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Abstract Single point incremental forming (SPIF) is a rela-

tively new manufacturing process that has been recently used

to form medical grade titanium sheets for implant devices.

However, one limitation of the SPIF process may be character-

ized by dimensional inaccuracies of the final part as compared

with the original designed part model. Elimination of these

inaccuracies is critical to forming medical implants to meet

required tolerances. Prior work on accuracy characterization

has shown that feature behavior is important in predicting ac-

curacy. In this study, a set of basic geometric shapes consisting

of ruled and freeform features were formed using SPIF to char-

acterize the dimensional inaccuracies of grade 1 titanium sheet

parts. Response surface functions using multivariate adaptive

regression splines (MARS) are then generated to model the

deviations at individual vertices of the STL model of the part

as a function of geometric shape parameters such as curvature,

depth, distance to feature borders, wall angle, etc. The generat-

ed response functions are further used to predict dimensional

deviations in a specific clinical implant case where the curva-

tures in the part lie between that of ruled features and freeform

features. It is shown that amixed-MARS response surfacemod-

el using a weighted average of the ruled and freeform surface

models can be used for such a case to improve the mean pre-

diction accuracy within ±0.5 mm. The predicted deviations

show a reasonable match with the actual formed shape for the

implant case and are used to generate optimized tool paths for

minimized shape and dimensional inaccuracy. Further, an im-

plant part is then made using the accuracy characterization

functions for improved accuracy. The results show an improve-

ment in shape and dimensional accuracy of incrementally

formed titanium medical implants.
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1 Introduction

Titanium is the material of choice in class III medical implants

due to its biological inertness, strength, lightweight nature,

bio-compatibility, and low-cost production [1]. Forming tita-

nium into desired implant shapes within a specific time-frame

is therefore of fundamental importance to clinical practice. To

enable this, one relatively new manufacturing technique that

has come forth is incremental sheet forming (ISF). Typically,

in ISF, a hemispherical tool is used to deform a flat sheet in

steps following a toolpath tailored to the geometry to be

formed on a computer-numeric controlled (CNC) machine.

ISF can be done in many different ways, as shown in Fig. 1.

Variants include the use of a counter-support tool and use of

dies, either full or partial. A number of efforts have been made

to manufacture implants and supports for different parts of the

human body using ISF such as the skull [2–5], knee [6], face

[7], and ankle support [8] using ISF.
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Process optimization efforts in the field of incremental

forming have been focused on three key aspects: enhanced

process limits, improved accuracy, and uniformity in sheet

thickness [10]. The generation of intelligent toolpath strategies

has been the key to improved part manufacture in all of these

aspects. Process limits were enhanced using multi-step

toolpaths as illustrated by Duflou et al. [11]. The use of helical

toolpaths as shown by Skjødt et al. [12] and Cao et al. [13]

helps eliminate scarring caused by the tool stepping down in a

contouring toolpath. Bambach et al. [14] proposed the use of

generating toolpaths on compensated part geometries to im-

prove the accuracy, while Li et al. [15] have shown that a

multi-stage process can result in improved thickness distribu-

tion in incrementally formed parts.

Despite a number of efforts to make medical implant

shapes using ISF [2–8], making these parts with high accuracy

has been a problem. Even though Behera et al. [2] tried

forming implant shapes with high forming angles with im-

proved accuracy, the part made of titanium grade II failed.

The work of Göttmann [3] illustrated the ability to form im-

plants with a maximum deviation at the edges just less than

2 mm using two point incremental forming (TPIF). Despite

these efforts, no definite characterization of freeform surfaces

and titanium implants made by ISF is currently available.

Some accuracy characterization techniques are available. The-

se include the use of multivariate adaptive regression splines

(MARS) within a feature-based framework for predicting the

behavior of simple features and feature interactions [16] and a

local geometry matrix to predict spring back [17].

Earlier, Verbert et al. proposed the use of a feature-based

approach to form parts with high accuracy [18]. In this ap-

proach, four basic geometric features were identified based on

principal curvatures in the part, viz.: planar, ruled, freeform,

and ribs. While this study provided an overall schematic for

carrying out part compensation in order to optimize the

toolpaths needed to form the part accurately, it did not cover

the specific steps of identifying the relevant geometric param-

eters and error correction functions necessary for each feature

type. Likewise, the work of Behera et al. [16, 19] was limited

to studies on planar and ruled features and aluminum and low

carbon steel alloys. Micari et al. [20] and Essa et al. [21]

outlined various process strategies to improve accuracy in

incremental forming. An in-process online correction strategy

was laid out by Rauch et al. [22] which was limited to

correcting the depth accuracy of the parts. Lu et al. [23]

showed that the use of critical edges in generating toolpaths

can improve surface quality, forming time, and geometric ac-

curacy in specific cases. Despite a number of efforts, these

works did not provide any methods for predicting inaccuracy

in freeform implant shapes. Furthermore, titanium is a mate-

rial not covered by current accuracy models.

