
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 133, Number 4, Pages 1013–1023
S 0002-9939(04)07786-X
Article electronically published on November 19, 2004

CHARACTERIZATION OF SCALING FUNCTIONS
IN A MULTIRESOLUTION ANALYSIS

P. CIFUENTES, K. S. KAZARIAN, AND A. SAN ANTOLÍN

(Communicated by David R. Larson)

Abstract. We characterize the scaling functions of a multiresolution analysis
in a general context, where instead of the dyadic dilation one considers the
dilation given by a fixed linear map A : Rn → Rn such that A(Zn) ⊂ Zn

and all (complex) eigenvalues of A have absolute value greater than 1. In the
general case the conditions depend on the map A. We identify some maps for
which the obtained condition is equivalent to the dyadic case, i.e., when A
is a diagonal matrix with all numbers in the diagonal equal to 2. There are
also easy examples of expanding maps for which the obtained condition is not
compatible with the dyadic case. The complete characterization of the maps
for which the obtained conditions are equivalent is out of the scope of the
present note.

1.

A multiresolution analysis (MRA) is a general method introduced by Mallat [10]
and Meyer [11] for constructing wavelets. On Rn (n ≥ 1) by an MRA we will mean
a sequence of subspaces Vj , j ∈ Z of the Hilbert space L2(Rn) that satisfies the
following conditions:

(i) ∀j ∈ Z, Vj ⊂ Vj+1;
(ii) ∀j ∈ Z, f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1;
(iii) W =

⋃
j∈Z

Vj = L2(Rn);
(iv) there exists a function φ ∈ V0, that is called a scaling function, such that

{ φ(x − k) }k∈Zn is an orthonormal basis for V0.
We will consider MRA in a general context, where instead of the dyadic dilation

one considers the dilation given by a fixed linear map A : R
n → R

n such that
A(Zn) ⊂ Z

n and all (complex) eigenvalues of A have absolute value greater than 1.
Given such a linear map A one defines an A−MRA as a sequence of subspaces Vj ,
j ∈ Z of the Hilbert space L2(Rn) (see [9], [7], [13], [14]) that satisfies the conditions
(i), (iii), (iv) and

(ii1) ∀j ∈ Z, f(x) ∈ Vj ⇔ f(Ax) ∈ Vj+1.
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1014 P. CIFUENTES, K. S. KAZARIAN, AND A. SAN ANTOLÍN

Remark 1. There is formally a more general definition of MRA, when one considers
a discrete lattice Γ ⊂ R

n (a discrete subgroup given by integral linear combinations
of a vector space basis v1,v2, . . . ,vn and a map M : R

n → R
n such that M(Γ) ⊂ Γ

and all (complex) eigenvalues of M have absolute value greater than 1. Then the
related MRA is defined as a sequence of subspaces Vj , j ∈ Z of the Hilbert space
L2(Rn) that satisfies the conditions (i), (iii) and

(ii2) ∀j ∈ Z, f(x) ∈ Vj ⇔ f(Mx) ∈ Vj+1.
(iv2) There exists a function φ ∈ V0, that is called a scaling function, such that

{ φ(x − k) }k∈Γ is an orthonormal basis for V0.
It is an easy exercise to observe that by the map S : R

n → R
n satisfying

Sej = vj , 1 ≤ j ≤ n,

where {ej}n
j=1 is the natural basis of R

n, one obtains an associated A1−MRA V ∗
j ,

j ∈ Z, where V ∗
j = S−1VjS with the dilation map A1 = S−1MS (see [13] and [14],

p. 108).

Remark 2. Usually in the definition of an MRA appears the following condition:⋂
j∈Z

Vj = { 0 } , which follows from the conditions (i), (ii) and (iv) (cf. for example
[3], [8] for n = 1). We will give a proof for the general case (see Lemma 4 below).

A priori the condition (iv) appears to be independent from the rest of the con-
ditions in the definitions of MRA and A−MRA. A key tool for the characterization
of a function φ which satisfies the condition (iv) is the following well-known result
(cf. [6], p. 132; [13], p. 34).

