plasma edge can be evaluated analytically:

B̃mn
s

B̃mn
=

(
r

rs

)(m+1)

(13)

The same estimate can be calculated including the plasma contribution by solving
equation 11 numerically with the experimental safety factor q and the toroidal current
density jφ profiles, and fixing an arbitrary value at the resonant surface as inner
boundary condition and imposing ψ = 0 at large distances from the resonant surface
(in this case at r = 2 a) as outer boundary condition. The safety factor and current
density profiles used for the calculation have been cross-checked against a CLISTE
equilibrium reconstruction [12, 18].

The decay rates evaluated for m = n = 1, 2 and 3 in both vacuum approximation
and including the plasma contribution are shown in table 3 (labeled vacuum and
plasma respectively), the resonant surface assumed at the position of the inversion
radius rs = rinv = 0.15 m and the decay calculated up to the plasma edge r = 0.5 m.
The increase in decay rates for higher m numbers is clear already from the vacuum
solution 13. The decay rates increase including the plasma contribution, this increase
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B̃11
r,s/B̃

11
r B̃22

r,s/B̃
22
r B̃33

r,s/B̃
33
r

vacuum 11 37 123
plasma 24 50 152

plasma/vacuum 2.18 1.35 1.24

Table 3. Decay rates of the first three harmonic components of the
m = 1 mode evaluated in vacuum approximation and including the plasma
contribution. The last line shows the ratios between these decay rates.

being lower for higher harmonics, the ratio of the decay rates (plasma/vacuum)
decreasing with m.

Since the magnetic coils measure the rate of change in magnetic field perturbation
dB̃mn

r /dt and not the perturbation amplitude directly, the B̃mn
r at the measurement

position has to be calculated from:

B̃mn
r =

dB̃mn
r

dt

1

2πflab
=
dB̃mn

r

dt

1

nωt

(14)

where flab is the measured frequency in the lab frame (different for each harmonic),
n the toroidal mode number and ω = ωt the angular frequency of the mode rotation
(equal for all harmonics). The latter is assumed to be predominantly in the toroidal
direction, neglecting the corrections from the diamagnetic terms and poloidal plasma
rotation.

From the measurement value dB̃11
r /dt = 25 T/s of the first harmonic at

t = 2.475 s (figure 7), using equation 14 and the decay rate calculated including
the plasma contribution, a perturbation amplitude B̃11

r,s ∼ 42 mT is obtained at the

resonant surface. Calculating B̃mn
r,s for the higher harmonics using the ratios in table

2 and the decay rates to calculate B̃mn
r , the expected measurement values dB̃mn

r /dt
(table 4, where ∂t indicates the time derivative) can be estimated using equation 14.
The results in table 4 clearly show that both the 2nd and 3rd harmonics should be
visible in the magnetic coil measurements, their values being well above the noise
level ∼ 5 (T/s). Even using the typical values (SXR), the second harmonics should
be visible in the magnetic spectrogram. It is therefore clear that the higher harmonic
components in the ECE spectrogram are not in direct relation to the higher harmonics
in the magnetic perturbation and that the numbers mk in equations 5 and 6 can be
seen as poloidal mode numbers of the electron temperature perturbation as seen by
the ECE diagnostic.

∂tB̃
11
r ∂tB̃

22
r ∂tB̃

33
r

meas. (T/s) (T/s) (T/s)

ECE 25 24 8.9
SXR 25 12 0.9

Table 4. Predicted magnetic measurements evaluated using the decay rates
in table 3 and the magnetic perturbation amplitudes in table 2 given the
measured value of the m = 1 harmonic.
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3.3. Profile reconstruction

Let us therefore take mk = 1, 2 and 3 for the three harmonics and rebuild the 2D
electron temperature profiles using equation 5 with mode phase ϑ = 0, i.e. with the
displaced core on the LFS. All contour plots in figure 8 show only the most central
part of the plasma, inside a radius slightly larger than the inversion radius rinv and are
truncated for r < min(rECE) so to avoid any extrapolation of the electron temperature
to radii where the ECE diagnostic does not measure. Moreover, the re-mapping of the
Te on the poloidal plane is performed on the geometrical poloidal angle ϑ and not on
the straight field line angle ϑ∗ [13] since, due to the absence of data from the motional
Stark effect diagnostic (MSE), a trustworthy q profile for its correct evaluation was
not available.