To overcome the limitations of the current accuracy char-

acterization techniques, an effort is made in this work to gen-

erate accuracy response surfaces for freeform shapes. This is

done by studying the accuracy behavior of ellipsoidal shapes

formed using single point incremental forming (SPIF), which

is one of the process variants of ISF. Themajor andminor axes

of the ellipsoids are used as parameters in the characterization

models generated using MARS. To account for the effect of

presence of multiple features in a part, a mixed model using an

index generated from principal curvatures of points in the part

is also proposed. These models are then used to predict accu-

racy behavior of new implant geometries and the predicted

behavior is then used to compensate for the inaccuracy of

formed parts. All parts made in this research are formed using

uni-directional contouring tool paths with a uniform scallop

height between successive contours, where scallop height is a

parameter that determines surface quality as shown in Fig. 2.

2 Accuracy characterization methodology

The accuracy of a part formed by incremental forming is typ-

ically determined bymeasuring the same with metrology tools

such as a laser scanner or a coordinate measuring machine.

After carrying out this measurement, a point cloud

Fig. 1 Incremental forming in its three different process variants

showing the a use of counter support or two point incremental forming

(TPIF), b full die, and c partial die [9]
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representing the part can be generated and this point cloud can

be meshed and then compared with a mesh representing a

nominal model obtained from the computer-aided design

(CAD) model of the part. The measurement process with a

point cloud gives the coordinates of the formed part, which is

a large data set, often as high as 100,000–500,000 points for a

single part. Hence, the deviations with respect to the CAD

model also form a large dataset. These deviations can thus

be modeled as function of geometrical parameters for points

on the surface of the nominal model. However, to do this, a

robust, statistical tool for high dimensional data is needed.

Some tools that are currently available and used in model-

ing of high dimensional data include generalized additive

models (GAM), multivariate adaptive regression splines

(MARS), minimax probability machine regression (MPMR),

and least square support vector machine (LSSVM) [24]. Of

these, MARS has already been used to generate models of

accuracy behavior in planar and ruled features made with

specific materials such as AA 3103 and DC01 [19]. This tech-

nique was also applied in the current study.

Figure 3 shows a schematic of the accuracy characterization

methodology. Training set CADmodels are usedwithin a CAM

software such as Siemens Unigraphics NX to generate an un-

compensated toolpath. This toolpath may need to be post proc-

essed into the machine tool format and then fed to a CNC

machine tool used for incremental sheet forming. The formed

part from the ISFmachine tool is then scannedwith ametrology

tool such as a co-ordinate measuring machine (CMM) or a laser

scanner to generate a point cloud, which is then fed to a metrol-

ogy software such as GOM Inspect. This software compares the

training set CAD model to the mesh generated from the point

cloud generated from the CMM to yield an accuracy data file.

This accuracy file is fed to a custom STL processing software

for incremental sheet forming built in Visual C# to carry out the

current study. This software detects features in the part, using

the criteria discussed later in Section 2.3, and also calculates

geometrical parameters such as wall angle, principal curvatures,

etc. which are discussed in Section 2.2 depending on the type of

detected feature. The accuracy data is then linked to the training

set CAD model using KDTrees. KDTrees are multi-

dimensional binary search trees which can carry out quick spa-

tial comparisons between two data sets using an associative

searching technique [25]. Each vertex in the nominal training

set CAD model is linked to a vertex on the measured CAD

model closest to the nominal vertex. This is necessary as the

geometrical parameters are calculated for points on the nominal

model while the accuracy data file consists of deviations for

measured data points and hence, the linking process links accu-

racy data to geometrical parameters. This linked data set is then

exported to a data file which is fed to the statistical software “R”

for generating accuracy response surface using MARS.