Lemma A. The system { g(·−k) : k ∈ Z
n } , where g ∈ L2(Rn), is an orthonormal

system if and only if

(1)
∑
k∈Zn

|ĝ(t + k)|2 = 1 for a.e. t ∈ R
n.

In this paper we adopt the convention that the Fourier transform of a function
f ∈ L1(Rn) ∩ L2(Rn) is defined by

f̂(y) =
∫

Rn

f(x)e−2πix·ydx.

The main purpose of our paper is related to a result proved by E. Hernández
and G. Weiss (cf. [8], p. 382).

Theorem B. Let Vj, j ∈ Z be a sequence of closed subspaces of L2(R) satisfying
(i), (ii) and (iv) for n = 1. Then the following two conditions are equivalent:

a) lim
j→∞

|φ̂(2−jy)| = 1 for a.e. y ∈ R; b)
⋃
j∈Z

Vj = L2(R).

Remark 3. The above theorem is formulated in a modified form in order to indicate
the “essential” part of the result that we are interested in. However, Lemma 2 below
permits us to give a formulation of our result in a similar style.

Our aim is to achieve a bit deeper understanding of the relation between the
behaviour of the function φ̂ in the neighborhood of the origin and the condition
(iii). In particular our result permits us to get rid of the assumption that |φ̂| is
continuous at the origin in Theorem 1.7 of E. Hernández and G. Weiss (cf. [8], pp.
46–48). We prefer to prove our result in the general case because it can be useful
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CHARACTERIZATION OF SCALING FUNCTIONS 1015

for the description of wavelet functions in the frame of the result of the article
[5]. Moreover, the cost of the exposition in the general case is little. We identify
some maps for which the obtained condition is equivalent to the dyadic case, i.e.,
when A is a diagonal matrix with all numbers in the diagonal equal to 2. There
are also easy examples of expanding maps for which the obtained condition is not
compatible with the dyadic case. The complete characterization of the maps for
which the obtained conditions are equivalent is out of the scope of the present note.

Let us introduce some notation before formulating our result. Further in the
paper for m = (m1, m2, . . . , mn) ∈ Z

n and l = (�1, �2, . . . , �n) ∈ Z
n we define 2l =

(2�1 , 2�2, . . . , 2�n) ∈ Z
n and v = [m2l] = (m12�1, m22�2 , . . . , mn2�n). Furthermore,

T
n = R

n/Z
n and if we write F ∈ L2(Tn) we will understand that F is defined on

the whole space R
n as a 1-periodic function with respect to all variables. With

some abuse of the notation we consider also that T
n is the unit cube [0, 1)n. The

translation of a function f ∈ L2(Rn) by b ∈ R
n will be denoted by τbf(t) = f(t−b).

We denote by DA the dilation operator DAf(x) = d
1
2
Af(Ax) in L2(Rn), where

dA = |detA|. Here and further we use the same notation for the linear map and its
matrix with respect to the canonical base.

We will define Br(y) = {x ∈ R
n : |x − y| < r} and will write Br if y is the

origin. For a set E ⊂ R
n and a number a ∈ R we will denote aE = { x ∈ R

n : x =
at for t ∈ E } . If x ∈ R

n then x + E = {x + y : for y ∈ E}.
The Lebesgue measure of a set E ⊂ R

n will be denoted as |E|n. Letting x ∈ R
n,

we will say that x is a point of density for a set E ⊂ R
n, |E|n > 0, if

lim
r→0

|E ∩ Br(x)|n
|Br(x)|n

= 1.

Let f : R
n −→ C be a measurable function. We say that x ∈ R

n is a point of
approximate continuity of the function f if there exists E ⊂ R

n, |E|n > 0, such
that x is a point of density for the set E and

(2) lim
y → x
y ∈ E

f(y) = f(x).

