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gradual orthogonalization when starting from a nonorthogonal full
rank initial value. Parallel implementations withO(n�1) throughput
can be obtained straightforwardly, and problem-size independent
throughput can be achieved at the expense ofO(n2) additional oper-
ations. The existence of anO(nm) version of the SGA algorithm and
the possibility of aO(1) implementation make the SGA algorithm
more appealing for applications where low complexity and/or high
throughput are necessary. However, a good step size strategy has still
to be worked out. This is not an easy issue and should be the subject
of further work. We hope that the present correspondence can be a
positive incentive for such research.
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Characterization of Signals by the
Ridges of Their Wavelet Transforms

Reńe A. Carmona, Wen L. Hwang, and Brun Torrésani

Abstract—We present a couple of new algorithmic procedures for the
detection of ridges in the modulus of the (continuous) wavelet transform
of one-dimensional (1-D) signals. These detection procedures are shown
to be robust to additive white noise. We also derive and test a new
reconstruction procedure. The latter uses only information from the
restriction of the wavelet transform to a sample of points from the ridge.
This provides a very efficient way to code the information contained in
the signal.

I. INTRODUCTION

The characterization and the separation of amplitude and frequency
modulated signals is a classical problem of signal analysis and signal
processing. Applications can be found in many situations, such as,
for instance, radar/sonar detection and speech processing [10]. Many
methods have been proposed in the past few years to analyze the
time-frequency localization of signals. The most noticeable are the
family of bilinear representations such as the Wigner representation
and its generalizations (see [1] and [7] for a review) and the linear
representations such as the wavelet and Gabor transforms.

In 1990, the Marseille group proposed a new algorithm (see [6]
for a survey) based on the study of the phase of the wavelet (or
Gabor) transform. The present work is an attempt to extend the
latter to noisy situations. The main thrust of this correspondence is
to use the localization properties of the modulus of the transform
(which is generally more robust than the phase, even though the
latter provides more precise estimates [6]). In the case of frequency-
modulated signals, the wavelet transform is “concentrated” in the
neighborhood of curves (the ridges of the transform). We develop
a scheme in which these curves are searched as such, in a (high
dimensional) space of ridges, via a stochastic relaxation procedure.
This alternate characterization of the ridges is better suited to the
needs of noisy signal analyzes. We also propose a stable method
for signal reconstruction from the numerically computed ridges. This
method is also based on anL2-minimization procedure.

For the sake of simplicity, our discussion is restricted to the case
of the wavelet transform, but since our algorithms deal only with
postprocessing of time–frequency transforms, they can be extended to
any time–frequency energetic representations. The case of the Gabor
transform will be considered in the companion paper [4], where still
another stochastic search algorithm, adapted to different situations,
will be introduced.

We close this introduction with a short summary of the contents
of the paper. Section II is devoted to the statement of the problem
and the definition of the ridges. Section III presents the main features
of the variational problems we propose and solve to estimate the
ridges. We also give a Bayesian interpretation of this approach, and
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we describe how one can modify the penalization functional in order
to accommodate the presence of an additive noise in the signal. This
section ends with a discussion of an example of a bat sound signal,
which we embed in noise. Section IV is devoted to a quick account of
the reconstruction problem, namely, given a set of points in the time-
scale domain, find the signal most likely to have a ridge going through
these points. As before, we outline the mathematical derivations, and
we illustrate the efficiency of the method on a numerical example.

II. RIDGES

The first goal of this section is to set up an abstract formalism
for the mathematical definition of the ridges of functions of two
variables. Then, we propose two Monte Carlo algorithms to detect
and identify these ridges. Let 2 L1( ) be such that0 <

c =
1

0
j ̂(�)j2d�=� < 1, i.e., fulfills the wavelet admissibility

condition. The corresponding wavelet transform off(x) is given by

Tf (b; a) = hf;  (b; a)i =
1

a

1

�1

f(x) (x�b
a

)dx

= e
�'

1

�1

f(x) (e�'(x� b))dx (1)

where we have introduced the auxiliary variable' = log(a). We are
mostly interested in frequency-modulated signals that can be written
as the sum of finitely many components of the form

f(x) = A(x) cos�(x) (2)

but for the purpose of the present correspondence, we shall restrict
ourselves to monocomponent signals. See [4] for a detailed analysis
of the multicomponent case. It is convenient to use the so-called
“progressive wavelets,” i.e., with vanishing negative frequencies. If
 (x) is such a wavelet, then the wavelet coefficients off(x) are
given byTf (b; a) = hf;  (b; a)i =