Fig. 2 Scallop height in incremental forming; three passes of the tool: 1,

2, and 3 are shown; Δz is the step down increment between tool paths 2

and 3 while Δh is the scallop height

Fig. 3 Accuracy characterization

methodology: boxes in grey

indicate tools used in the process

while boxes in white indicate

outputs from the tools
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In this study, MARSmodels are generated as a sum of basis

spline functions which are chosen using a forward pass and

backward pruning step. The basis functions take one of three

forms: (a) constant, (b) hinge functions of the type max(0, x-k)

or max(0, k-x) where k is constant called the “knot”, (c) prod-

uct of hinge functions. To generate the MARS models, the

statistical package “Earth” available within the software “R”

is used [26]. It was important to find out suitable parameters to

characterize the accuracy, and this is described in Section 2.1.

2.1 Model parameters

To build regression models, geometric and process-related var-

iables need to be selected that potentially affect the accuracy

behavior of the formed part. In prior work for planar and ruled

features, it has been shown that the distance to the feature bor-

ders affects the accuracy behavior [26]. In the case of freeform

features, the obvious problem is the lack of a generic defining

distance in the horizontal plane of the backing plate as freeform

surfaces do not have an immediately obvious symmetry and as

such a defining distance can be problematic in characterizing

the accuracy. However, when we consider the case of a cranial

implant, we observe that the shape of the implant can be

thought of as being close to that of an ellipsoid (Fig. 4a), char-

acterized by a major axis and minor axis. This observation was

further supplemented by experimental results, discussed later in

Section 3, which showed that the accuracy in the direction of

the major axis was different from the accuracy in the direction

of the minor axis at a specific cross-sectional depth. It may also

be noted that for ruled features, the maximum principal curva-

ture is a model parameter, while the minimum principal curva-

ture is zero with a tolerance value and hence, not a model

parameter. In freeform surfaces, both principal curvatures have

a finite value and hence, both can be included as parameters in

the modeling. The accuracy behavior of ruled features that have

close resemblance with a cranial implant is modeled by design-

ing extruded drafts of ellipses, as shown in Fig. 4b.

The following parameters are thus used to predict the 3D

deviation from the CAD model at a point:

1. normalized distance from the point to the bottom of the

feature (do=B/(A+B)),

2. total vertical length of the feature at the vertex (dv=(A+B)

in Fig. 4),

3. major axis length on slicing the feature at the depth of the

point (lmax=C)

4. minor axis length on slicing the feature at the depth of the

point (lmin=D)

5. maximum curvature at the point, kmax

6. minimum curvature at the point, kmin

7. wall angle at the vertex (in radians), α

8. angle of the tool movement with respect to the rolling

direction of the sheet (in radians), ω

Of these, the minimum curvature for ruled surfaces by def-

inition is zero with a tolerance and hence is not a parameter in

the modeling for ellipse drafts.

2.2 Experimental details

A hemispherical tool of radius 5 mm was used for all the tests

along with a feedrate of 2 m/min. A soft low melting-point paste

lubricant, Rocol RTD Compound, was applied during the pro-

cess. Four ellipsoids were used for training the models for

freeform features with major and minor axis diameters 110×

60, 110×70, 110×90, and 90×60 (all dimensions in millime-

ters). Likewise, twelve ellipse drafts representing ruled features

were made using the same major and minor axis diameters and

wall angles of 15°, 30°, and 45° for each diameter combination.

All parts were made in grade 1 titanium alloy of thickness

0.5 mm. A backing plate with an elliptical cross-section corre-

sponding to the dimensions of the top contour of the part was

used for each test. A contouring tool path with constant scallop

height of 0.05 mm was used for forming the parts. The formed

parts were unclamped and measured with a 3D coordinate mea-

suring machine to generate point clouds representing the formed

part shape. In the current work, the sheets used are thin and so the

deformation on unclamping is significant. Hence, it is important

to develop models for the net effect of deviations due to plastic

deformation while forming and deviations due to unclamping.

2.3 Feature detection thresholds

The file format used within this research consists of triangu-

lated representation of the part’s surface known as the STL

(a) (b)

Fig. 4 Geometrical model parameters for ellipsoid (a) (left) and ellipse draft (b) (right)
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(stereolithography) format. The detection of features relevant

to incremental forming requires the segmentation of the part’s

surface based on curvature calculations performed at individ-

ual vertices. These curvature calculations are done following

the procedure outlined by Cohen-Steiner [27, 28]. The curva-

ture tensor at a vertex v can be calculated as:

Λ vð Þ ¼
1

Aj j
∑

edges

β eð Þ e∩Ak k
eeT

ek k2
ð1Þ

where |A| is the surface area of the spherical zone of

influence of the tensor and β(e) is the signed angle

between the normal vectors of the STL facets connected

by the edge e. The weight for the contribution by each

edge is given by the factor e∩A. The normal at each

vertex is estimated as the eigenvector of Λ(v) evaluated

by the eigenvalue of minimum magnitude. The other

two eigenvalues, kmin and kmax, provide estimates of

the minimum and maximum principal curvatures at v.