It can be shown that (cf. [12], [1]) for any finite measurable function almost all
points are points of approximate continuity. Let us introduce

Definition 1. A measurable function f : R
n → C is said to be locally nonzero at

a point x ∈ R
n if for any ε > 0, there exists r, 0 < r < 1, such that

| { y ∈ Br(x) : f(y) = 0 } |n < ε|Br(x)|n.

We will say that x ∈ R
n is a point of A−density for a set E ⊂ R

n, |E|n > 0 if
for any r > 0,

lim
j→∞

|E ∩ (A−jBr + x)|n
|A−jBr + x|n

= 1.

Let f : R
n −→ C be a measurable function. We say that x ∈ R

n is a point of
A−approximate continuity of the function f if there exists E ⊂ R

n, |E|n > 0, such
that x is a point of A−density for the set E and (2) holds.

Definition 2. A measurable function f : R
n → C is said to be A−locally nonzero

at a point x ∈ R
n if for any ε > 0 and r > 0 there exists j ∈ N such that

| { y ∈ A−jBr + x : f(y) = 0 } |n < ε|A−jBr + x|n.
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1016 P. CIFUENTES, K. S. KAZARIAN, AND A. SAN ANTOLÍN

We prove the following.

Theorem 1. Let Vj be a sequence of closed subspaces in L2(Rn) satisfying the
conditions (i), (ii1) and (iv). Then the following conditions are equivalent:

A1: W =
⋃

j∈Z
Vj = L2(Rn);

B1: φ̂ (the Fourier transform of the scaling function φ) is A∗−locally nonzero
at the origin;

C1: the origin is a point of A∗−approximate continuity of the function |φ̂| if
we set |φ̂(0)| = 1.

The following theorem is an immediate consequence of the above result.

Theorem 2. Let Vj be a sequence of closed subspaces in L2(Rn) satisfying the
conditions (i), (ii) and (iv). Then the following conditions are equivalent:

A: W =
⋃

j∈Z
Vj = L2(Rn);

B: φ̂ (the Fourier transform of the scaling function φ) is locally nonzero at
the origin;

C: the origin is a point of approximate continuity of the function |φ̂| provided
that |φ̂(0)| = 1.

Remark 4. If we consider the polar decomposition of a map A and have that all
eigenvalues of the positive operator

√
A∗A are equal, then it is easy to show that for

those maps the conditions B1 and C1 are respectively equivalent to the conditions
B and C.

Remark 5. If the matrix of the map A is a diagonal matrix of real numbers and at
least two elements on the diagonal have distinct absolute values, then there exist
functions for which the conditions B1 and C1 hold but the conditions B and C are
not true and vice versa.

2.

Different versions of the following Lemmas 1–2 have appeared in various publi-
cations (cf. [6], pp. 131–132; [13], pp. 28–29). We refer to [4] as a recent reference
for the dyadic case when n = 1; for the general case see [14].

Lemma 1. Let φ ∈ L2(Rn) and assume that {τkφ}k∈Z
n is an orthonormal basis of

V0. Suppose that Vj , j ∈ Z
n, is a sequence of closed subspaces in L2(Rn) satisfying

the condition (ii1). Then a function f is in Vj if and only if there is a function
Fj ∈ L2(Tn) such that

Dj
A∗ f̂(t) = Fj(t)φ̂(t) a.e. on R

n if j ≥ 0,(3)

D
|j|
A∗−1 f̂(t) = Fj(t)φ̂(t) a.e. on R

n if j < 0,(4)

and

(5) ‖f‖L2(Rn) = ‖Fj‖L2(Tn).

Proof. Suppose j ≥ 0 and let f ∈ Vj . Then Dj
A−1f ∈ V0 and by our hypothesis

Dj
A−1f(t) =

∑
k∈Zn ckτkφ(t) in L2(Rn), where {ck}k∈Zn ∈ l2. Taking the Fourier

transform of this expression we get

Dj
A∗ f̂(t) =

∑
k∈Zn

cke−2πik·tφ̂(t).
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CHARACTERIZATION OF SCALING FUNCTIONS 1017

Hence (3) is true with Fj(x) =
∑

k∈Zn cke−2πik·x. The condition (5) holds be-
cause DA∗ is a unitary operator and the functions Dj

A−1f , Fj are represented by
orthonormal systems with the same coefficients.