1

2
hZf ;  (b; a)i, whereZf (x) is

the “analytic signal” off(x) given byZf (x) = 1

�
P � f(x+ y) dy

y
,

whereP denotes principal value integral. It is well-known [1] that
a signal of the form (2) withA(x) and�0(x) slowly varying gives
Zf (x) A(x)expfi�(x)g. If we assume that the Fourier transform
 ̂(�) is peaked near a particular value� = !0 of the frequency,
like for instance the Morlet wavelet given in the Fourier domain by
 ̂(�) = expf�(�� 2�)2=2g, it follows from standard arguments [6]
that the wavelet transform may be approximated as

Tf (b; a)
1

2
A(b)expfi�(b)g ̂(a�0(b))

+O(jA0j=jAj; j��00j=j�0j2): (3)

From the localization properties of the wavelet in the Fourier
domain, one can see that the modulusjTf j of the wavelet transform
is essentially maximum in the neighborhood of a curvea = ar(b) =
exp'(b), which is theridge of the wavelet transform, related to the
instantaneous frequency of the signal byar(b) = e' (b) = !0=�

0(b).
In [6], the phase coherence of the wavelet transform was used to get
a numerical estimate of the ridge. Since the phase can be somewhat
difficult to control in noisy situations, we shall mainly focus here
on the localization of the maxima of the modulus of the wavelet
transform.

III. RIDGE DETECTION: VARIATIONAL APPROACHES

The purpose of this section is to give two examples of ridge
detection algorithms both derived from variational problems. In both
cases, the ridge is searched in a high-dimensional space of curves,
and the ridge estimate appears as the graph of the argument of the

minimization of a suitable penalty function. Unlike the methods in
[6], the penalty function is mainly on the square modulus of the
wavelet transform. The loss of accuracy is weak since the signals
for which the methods are designed are supposed to have slowly
varying frequencies. In the first case, the ridge is the graph of a
function b ! '(b), whereas it is the graph of a parametric curve
in the second case. The results of this section can be used beyond
the single component case (the wavelet transform has a single ridge)
when the ridges can be separated by a preprocessing localization
procedure and then analyzed separately.

A. A Direct Search Algorithm

We first assume that the ridge of the wavelet transform of the
signal f can be parametrized by a functionb ,! '(b) defined for
all the values ofb. For the sake of the present discussion, we denote
by � the space of all the twice differentiable functions with square
integrable derivatives. We then define the penalty functionFf on the
set � of ridge candidates' by

Ff (') = � jTf (b; e
'(b))j2db+ [�'0(b)2 + �'

00(b)2] db: (4)

Such a penalty function clearly implements the two following fea-
tures: the smoothness of the ridge and the localization in the time-
frequency plane (for� = � = 0, minimizing Ff (') is equivalent
to searching maxima ofjTf j2 in the a direction). Our estimate of
the unknown ridge of the wavelet transform of the signalf will
be the function'(b), which minimizesFf ('). The Euler equation
associated with this minimization problem can easily be obtained and,
once discretized into a finite difference equations, solved numerically.
However, such an approach is efficient only for weak noise. The
presence of a strong noise component implies the existence of many
local extrema in which the algorithm may get trapped. We need
a procedure that can jump over the local extrema to reach the
global one(s). A natural candidate for this is the simulated annealing
algorithm [9].

B. Snake Penalization

We now consider a ridge as a parametrized curver: s 2 [0; 1] !
r(s) = [�1(s); �2(s)] in the time-scale plane. The ridge then takes
the form of a “snake” (see [8] for a description of the method in
an image processing context). We use a cost function that takes into
account the modulus of the wavelet transform, as well as additional
terms needed in order to ensure the smoothness of the ridge (both in
the b and a directions). We set

Ff (r) = � jTf (�1(s); �2(s))j
2
ds

+ [�a�
0

2(s)
2 + �a�

00

2 (s)
2 + �b�

0

1(s)
2 + �b�

00

1 (s)
2]ds (5)

where �a, �b, �a, and �b are positive constants. In the “snake
terminology” of [8], the second term is the “internal energy” of
the snake. Its role is to control the smoothness and the rigidity of
the snake. The first term is the “external energy” of the snake. It
accounts for the interaction of the snake with the wavelet transform
modulus. For the reasons mentioned in the previous section, we turn
to stochastic optimization techniques (see [8] for a direct solution
of the corresponding Euler equations) for the numerical solution of
such a minimization problem.