Using these principal curvatures, the part can be split

up into features using the following classification

criteria [29]:

Planar feature: kp
min= 0±εp and kp

max= 0±εp, where εp is

a small number that can be tuned for identifying planar

features

Ruled feature: kp
min= 0±εr and kp

max= X, where X is a

positive non-zero variable. Another possible case is

where kp
min= X and kp

max= 0±εr, where X is a negative

non-zero variable. εr is a small number that can be tuned

for identifying ruled and freeform features.

Freeform feature: kp
min= Y±εr and kp

max= X±εr, where X

and Y are non-zero variables such that X≤ρmax and

Y≥ρmin, where ρmax and ρmin are threshold values for

distinguishing freeform and rib features.

Rib feature: kp
min ≤ρmin and/or kp

max≥ρmax

Figure 5 shows examples of these features. A ruled feature is

defined by a generatrix curve that is swept along a directrix line

to generate the surface, as in the cone shown in Fig. 5b. A double

curved surface where a generatrix is swept along another curve

creates a freeform surface, as shown in Fig. 5c. It is important to

set appropriate thresholds so as to get a usable segmentation of

the part for building response surface models for accuracy.

3 Characterization results

3.1 Model for freeform ellipsoidal parts

The accuracies of the formed ellipsoids (shown in Fig. 6) are

listed in Table 1. It can be seen that changing the diameters of

the major and minor axes affects the accuracy of the part. The

smallest part shows the highest over forming. This can be

attributed to the low wall angles in the part, which are usually

responsible for over forming. The largest part with the highest

wall angles (top contour of 110×90 mm) shows exclusively

under forming. This is due to two reasons: (a) ellipsoids are

essentially positive curvature freeform surfaces and positive

curvature tends to under form [9], (b) the biggest part has high

wall angles in the initial forming steps and high wall angles in

a positive curvature region are known to under form [9]; this

leads to the lower depths also showing under forming being a

continuation of the top surface.

The MARS model was trained with accuracy data from

these tests resulting in the following model.

e f ¼ −0:65 þ 0:35 * max 0; 0:97 −doð Þ þ 7:2 * max 0; do− 0:97ð Þ − 0:024 * max 0; dv− 45ð Þ þ 0:0049 *

max 0; 56 −dvð Þ þ 0:71 * max 0; dv− 56ð Þ − 0:008 * max 0; lmax− 97ð Þ þ 0:028 * max 0; 17 −lmin
� �

þ

0:013 * max 0; lmin− 17
� �

þ 3:9 *max 0; kmax þ 0:0061ð Þ þ 14 * max 0; 6:8 * 10−5−kmin
� �

þ 6:3 *

max 0; kmin− 6:8 * 10−5
� �

−1:4 * max 0; 0:62 −αð Þ – 1:2 * max 0;α– 0:62ð Þ þ 3:5 * max 0;ω− 1:2ð Þ þ
0:59 * max 0; 1:3 −ωð Þ − 13 * max 0;ω− 1:3ð Þ

ð2Þ

Fig. 5 Different types of features which show unique behavior during incremental sheet forming: a planes and ribs, b a cone shown as a ruled feature, c a

double curved hyperboloid shown as an example freeform feature
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where, ef=deviation at STL vertex of a freeform feature and

the remaining abbreviations are the same as in Section 2.1.

3.2 Model for ellipse draft ruled surfaces

Nine of the 12 ellipse draft ruled surface parts were

chosen as training sets for generating the models. These

were the parts made with major and minor axis

diameter combinations of 110×60, 110×90, and 90×

60. The remaining three were used later for verifying

the model’s validity for a new combination of major

and minor axis diameters. Table 2 lists the accuracies

of these parts.