If the reconstruction is performed using only the (1, 1) oscillation component
summed to the average profile 〈Te〉, bean-shaped surfaces are obtained (figure 8a). The
(2, 2) component leads to contours which are squeezed on the top and on the bottom
(8b), while the (3, 3) produces triangular shaped surfaces (8c). Finally, summing
all the harmonic components to the average profile, quasi-circular surfaces eccentric
relatively to the magnetic axis as shown in figure 8d are obtained.

Assuming that the electron temperature is still constant on the displaced flux
surfaces, the shape of the Te contours should resemble that of the magnetic flux
surfaces. If the frequency components in the ECE measurement were in direct relation
with the harmonic components of the magnetic perturbation, then the mk = 1 in δTe
should resemble the geometry of an m = n = 1 mode. As shown in figure 8a this is not

(a) (b)

(d)(c)

Figure 8. 2D reconstruction of the electron temperature profiles: (a)
contours of the electron temperature considering only the (1, 1) oscillation
amplitude summed to the average 〈Te〉; (b) using only the (2, 2) and (c)
only the (3, 3); (d) considering all 3 harmonic components.
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the case, and the contours, obtained using the first harmonic only, exhibit a bean-like
shape. In previous studies [19], simulations of the electron temperature oscillation in
the presence of a resistive (m,n) = (1, 1) mode were observed to exhibit what was
then named ”frequency doubling” for ECE channels close to the inversion radius. This
is an oscillation exhibiting a shape similar to what shown in figure 9d which can be
modeled only by including higher harmonics. Since the simulation was performed with
no higher harmonics in the magnetic perturbation, it is clear that a (m,n) = (1, 1)
perturbation will naturally lead to higher harmonics in the ECE signals, their intensity
dependent on the value of the displacement ξ, on the shape of the unperturbed electron
temperature profile as well as on the channel under consideration.

A qualitative explanation of this can be provided by following the trajectory of
an ECE channel during mode rotation in the mode frame as shown in figure 9a and 9b
(mode phase set to ϑ = 0 as in the previous figures). Since the mode rotates rigidly at
a constant angular velocity, in the mode frame this is equivalent to consider that each
ECE channel will rotate rigidly with constant angular velocity around the equilibrium
magnetic axis (black cross) following a trajectory along the unperturbed flux surfaces
(blue-black ellipse). If the measured signal were made up of only one frequency, then
the Te contours would be bean-like surfaces (figure 9a) since the positive and negative
parts of the oscillation (blue and black parts in figure 9c respectively) account for
half of the oscillation period exactly. For the chosen mode phase, the inversion of
the oscillation from positive to negative will spatially take place at the axis position,

(a)
(c)

(d)

δ Te 11

δ Te 11 + δ Te22 + δ Te33(b)

Figure 9. Temperature contours obtained using the (1, 1) δTe component
only for the reconstruction (a) and the contours of an ideal (m,n) = (1, 1)
mode (b). Resulting temperature oscillation normalized to range [−1, 1],
(c) and (d) for (a) and (b) respectively. Black cross in (a) and (b) is the
magnetic axis, the colors of the black-blue ellipse in (a) and (b) correspond
to identical phases in (c) and (d).
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corresponding to exactly half of the oscillation pertiod (vertical dashed black line
in figure 9a). If the geometry of an ideal (m,n) = (1, 1) is considered (figure 9b),
the situation changes drastically and the ”zero-crossing” is shifted to higher major
radii. The ECE channel considered will exhibit a phase where it sees a constant
temperature (that of the flux surface closest to the measurement position on the left
side of the axis in figure 9b) and a flattening will appear on the time signal (as in
figure 9d). This signal will naturally exhibit higher harmonics. This explanation,
given for an ideal (m,n) = (1, 1) mode, is naturally extendable to a resistive mode
with flat electron temperature in the island. In this case, the flattening observed on
the electron temperature measurement will coincide with the phase in which the ECE
channel measures deep inside the island, as for the results in [19].