On the other hand, assume that (3) holds for f ∈ L2(Rn), where Fj ∈ L2(Tn).
If we write Fj(x) =

∑
k∈Z

n cke−2πik·x, then it follows that

Dj
A−1f(t) =

∑
k∈Z

n

ckτkφ(Ajt) a.e. on R
n,

and therefore f ∈ Vj . When j < 0 the proof is similar. �
Lemma 2. Let φ ∈ L2(Rn) and assume that {τkφ}k∈Zn is an orthonormal basis of
V0. Suppose that Vj , j ∈ Z

n, is a sequence of closed subspaces in L2(Rn) satisfying
the condition (ii1). Then the following conditions are equivalent:

a): ∀j ∈ Z, Vj ⊂ Vj+1;
b): there exists H ∈ L∞(Tn), ‖H‖∞ ≤ d

1/2
A∗ such that

(6) DA∗ φ̂(t) = H(t)φ̂(t) a.e. on R
n.

Proof. If a) holds, then φ ∈ V1. By Lemma 1 there exists H ∈ L2(Tn) such that
DA∗ φ̂(t) = H(t)φ̂(t), H ∈ L2(Tn). Let

Φ(t) =
∑
k∈Zn

|φ̂(t + k)|2.

Then

Φ(A∗t) =
∑
k∈Zn

|φ̂(A∗t + k)|2 =
∑

k∈A∗Zn

|φ̂(A∗t + k)|2

+
∑

k/∈A∗Z
n

|φ̂(A∗t + k)|2 = d−1
A∗

∑
k∈Zn

|DA∗ φ̂(t + k)|2 + R(t)

= d−1
A∗ |H(t)|2Φ(t) + R(t)

where R(t) is nonnegative. Now, Lemma A gives that for almost all t ∈ R
n,

1 ≥ Φ(A∗t) ≥ d−1
A∗ |H(t)|2Φ(t) ≥ d−1

A∗ |H(t)|2

and therefore, |H(t)| ≤ d
1/2
A∗ a.e. on Rn.

Finally, to prove b)⇒a) let j ≥ 0 and f ∈ Vj . Then, by Lemma 1, there is a
function F ∈ L2(Tn) such that

Dj
A∗ f̂(t) = F (t)φ̂(t) = d

−1/2
A∗ F (t)H(A∗−1t)φ̂(A∗−1t).

Hence,
Dj+1

A∗ f̂(t) = F (A∗t)H(t)φ̂(t).
Noting that A∗ : Z

n → Z
n we have that DA∗F ∈ L2(Tn); hence HDA∗F ∈ L2(Tn)

and therefore by Lemma 1 we get f ∈ Vj+1. For the case j < 0 the proof is
similar. �

We need the following lemma for the proof of Lemma 4.

Lemma 3. Let g ∈ L(Tn), let A be a fixed linear map A : R
n → R

n such that
A(Zn) ⊂ Z

n, dA �= 0, and let Â : T
n → T

n be the induced endomorphism. Then∫
T

n

g(Ât)dt =
∫

T
n

g(t)dt.
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Proof. We have that cardZ
n/A(Zn) = dA (see [14], p. 109). Let {mi}dA

i=1 ⊂ Z
n be

elements of Z
n that belong to distinct cosets of Z

n/A(Zn). Let Ti : R
n → R

n be
defined by the equation Ti(x) = x + mi and consider the induced endomorphisms
Â−1

i : T
n → T

n of the maps A−1Ti : R
n → R

n (1 ≤ i ≤ dA), where A−1 is the
map given by the matrix A−1. It is easy to check that the images of those maps
Â−1

i (Tn), 1 ≤ i ≤ dA are pairwise disjoint and that

meas(Â−1
i (Tn)) = d−1

A , 1 ≤ i ≤ dA.