It is observed that at low wall angles, the formed part

shows large deformations after unclamping, which is

absent at higher wall angles, 30° and 45°. In general,

90 mm x 60 mm 
110 mm x 70 mm

110 mm x 60 mm 
110 mm x 90 mm 

Fig. 6 Ellipsoids used for

training the MARS models

Table 1 Accuracies of formed ellipsoids (negative deviations indicate over forming while positive deviations indicate under forming)

Major axis diameter Minor axis diameter Min. deviation Max. deviation Mean deviation Standard deviation

110 60 −0.6 2.44 0.38 0.41

110 70 −1.16 0.95 0.16 0.38

110 90 0 1.93 0.60 0.33

90 60 −1.39 0.64 −0.34 0.27

All dimensions are in millimeters

1104 Int J Adv Manuf Technol (2016) 83:1099–1111



the under forming was observed to increase with the

wall angle in the part. This also results in an increase

in the magnitude of the mean deviation. The model

resulting from the training of these parts is given below:

er ¼ 0:3 − 0:28 * max 0; 0:96 − doð Þ− 21 * max 0; do− 0:96ð Þ − 0:096 * max 0; 11 − dvð Þ− 0:0022 *

max 0; dv− 11ð Þ− 0:006 * max 0; 108 −lmaxð Þ þ 0:46 * max 0; lmax− 108ð Þ þ 0:049 * max 0; 31 −lmin
� �

− 0:0035 * max 0; lmin− 31
� �

þ 5:3 * max 0; lmin− 94
� �

− 8:5 * max 0; 0:13 −kmaxð Þ− 27 *

max 0; kmax− 0:13ð Þ þ 3:1 * max 0; 0:25 −αð Þ þ 19 * max 0;α− 0:25ð Þ− 18 * max 0;α− 0:36ð Þ
− 0:32 * max 0; 1:4 −ωð Þ− 0:34 * max 0;ω− 1:4ð Þ

ð3Þ

where er=deviation at STL vertex of a ruled feature.

3.3 Generalized model for a part with mixed curvatures

For a part with mixed curvatures, feature detection with

thresholds used for detecting the ellipsoidal parts as freeform

features results in the part being detected as a mixture of ruled

and freeform surfaces as shown in Fig. 7a. This creates small

ruled features surrounded by a larger freeform feature. To

carry out compensation of the part, the vertices in the ruled

features would then be compensated with a different error

correction function than the freeform feature. This would in-

troduce discontinuities in the predicted and compensated sur-

faces. The problem is observed even if the thresholds are

changed to those needed to detect the part largely as a ruled

surface by using the same thresholds that were used for de-

tecting the ellipse drafts, as shown in Fig. 7b.

Another technique to correct the part would be to use a

network of features and use a single compensation function

for the feature interactions [30]. However, modeling this fea-

ture interaction would require more experimental tests and

also need to cover the different locations where the ruled

Table 2 Accuracies of formed ellipse draft ruled surfaces (negative deviations indicate over forming while positive deviations indicate under forming)

Major axis diameter Minor axis diameter Wall angle Min. deviation Max. deviation Mean deviation Standard deviation

110 60 15° −3.41 4.91 0.48 1.56

30° −1.26 0.79 −0.16 0.46

45° −1.22 1.27 0.21 0.59

110 90 15° −2.76 4.43 −0.60 1.17

30° −0.87 1.37 0.24 0.43

45° −0.97 1.23 0.33 0.50

90 60 15° −4.50 3.24 −1.96 1.36

30° −0.99 1.04 0.08 0.40

45° −1.30 1.18 0.10 0.47

All dimensions are in millimeters

Fig. 7 Feature detection with a

thresholds used for detecting the

ellipsoids as freeform features

εp = 0.005, εr= 10−4, ρmax=

0.075, and ρmin = −0.075 and b

thresholds used for detecting the

ellipse drafts as ruled features

εp = 0.005, εr= 2*10−2,

ρmax= 0.05, and ρmin = −0.05
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features occur. Furthermore, due to the small surface area of

the ruled features, the feature interaction error prediction equa-

tions may not capture the correct accuracy behavior.

Hence, a new approach to model the accuracy of parts with

mixed curvatures was used in this study. In this approach, the

part is detected as a single feature and an index that evaluates

the extent to which the feature is a freeform feature is calcu-

lated. This index is evaluated as:

δ ¼
κmin partð Þ−κmin ruledð Þ

κmin ellipsoidsð Þ−κmin ruledð Þ
ð4Þ

where δ is the extent to which the feature is a freeform feature,

κmin partð Þ is the mean of minimum curvatures of the vertices

in the part, κmin ellipsoidsð Þ is the mean of the minimum cur-

vatures of the vertices in the ellipsoid training sets used for

generating Eq. (2), and κmin ruledð Þ is the mean of the mini-

mum curvatures of the vertices in the ellipse draft training sets

used for generating Eq. (3).