It is therefore clear that a one-to-one correspondence between higher order
harmonics in the electron temperature perturbation and harmonics in the magnetic
perturbation cannot be done. Moreover, since also magnetic measurements cannot
provide a trustworthy estimation of the intensity of the harmonics, the identification
of higher (m,n) components of the internal kink must be performed in a more indirect
manner. A possible solution will be given in the next section.

3.4. Time evolution during a sawtooth cycle

The resulting 2D profiles considering the contribution from all 3 harmonics in the
electron temperature oscillation are plotted in figure 11 for four time-points in the
sawtooth cycle (defined in figure 10 with the same labeling). All surfaces are plotted
with the same color scale and same contours so to show the changes in electron
temperature occurring during the cycle. The thick dashed white ellipse represents
flux surface of deposition of the ECRH, the full one the position of the inversion
radius.

Following the time evolution during the ST-cycle, one can observe how the
contours are all concentric surfaces at the time-points where the mode is not yet
present or is very low in amplitude (t0 and t1). Just before the rise of the perturbation
(t1), the temperature inside the inversion radius has increased, perfectly in line with
the fact that the ECRH is being deposited deep inside rinv. At t2, the displacement
of the contours is already clearly visible. Finally, at full saturation of the mode and
shortly before the second crash (at t3), the contours are displaced even further and
the higher temperature of the core is now visible. At this stage, it is not clear if the

(b)(a)

Figure 10. Time evolution (a) and spectrogram (b) of the ECE channel at
6 cm from the magnetic axis.
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temperature inside the displaced core is still increasing between t1 and t3 or if it is
simply being further displaced into the region of measurement.

The slight discontinuity in the contour just inside the inversion radius in figure
11 is probably due to the low oscillation amplitude at this radius which leads to errors
in the cross-phase between neighboring channels and thus to slight imprecisions in the
2D reconstruction.

To best visualize the time evolution of the electron temperature within this
sawtooth cycle, radial cuts of the profiles in figure 11 at the mid-plane are plotted
in figure 12. Here, displaced-core refers to the right side in the plots in figure 11,
island-side to the left side where the magnetic island sits if the mode is resistive. As
predictable, the Te profiles (figure 12a and 12b) and their gradients (figure 12c and 12d
respectively) at t0 are symmetric on both sides of the mode, the gradients exhibiting
very low values just inside the inversion radius.

As time passes, Te increases strongly on the side of the displaced core, while
the temperature on the island-side remains approximately stable. Due to the mode
rotation, the ECRH is being deposited equally on both sides of the mode following
the dashed white ellipse in figure 11, but only the displaced-core seems to retain the
deposited heat. The normalized logarithmic gradients show this effect even more
clearly, the displaced core exhibiting up to 5 times higher values in comparison to
those on the island-side. The latter shows a slight evolution only for the first phase

ECRH

ECE

rinv
(t0) (t1)

(t2) (t3)

Figure 11. Absolute value of the 2D electron temperature at the time-
points defined in figure 10 (same labels). Dashed white ellipse is the
position of deposition of the ECRH, full white one that of the inversion
radius.
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t0 → t1 (black and blue profiles), time at which the mode is starting, visible in the
gradients in the two mode phases, differing only for 〈r〉 < 0.1 m. In the last two
time-points (red and orange) the gradients on the island-side are instead at the level
of the crash value (black) while the ones in the displaced-core continue to evolve.