Hence,
⋃dA

i=1 Â−1
i (Tn) = T

n. If we denote Ei = Â−1
i (Tn), 1 ≤ i ≤ dA, then we will

have Â(Ei) = T
n and therefore∫

T
n

g(Ât)dt =
dA∑
i=1

∫
Ei

g(Ât)dt

=
dA∑
i=1

d−1
A

∫
T

n

g(t)dt =
∫

T
n

g(t)dt.

�

The following lemma is related to Remark 2.

Lemma 4. Suppose that Vj , j ∈ Z
n, is an A−MRA. Then

⋂
j∈Z

Vj = { 0 } .

Proof. Let f ∈
⋂

j∈Z
Vj and suppose that ‖f‖2 = 1. By Lemma 1 we have that for

any j < 0,

D−j
A∗−1 f̂(t) = Fj(t)φ̂(t) a.e. on R

n, Fj ∈ L2(Tn)

and

(7) ‖f‖L2(Rn) = ‖Fj‖L2(Tn).

Thus for any j < 0,

(8) f̂(t) = Fj((A∗)|j|t)D|j|
A∗ φ̂(t) a.e. on R

n.

If we show that for any closed ball B ⊂ R
n which does not contain the origin

(9)
∫

B

|f̂(t)|dt = 0,

then we will get a contradiction with the condition that the norm of the function
is one and thus finish the proof of the lemma. Then by (8) we obtain that∫

B

|f̂(t)|dt = d
|j|/2
A

∫
B

|Fj((A∗)|j|t))φ̂((A∗)|j|t)|dt

≤
(

d
|j|
A

∫
B

|Fj((A∗)|j|t)|2dt
)1/2

×
(∫

B

|φ̂(A∗|j|x)|2dx
)1/2

≤
(

d
−|j|
A

∫
(A∗)|j|B

|Fj(x)|2dx
)1/2

×
(∫

(A∗)|j|B

|φ̂(x)|2dx
)1/2

.

Using the fact that the map A is expansive and that the closed ball B does not
contain the origin we obtain immediately that

(10)
∫

(A∗)|j|B

|φ̂(x)|2dx → 0 when j → −∞.
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CHARACTERIZATION OF SCALING FUNCTIONS 1019

On the other hand, we can find a cube with sides parallel to the coordinate axes and
with vertices with integer coordinates such that B ⊂ Q. Then by (7) and Lemma 3
we get that for any j < 0,

dj
A

∫
(A∗)|j|Q

|Fj(x)|2dx ≤ |Q|.

Hence for fixed B the integral

dj
A

∫
(A∗)|j|B

|Fj(x)|2dx ≤ |Q| for any j < 0.

Thus by (10) we obtain (9). �

For the proof of Theorem 1 we need the following.

Lemma 5. Let Vj be a sequence of closed subspaces in L2(Rn) satisfying the con-
ditions (i), (iii), (iv) and (ii1). Then for any bounded measurable set E ⊂ R

n,

(11) lim
j→∞

1
|(A∗)−jE|n

∫
(A∗)−jE

|φ̂(t)|2dt = 1.

Proof. We take f ∈ L2(Rn) such that f̂ = χE . Then

‖f‖2
2 = ‖f̂‖2

2 = |E|n.

Let Pj be the orthogonal projection onto Vj . Then by property (iii1) we have
‖f − Pjf‖2→ 0 as j → ∞. Hence, when j → ∞,

(12) ‖Pjf‖2
2 → ‖f‖2

2 = |E|n.