Now, the deviations at individual vertices of the part are

calculated as :

em ¼ δ*e f þ 1−δð Þ*er ð5Þ

where, em is the predicted deviation of a vertex in a

mixed feature consisting of both ruled and freeform sur-

face vertices, and ef and er are calculated using Eqs. (2)

and (3) respectively.

4 Benchmark validation test cases

4.1 Test geometries

The model generated in Eq. (2) was validated in two steps.

First, it was tested against the training sets. Then, it was used

to predict a new part, which is a cranial implant. Likewise, the

model generated in Eq. (3) was validated by testing against the

ellipse drafts formed with the backing plate of dimensions

110×70 mm, which were not part of the training sets. The

mixed model in Eq. (5) was then also used to predict the shape

of the implant to find if it improves the prediction provided by

Eq. (2). The geometry of the cranial implant is shown in

Fig. 8.

4.2 Model validation results

The results of the validation are presented in Table 3. Here, the

predicted meshes are compared with the mesh representing

the point clouds from the actual formed part from experiments

and the prediction error is thereby found as the deviations

between these twomeshes. It is seen that the training test cases

show a mean deviation close to zero for three of the four

ellipsoids, while the implant shows a mean deviation of

−0.82 mm. The error in the prediction of the formed shape

of the implant is [−1.0 mm, 1.0 mm], which is not as good as

the prediction for the ellipsoids (see example prediction for

ellipsoids in the sections shown in Fig. 9). The reason for the

Fig. 8 Cranial implant geometry in isometric view, x-section along AA′ and y-section along BB

Table 3 Prediction accuracies of benchmark test cases (all dimensions are in millimeters)

Part type Major axis diameter Minor axis diameter Min deviation Max deviation Mean deviation

Ellipsoid 110 60 −0.42 0.32 0.02

Ellipsoid 110 70 −0.93 0.61 −0.23

Ellipsoid 110 90 −0.69 0.53 0.04

Ellipsoid 90 60 −0.89 0.95 −0.01

Ellipse draft with wall angle 30° −1.07 0.22 −0.77

Ellipse draft with wall angle 40° −0.77 0.37 −0.12

Ellipse draft with wall angle 45° −0.34 0.75 0.29

Cranial plate (Eq. (2)) −1.00 1.00 −0.82

Cranial plate (Eq. (5)) −0.85 0.14 −0.49

1106 Int J Adv Manuf Technol (2016) 83:1099–1111



slightly poor prediction, as shown in Fig. 11a, is that

the ellipsoid is still not a perfect representation of the

curvatures in the cranial plate and the major axis and

minor axis dimensions obtained for the cranial plate are

only an approximation of the material deformation in

the case of an ellipsoid. However, it would be reason-

able to say that the model in Eq. (2) is a good starting

point for prediction of positive curvature freeform sur-

faces and this model can possibly be improved further

either by choosing different geometrical parameters for

the model or using more training sets for more complex

geometries. This would however reduce the robustness

of this methodology.

The predictions for the ellipse drafts was done for parts

with major axis diameter of 110 mm and minor axis di-

ameter of 70 mm and wall angles of 30°, 40°, and 45°,

which constitutes parts outside of the training sets used

for generating the model. It is seen that Eq. (3) predicts

the accuracy of ellipse drafts with mean deviations of

−0.77, −0.12, and 0.29 mm respectively for parts with

30°, 40°, and 45° wall angles. Figure 10 shows the pre-

dicted sections for the part with wall angle of 40°.

Using Eq. (4), δ is evaluated as 0.73 and the prediction

accuracy for the cranial implant improves to [−0.85 mm,

0.14 mm] by using the mixed model (see section in Fig. 11b).

4.3 Compensation technique

The compensation of the parts is carried out by translating

individual vertices in the nominal CAD model of the part

normal to the part geometry by a magnitude equal to a com-

pensation factor multiplied with the predicted deviation at the

point. This follows the strategy outlined by Bambach et al

[14]. Three different compensation factors were tried out for

compensation using Eq. (2), 0.7, 1 and 1.3 and the best among

these factors, 0.7 was used for compensation using Eq. (5).