Further interesting information can be obtained by subtracting the average 2D
profiles 〈Te〉 shortly after the crash (at t0 in figure 11) from each time-point and
plotting the time evolution of the 2D profiles with respect to the start of the sawtooth
cycle (figure 13). The profile at t0 is obviously approximately zero on the full poloidal
plane since the subtracted average is that of this time-point. At t1, the temperature
close to the ECRH deposition position has increased by fractions of a keV while
the temperature at the inversion radius has not changed and the surfaces are still
approximately concentric. The shift of the displaced core is now very clear at t2 and
t3, showing an increase of the displacement and of the temperature inside the displaced
core up to ∼ 3 keV with respect to the start of the sawtooth cycle at t0. In comparison
to the plots of the absolute values (figure 11), it is now clear that between t1 and t3
the core is not only being displaced further, but the electron temperature inside it
is still increasing. On the island-side of the mode, the temperature instead does not
increase more than a few percent and is approximately constant across the full region
throughout the complete sawtooth cycle, indicating that the mode is most probably
of resistive nature and that the temperature inside the island is approximately flat.

island -side displaced core

ECRH

rinv

(c) (d)

ECRH

rinv t0

t3
t2
t1

Figure 12. Electron temperature profiles on the island-side (a) and
displaced core side (b) and their normalized logarithmic gradients, (c) and
(d) respectively, for the time-points defined in figure 10. The black band of
the Te profiles for t0 show the error on the electron temperature profiles.
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Despite highlighting differently various properties of the mode evolution, both
absolute-value and background subtracted 2D profiles show quasi-circular contours in
the displaced core. One of the possible reasons for this is that the re-mapping of the
profiles to 2D has been performed using the geometrical ϑ and not on the straight
field angle ϑ∗ as poloidal coordinate [13]. Using the q-profile given by the equilibrium
reconstruction the differences between the two poloidal coordinates can be seen in
figures 14a and 14c, plotted with the same contour levels for best comparison. Using
these coordinates time-point t3 of the background-subtracted profiles are plotted in
figures 14b and 14d for ϑ and ϑ∗ respectively. A slightly smaller radial range with
respect to what shown in figure 13 has been chosen so to best highlight the contours
and surfaces. It is clearly visible that more stretched surfaces arise when using the
straight field line angle as poloidal coordinate. With respect to those obtained by
mapping on the geometric ϑ, these are more similar to the expected shape of an
(m,n) = (1, 1) perturbation in an elongated plasma.

Also the presence of higher order harmonics in the magnetic perturbation could
naturally lead the displaced core to exhibit slightly more squeezed surfaces. On the
other hand, as explained previously, their presence cannot be determined directly
by either magnetic or ECE measurements. A possibility to understand if the mode
includes higher order harmonics is to model the magnetic perturbation with higher
order displacement vectors (m,n), reconstruct the flux surfaces and try to match the

ECRH

ECE

rinv
(t0) (t1)

(t2) (t3)

Figure 13. 2D electron temperature profiles background subtracted with
respect to the average 2D profile at start of the sawtooth cycle (t0). Labels
as in figure 11.
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(b)

(d)

ECE

ECE

(a)

(c)

Figure 14. Geometrical (a) and straight filed line poloidal angles (c) used
to map of the background subtracted 2D profiles at time t3 ((b) and (d)
respectively).

contour plots from the 2D reconstruction as in figure 11.

4. Evaluation of the mode displacement

The moment the 2D reconstruction has been performed, the evaluation of the mode
displacement is relatively straightforward. If, as stated in the previous section, the
electron temperature is still constant on the displaced flux surfaces, the shape of the
Te contours will coincide with that of the magnetic surfaces. In this case, an estimate
of the maximum value of the mode displacement ξ (not of its radial profile) can be
evaluated from the contour shapes.

The method is explained in figure 15a, where the Te contours at t3 are plotted
for mode phase ϑ = 0 as in the previous plots. The black rhombus in the centre of
the figure is the original magnetic axis, while the red one is the centre of the displaced
flux surface. The latter is evaluated as the average value of the LFS and HFS major
radii of the most central contours (in red in figure):

Rnew
ax = (RLFS +RHFS)/2 (15)

A total of 100 contour levels are used for this evaluation through the whole radial
range. The maximum value of Rnew

ax as evaluated through equation 15 is then taken
for the calculation of the displacement ξ, equal to:

ξ = Rnew
ax −Rax (16)
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RLFSRHFS

ECRH

rinv

new
Rax

Rax

τST

(b)
(a)

Figure 15. Geometric quantities used for the evaluation of the mode
displacement as described in the text (a). Time evolution of the
displacement (b); distance between upper and lower light black lines is
the average distance between ECE channels inside the inversion radius.
Shaded red areas show the region where the values cannot be trusted.