The system { φjk }j∈Z,k∈Z
n , where

φjk(x) = d
j
2
Aφ(Ajx − k),

is an orthonormal basis of Vj according to the properties (i), (ii1), (iv). Observe
that

φ̂jk(t) = d
j
2
A

∫
Rn

φ(Ajx − k)e−2πix·tdx

= d
j
2
A

∫
R

n

φ(Ajx − k)e−2πi(Ajx−k)·(A∗)−jte−2πik·(A∗)−jtdx

= d
− j

2
A e−2πik·(A∗)−jtφ̂((A∗)−jt).
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Thus Pjf =
∑

k∈Zn〈f, φjk〉φjk and

‖Pjf‖2
2 =

∑
k∈Zn

|〈f, φjk〉|2 =
∑
k∈Zn

∣∣∣∣∫ f(x)φjk(x)dx
∣∣∣∣2

=
∑
k∈Zn

∣∣∣∣∫ f̂(t)φ̂jk(t)dt
∣∣∣∣2

=
∑
k∈Z

n

∣∣∣∣d− j
2

A

∫
f̂(t)e2πik·(A∗)−jtφ̂((A∗)−jt)dt

∣∣∣∣2
=

∑
k∈Z

n

∣∣∣∣d j
2
A

∫
f̂(A∗jy)φ̂(y)e2πik·ydy

∣∣∣∣2

=
∑
k∈Z

n

∣∣∣∣∣d j
2
A

∫
(A∗)−jE

φ̂(y)e2πik·ydy

∣∣∣∣∣
2

,

where (A∗)−jE = { y ∈ R
n : A∗jy ∈ E } .

Let j1 be the minimal natural number such that A∗−j1E ⊂ [−1, 1]n. Then for
any j ≥ j1 the last sum is equal to

dj
A

∫
|χ(A∗)−jE(t)φ̂(t)|2dt,

because the terms in the sum are the Fourier coefficients of the function φ̂χ(A∗)−jE .

Therefore by (12) we obtain (11). �

Let Gk = A−k(Zn) for any k ∈ N and denote G =
⋃∞

k=1 Gk. Then the
following lemma is true.

Lemma 6. The set G is dense in R
n.

Proof. If the assertion of Lemma 6 is not true, then for some x ∈ R
n and r > 0 we

will have that

(13) Br(x) ∩ G = ∅.

Let j ∈ N be such that

‖Ajy‖ >
√

n for all y such that ‖y‖ = r.

By the definition of j we have B√
n(Ajx) ⊂ Aj(Br(x)); hence there exists k ∈ Z

n

such that k ∈ Aj(Br(x)). This means A−jk ∈ Br(x), which contradicts (13),
because A−jk ∈ G. �

Proof of Theorem 1. Let us prove first the implication B1 ⇒ A1. We observe that
W is invariant under translations. At first we show that W is invariant under
translations by vectors v ∈ G. We fix some v ∈ G. Then v ∈ Gl for some l ∈ N.

For any f ∈ W and ∀ε > 0, ∃h ∈ Vj0 such that ||f − h||2 < ε. By (ii1) we have
that for every j ≥ j0, h ∈ Vj and therefore h(x) =

∑
k∈Z

n cj
kφ(Ajx − k). Hence,

τvh(x) = h(x − v) =
∑
k∈Zn

cj
kφ(Ajx − Ajv − k).
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If j > max { l, j0 }, then Ajv ∈ Z
n. Consequently τvh ∈ Vj and therefore τvf ∈ W .

The set G is dense in R
n. Thus closedness of the subspace W and the continuity of

the operator τu in L2(Rn) yields the invariance of W under translations.
To show that W = L2(Rn) we take any g ∈ W⊥. Then for every f ∈ W and for

all x ∈ R
n, ∫

Rn

f(x + t)g(t)dt = 0

and therefore, by Plancherel’s identity,∫
Rn

eit·xf̂(t)ĝ(t)dt = 0.