4.4 Accuracy of compensated implant

The results of the compensation are presented in Table 4 along

with the result for a part made without compensation (com-

pensation factor 0). Using Eq. (2), it can be seen that the part

with the best accuracy is realized with a compensation factor

of 0.7. A color plot of the part accuracy and that of the

Fig. 9 Comparison of ellipsoid sections showing nominal, predicted, and measured sections taken at a x=0 along the minor axis of the ellipsoid and b

y=0 along the major axis of the ellipsoid with major and minor axis diameters 110 and 90 mm

Fig. 10 Comparison of ellipse draft sections showing nominal, predicted, and measured sections taken at a y=0 along the major axis of the part b x=0

along the minor axis of the ellipse draft part with wall angle 40° and major and minor axis diameters 110 and 70 mm
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uncompensated part is shown in Fig. 12 to illustrate the utility

of using the model in Eq. (2) in forming parts with higher

accuracy. It can be seen that with increasing compensation,

the over forming in the part systematically increases from

0.57 mm with a compensation factor of 0.7–0.96 mm with a

compensation factor of 1.3. In contrast, the under forming

decreases from 0.53 mm to 0.25 mm. This indicates that in-

creasing the compensation factor creates an over-compensated

surface, which is outside the nominal CAD model, thereby

enhancing the over forming and reducing the under forming,

which is caused primarily due to spring back of the material.

It is also noted that in the uncompensated part, the color

plot in Fig. 12a reveals that the zone of significant under

forming seen in reddish-yellow tone corresponds to the area

with the highest wall angles. This is on expected lines, as

previous experiments have shown that low wall angle regions

show either low under forming or over forming, while high

wall angle regions are prone to spring back of the material [9].

The color plot shown in Fig. 12b shows that this zone of under

forming is well compensated using the compensated tool path

generated by the prediction given by Eq. (2), as evident by the

green patch in the center of the part.

Using Eq. (5) and a compensation factor of 0.7, the mean

deviation improves from 0.05 to 0 mm, although the maxi-

mum deviation in the part increases from 0.53 to 0.74 mm.

Figure 13 shows the manufactured part and a color plot of the

accuracy. From this result, it can be concluded that the better

predictions obtained by using Eq. (5) help in reducing the

average deviations in the part geometry. It is again evident

from the color plot that the zone of high wall angles in the

center of the part is mostly well compensated and is in green.

There are two small areas in reddish-yellow tone in this plot,

which shows that the prediction was not very accurate in these

regions. However, the improved mean deviation indicates that

the mixed MARS model in Eq. (5) is able to account for the

variations in the principal curvatures in the part better than the

model specifically built for freeform features in Eq. (2).

4.5 Limitations and discussion on the developed models

It is noteworthy that within this study, only positive curvature

parts were considered for developing the response surface

models. This may pose a limitation for directly applying the

developed models for parts that also constitute of negative

curvature regions. In parts with a mix of positive and negative

curvature freeform regions, a model for negative curvature

features can be developed and using the approach provided

in this work to develop a mixed-MARS model, a similar

mixed model can be generated.

Yet another limitation of the current models is for parts with

wall angles close to the failure limit for the material. In the

current study, the parts considered were far away from failure

Fig. 11 Comparison of cranial plate sections showing nominal, predicted, and measured sections taken at x=0 where predicted section is generated

using a model for ellipsoidal freeform surfaces—Eq. (2) b mixed model—Eq. (5)

Table 4 Results of forming a cranial implant using MARS model with different compensation factors

Part type Compensation factor Minimum deviation Maximum deviation Mean deviation Standard Deviation

Cranial plate 0 −0.47 1.02 0.09 0.24

Cranial plate (Eq. (2)) 0.7 −0.57 0.53 0.05 0.19

Cranial plate (Eq. (2)) 1 −0.75 0.36 −0.06 0.17

Cranial plate (Eq. (2)) 1.3 −0.96 0.25 −0.31 0.23

Cranial plate (Eq. (5)) 0.7 −0.60 0.74 0.00 0.22
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and hence, the compensated surfaces were also within the

failure limits. As shown in earlier works [26, 30], when the

compensated surface is beyond the failure limit, toolpaths

generated using MARS models may lead to sheet thinning

and failure. In such cases, it is useful to adopt other tool path

strategies such as morphing [31].