Remark: In many applications, the signalf(x) is the sum of a
pure componentf0(x) and a noise componentn(x). When some
information on the noise is available, it may be included into the
penalty function (see, e.g., [3]–[5] for more details on this point).
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(a) (b)

Fig. 1. (a) Intensity plot of the modulus square of the wavelet transform of the bat signal. The ridge superimposed. (b) Ridge estimate, annealing
method; SNR= �5 dB.

(a) (b)

Fig. 2. (a) Ridge estimate, snake method; SNR= �5 dB. (b) Comparison of several ridge estimates for the bat sonar signal. Notice that the scale is
now increasing upward, as opposed to all other plots, where it is increasing downward.

C. Bayesian Interpretation

Both ridge detection procedures have a Bayesian interpretation.
Let us present it in the case of the direct search. Consider
the prior probability measure defined formally by�prior(d') =
Z�1
1 expf� [�aj'

0(b)j2+�aj'
00(b)j2] dbg00d'00 and the conditional

probability �'(df) = Z�1
2 e

jT (b; '(b))j “df ”, which gives the
probability, conditioned by', that the signal is in the infinitesimal
“df ” in the space of finite energy signals. Then, according to Bayes’
rule, the conditional probability knowing the signal is given by
�posterior(d' j f) = exp� F [']00d'00=Z for some constantZ.
Maximizing �posterior(d' j f) is equivalent to minimizing (4).

D. Cost Minimization by Simulated Annealing

We included the ridge detection procedures described above in
a package ofS functions made available on the Internet [3]. The
implementation was done by solving the variational problems by
simulated annealing (see [9] for background on this combinatorial
optimization technique). The details are spelled out in [3] and [5].

E. Examples

Numerical experiments have been made on various types of
academic and real signals. We illustrate the method described above
with a (real) sonar signal emitted by certain species of bats. The signal
is frequency modulated, with approximately hyperbolic instantaneous
frequency. The wavelet transform (w.r.t. Morlet’s wavelet) was
computed for frequencies ranging from�s=16 to �s=2, with �s
the sampling frequency, in geometric progression (i.e., of the form
a = 2a

n=20
0 , n = 0; . . . 59). Fig. 1 shows the wavelet transform

of the signal [Fig. 1(a)] and the wavelet transform of the same
signal with additive Gaussian white noise, with input SNR= �5

dB. Superimposed are the ridges estimated with the direct search
procedure. Both transforms are coded with gray levels proportional
to their modulus square. In Fig. 2, we show the ridge estimated with
the snake procedure (notice that the boundaries have been fairly well
reproduced), and on the right, a comparison of ridge estimations in
various situations is given.

IV. RECONSTRUCTION FROM THESKELETON ON A RIDGE

We present in this section a new algorithmic reconstruction of a
signal from the knowledge of sample values of its wavelet transform
on the ridges of its modulus. For the sake of simplicity, we restrict
ourselves to the case of a single ridge. See [4] for the analysis (in the
case of the Gabor transform) of the more general case of finitely
many arbitrary ridges. Let us focus on ridges given in the form
b ! '(b). In practical applications, one only knows sample points
(b1; a1); . . . ; (bn; an), and the smooth functionb ,! '(b), which we
use in lieu of the true (unknown) ridge function, is merely a guess that
one constructs from the sample points. We use a smoothing spline
(but any other kind of nonlinear regression curve would do as well).
From now on,'(b) is a smooth ridge function that is constructed
from the n sample data points.

A. Statement of the Problem

We are concerned with the implementation of the folk belief
that a signal can be characterized by the values of the restriction
of its wavelet transform to its ridges. Illustrations can be found in
[6], where it is shown that in the case of signals of the form (2),
the restriction of the wavelet transform to its ridge of the wavelet
transform behaves asA(x)exp[i�(x)] (see also [10] for similar
remarks for the Gabor transform in the context of speech, yielding
good quality reconstruction with high compression rate). Such an
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(a) (b)

Fig. 3. (a) Bat signal used to illustrate the reconstruction procedure. (b) Result of the reconstruction from the values of the wavelet transform at the
points of the estimate of the ridge.

approach can be used in nonnoisy situations, but it does fail in the
presence of a significant noise component. We assume that the values
of the wavelet transform, sayzj , are known at sample points(bj ; aj).
The set of sample points together with the valueszj constitutes the
wavelet transformskeletonof the signal to be reconstructed. We look
for a signalf(x) of finite energy whose wavelet transform has the
graph of the functionar(b) as ridge and satisfies