This shows that the Fourier transform of f̂ ĝ is identically zero, which immediately

yields f̂(y)ĝ(y) = 0 almost everywhere (a.e.) on R
n. If we take f(x) = d

j
2
Aφ(Ajx) ∈

Vj , then

f̂(y) = d
− j

2
A φ̂((A∗)−jy)

and φ̂((A∗)−jy)ĝ(y) = 0 (a.e.) or φ̂(t)ĝ((A∗)jt) = 0 (a.e.).
According to our hypothesis, for any positive integer N and r > 1 there exists

k ∈ N such that

| { t ∈ (A∗)−kBr : φ̂(t) = 0 } |n <
|(A∗)−kBr|n

N
.

Then

| { t ∈ (A∗)−kBr : ĝ((A∗)jt) �= 0 } |n <
|(A∗)−kBr|n

N

and therefore taking j = k we obtain

(14) | { y ∈ Br : ĝ(y) �= 0 } |n <
|Br|n

N
.

Letting N → ∞ we obtain

| { y ∈ Br : ĝ(y) �= 0 } |n = 0.

Thus ĝ = 0 a.e., and therefore W⊥ = { 0 }.
Let us prove the implication A1 ⇒ B1. Take any r > 0 and denote Ej = { t ∈

(A∗)−jBr : φ̂(t) = 0 } for j ∈ N. By Lemma A it follows that

(15) |φ̂(t)| ≤ 1 a.e. on R
n;

hence,

|(A∗)−jBr|−1
n

∫
(A∗)−jBr

|φ̂(t)|2dt = |(A∗)−jBr|−1
n

∫
(A∗)−jBr\Ej

|φ̂(t)|2dt

≤ |(A∗)−jBr|−1
n (|(A∗)−jBr|n − |Ej |n).

Applying Lemma 5 we obtain that

|(A∗)−jBr|−1
n |Ej |n → 0 when j → ∞,

which finishes the proof.
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To prove A1 ⇒ C1 we have to show that there exists E ⊂ R
n, |E|n > 0, such

that the origin is a point of A∗−density for the set E and

(16) lim
y → 0
y ∈ E

|φ̂(y)| = 1,

which is equivalent to the following.
For any ε > 0 and any r > 0,

lim
j→∞

| { y ∈ (A∗)−jBr :
∣∣|φ̂(y)| − 1

∣∣ < ε } |n
|(A∗)−jBr|n

= 1.

If the implication A1 ⇒ C1 is not true then, having in mind (15), we obtain
that there exist 0 < ε0 < 1, r0 > 0 and an increasing sequence of natural numbers
{mj}∞j=1 such that

|Γj |n = | { y ∈ (A∗)−mj Br0 : |φ̂(y)| < 1 − ε0 } |n ≥ ε0|(A∗)−mj Br0 |n.

By Lemma 1 and (15) we have

1 = lim
j→∞

|(A∗)−mj Br0 |−1
n

∫
(A∗)−mj Br0

|φ̂(t)|2dt

= lim
j→∞

|(A∗)−mj Br0 |−1
n

(∫
(A∗)−mj Br0\Γj

|φ̂(t)|2dt +
∫

Γj

|φ̂(t)|2dt
)

≤ lim
j→∞

|(A∗)−mj Br0 |−1
n

(
|(A∗)−mj Br0 |n − |Γj |n + (1 − ε0)|Γj |n

)
≤ lim

j→∞
|(A∗)−mj Br0 |−1

n

(
|(A∗)−mj Br0 |n − ε2

0|(A∗)−mj Br0 |n
)
≤ 1 − ε2

0.

The obtained contradiction finishes the proof. The implication C1 ⇒ B1 is trivial;
hence, the proof of Theorem 1 is complete. �

References

[1] A. Bruckner; Differentiation of real functions, Lecture Notes in Mathematics, 659. Springer,
Berlin, 1978. MR0507448 (80h:26002)

[2] C. Boor, R. DeVore, A. Ron; On the construction of multivariate (pre)wavelets, Constr.
Approx. 9 (1993), 123–166. MR1215767 (94k:41048)

[3] Charles K. Chui; An Introduction to Wavelets, Academic Press, Inc. 1992. MR1150048
(93f:42055)

[4] Ole Christensen; An Introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.
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