Furthermore, this method will work well when the part to

be formed has a similarity to that of an ellipsoid. While the

ellipsoidal shape was seen to be a very generic method of

characterizing a number of cranial implant shapes, the appli-

cation of these models to parts which are distinctly different

from an ellipsoid should be done with caution. This is partic-

ularly important when sections taken at increasing depths do

not show a decreasing trend in the major and minor axis

lengths. While this limitation may be kept in mind, it is note-

worthy that the developed approach within this study opens

up the possibility of developing a generic method of taking

complex shapes and observing similarities with known geo-

metrical shapes such as ellipsoids, hyperboloids, cones, etc.

and using the basic characterizing dimensions in developing

suitable geometrical parameters that will then be used to de-

velop accuracy response surfaces using MARS.

The validation work on the applicability of the mixed

MARS model was limited to one substantial case study of

the cranial implant. However, the individual models for ruled

and freeform features have been tested to work well in

predicting feature accuracy within reasonable limits for the

maximum and minimum deviations in a number of test cases.

These include the cases shown in Table 3. It was not necessary

to include material properties in the current study, as this study

only focused on grade 1 titanium sheet parts for cranial im-

plant applications. However, the MARS models capture the

effect of the mechanical properties such as tensile strength,

which affect the spring back behavior of sheet materials dur-

ing incremental forming.

In addition, it may be noted that the developed models

within this paper were for sheets of thickness 0.5 mm and

maximum dimensions limited to 110×90×35 mm. For parts

outside these dimensions, simple extrapolation of model pre-

dictions may not yield accurate results. It was not an objective

Fig. 12 Accuracy plot of cranial

implant manufactured with a

uncompensated tool path and b

compensated tool path using

Eq. (2) and a compensation factor

of 0.7

Fig. 13 Cranial implant

manufactured with a

compensated tool path showing a

a sample formed part shown in

top view and b accuracy plot for

the compensated part using

Eq. (5) and a compensation factor

of 0.7
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of this current study to explore the effects of material, size, and

sheet thickness effects but to develop a methodology for

freeform titanium sheet parts that would be applicable mostly

to cranial implant applications and parts with regions of inter-

mediate principal curvatures between two feature types.

5 Conclusions

In this study, a method to predict the accuracy behavior of

incrementally formed titanium sheet parts was developed.

MARS were used to develop models for ruled and freeform

features that predict the accuracy at individual points in the

STL file of the part to be formed. The models for freeform

features are based on four training sets formed as ellipsoids

while the models for ruled features were developed by varying

the wall angles and major and minor axis dimensions at the

top of the part. The major and minor axes of the parts at the

depth (z-axis) cross-section of individual points in the part are

used as variables in the model. In addition, both maximum

and minimum curvatures are used as predictors for the

freeform features model.

The results show that the generated model for freeform

features is reliable in predicting ellipsoids from the training

set with mean deviations for the prediction accuracy varying

between −0.23 and 0.04 mm, while the prediction accuracy

deteriorates for a new part such as a cranial implant. The

model for ruled features predicts the accuracy of a new ruled

feature with mean deviations varying between –0.77 and

0.29 mm, for the specific validation test cases performed. A

new mixed model based on curvatures in the part was pro-

posed, and it was verified to improve the average prediction

for the cranial implant by 0.33 mm.

It may be however noted that the models generated using

the ellipsoids for freeform surfaces should not be directly ap-

plied to any generic shape, unless an approximation in terms

of major and minor axis is immediately apparent from the

model geometry. Furthermore, the ellipsoids are positive cur-

vature features, while a freeform part such as a human face

model may consist of negative curvature regions where the

models provided in this study will not be valid. However, the

modeling strategy provided in this paper for parts with mixed

curvatures using an index as shown in Eq. (4) has been shown

to be a promising strategy.

Using the model for freeform features, part compensation

was carried out for a grade 1 titanium implant part and the

accuracy of the formed part was seen to improve vis-à-vis the

uncompensated part with the best results achievedwith a com-

pensation factor of 0.7. Compensation using the model re-

duced the maximum deviations from 1.02 to 0.53 mm. Using

the mixed model and the same compensation factor of 0.7,

improvement in part accuracy was also realized in terms of

both reduced maximum and mean deviation compared to the

uncompensated part.

Further studies following this research can include improv-

ing the model with better predictors or a new prediction tech-

nique such as GAM. It would also be useful to study the

effects of material properties and sheet thickness on the accu-

racy response functions, as material properties and sheet thick-

ness can vary from one batch to another even for the same

material and this will affect the plastic deformation and spring

back resulting from forming the part. Systematic prediction of

the accuracy of freeform titanium part surfaces using numer-

ical methods such as finite element analysis is another poten-

tial area of investigation, where the results from the studies

carried out within this research can be compared to numerical

predictions.
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