Calculating ξ for each time-point of the STFT, the time evolution of the mode
displacement can be obtained. As shown in figure 15b, ξ goes to zero at the crashes
(at t ∼ 2.443 s and t ∼ 2.484 s) and reaches a maximum value of ∼ 3 cm. The
upper and lower boundaries show the average distance (radial precision) of all the
ECE channels inside the inversion radius and is therefore an upper limit for the error
on the displacement. As explained in section 2.2, since the reconstruction of the 2D
profiles fails at the crash time, the values of the displacement at these times (shaded
red regions in figure 15b) are also not trustworthy.

Such an evaluation has been performed remapping on ϑ∗ and the exact same
values have been obtained. Instead, when using the (1, 1) component only, the
displacement reaches values of ∼ 4 cm. This is consistent with those obtained using
equation 8 in section 3.1 but is too high by 30 − 40 % with respect to the more
precise values obtained using all three components for the 2D reconstruction. When
remapping on mode phase ϑ = π, the displacement is instead ∼ 10% higher due to
the effect of the Shafranov shift.

5. Conclusions and outlook

A new method for the characterization of saturated MHD activity through the
reconstruction of 2D electron temperature profiles from 1D ECE measurements has
been presented. The method relies on the reconstruction of the measured data from its
frequency components characterized through short time Fourier transform (STFT) and
requires rigid poloidal rotation of the mode as only assumption. The high quality of
the reconstruction method has been demonstrated through an example of an internal
kink (m,n) = (1, 1) mode on ASDEX Upgrade. A new method for the evaluation
of the internal kink displacement through a simple geometrical analysis of the 2D
temperature contours has also been explained.

The two-dimensional reconstruction has revealed that the electron temperature
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oscillation may exhibit higher harmonic components even for a pure (m,n) = (1, 1)
magnetic perturbation, explaining previous observations and modeling performed
at TCV [19]. Since such higher harmonics are intrinsically due to the way the
ECE measures the electron temperature perturbation, a one-to-one correspondence
between higher order harmonics in the signal perturbation and harmonics in the
magnetic perturbation cannot be done. Since also the magnetic coils and the SXR
diagnostic cannot provide direct information on the higher harmonics, a possible way
to characterize the MHD perturbation is to model its displacement vectors (m,n)
including m = n > 1 harmonics, reconstruct the flux surfaces and search for a match
with the contour plots from the 2D reconstruction provided in this paper.

Another consequence of this is that the evaluation of the displacement of a
(1, 1) mode from the 2D temperature reconstruction requires the use of all relevant
harmonics in the electron temperature to correctly reconstruct the contours. The
use of the first harmonic leads to values similar to those obtained using the formula
ξ = −δTe/∇Te [14], which is 30 − 40 % higher than those evaluated using the new
method. The reconstruction method is extendable to any magnetic perturbation as
long as the poloidal and toroidal mode numbers m and n are known.

One of the possible future applications of the method is electron heat transport
studies in the presence of saturated MHD activity (for any given (m,n) mode numbers)
and of heat sources in and outside of the island structures. The results presented
can also provide a way to disentangle impurity density contributions from electron
temperature effects in the analysis of the SXR data. The emissivity profiles viewed
by the SXR diagnostic are a convolution of these two effects and can be modeled as
ǫA(R, z) = ne(R, z)nA(R, z)LA (Te(R, z)), where ne is the electron density, nA and
LA respectively the density and cooling factor of an impurity of mass A. In the core
plasma, the latter is a mainly a function of electron temperature [20] and depends
only slightly on transport. This method therefore provides a way of calculating mode-
resolved 2D cooling factor profiles which can be used to calculate 2D impurity density
profiles from the SXR data tomographic reconstructions.

A benchmarking against ECE-Imaging systems is also foreseen to investigate if
the 2D reconstruction matches the measurements of the imaging system and to find
out weather the mode behaves in the same way on both LFS and HFS of the magnetic
axis.
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