Tf(bj ; aj) = zj ; j = 1; . . . ; n: (6)

B. The Penalization Approach

We use a strategy that was successfully used by Mallat and
Zhong to reconstruct a signal from the extrema of its dyadic wavelet
transform [2], [11]. In the present setting, we look for a signalf(x)
that satisfies the constraints (6), whereas theL2-norm in the scale
variablea of the modulus is kept to a minimum for eachb. This may
be achieved by minimizing

F1(f) =
1

c 
db

da

jaj
jTf (b; a)j

2 (7)

(note that when the integration is performed on the whole half-plane,
F1(f) = kfk2 by the energy conservation formula). Since the cost
function F1(f) is a quadratic form in the unknown functionf , the
solution is easily computed by means of Lagrange multipliers. A
solution can be constructed as a linear combination of the wavelets
 (b ; a ) at the sample points of the ridge, the coefficients being
given by the solution of ann � n linear system. This solution is
not completely satisfactory, especially when the number of sample
points is small. It ignores the empirical fact that (in most of the
practical cases) the restriction of the modulusjTf (b; a)j to the
ridge, i.e., the functionb ,! jTf (b; ar(b))j, is smooth and slowly
varying. In order to force the solution of the constrained optimization
problem to respect this requirement, we introduce the extra term
~F2(f) =

b

b

d

db
jTf (b; ar(b))j

2

db, and consider the minimiza-

tion of the cost function~F (f) = F1(f) + " ~F2(f), where the free
parameter" > 0 is chosen to balance the two contributions to
the penalty. Unfortunately,~F2(f) is not quadratic inf . In order
to remedy this problem, we remark that according to the analysis
of [6], d

db

(b; ar(b)) F 0(b) = !0=ar(b), where
f(b; a) =

argTf (b; a). Then, we replace~F2(f) by a quadratic form, which
gives a good approximation of it, and~F with

F (f) =
1

c 
db

da

jaj
Tf (b; a)j

2 + "
b

b

d

db
Tf (b; '(b))

2

�
!2

0

'(b)2
jTf (b; '(b))j

2
db = hQf; fi: (8)

C. Solution of the Optimization Problem

The constrained minimization problem can be solved using La-
grange multipliers. The solution is given by

f̂(x) =

2n

j=1

�jQ
�1
 j(x) (9)

whereQ is the operator (matrix after discretization of the problem)
defined in (8), and the functions j are defined by j(x) =
a�1

j  ((x � bj)=aj); j = 1; . . . ; n. The Lagrange multipliers are
determined by imposing the constraints (6). This gives a system of
(2n)�(2n) linear real equations from which the Lagrange multipliers
�j ’s can be computed.

D. Examples

To illustrate the reconstruction procedure, we selected a subset of
n = 500 consecutive samples from the bat signal [see Fig. 3(a)]. We
used 40 sample points on the estimate of the ridge and the value
" = 0:5 to reconstruct the signal. The result of the reconstruction is
given in Fig. 3(b). As may be seen, the reconstruction is of extremely
good quality. An analysis (which is not presented here) of the
modulus of the wavelet transform of the reconstructed signal shows
that because we chose a ridge estimate that ignored the existence of a
secondary ridge, the latter is not present in the reconstruction. Further
results (see [4] and [5]) confirm the quality of the reconstruction
method. This justifiesa posteriorithe approximation we made in the
definition of the quadratic penalty function.

V. CONCLUSIONS

We presented a new approach to the problem of ridge detection
in an energetic distribution of a signal. Our approach is based on
the minimization of a penalty function on the set of all possible
ridge candidates. The penalty function takes into accounta priori
information on the signal (namely, the time–frequency representation
of the signal that is essentially localized around a curve, this curve
is smooth,� � �) and possibly on the noise (through ana priori noise
model or simulations). The minimization is achieved through Monte-
Carlo type methods. We also proposed a new synthesis procedure
that requires only a small number of values of the transform on
the ridge and is very robust to noise. We have focused here on the
case where the time–frequency representation is given by the square
modulus of the wavelet transform (the scale variable being interpreted
as an inverse frequency variable). Any time–frequency representation
can be used as well. The case of the square modulus of the Gabor
transform will be considered in a forthcoming publication [4].
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A General Formulation for Iterative Restoration Methods

Joseph P. Noonan and Premkumar Natarajan

Abstract—Information theory-based techniques for signal or image
restoration and resolution enhancement are now considered a viable alter-
native to other popular techniques. In this correspondence, we present a
general iterative mapping derived using an information theoretic criterion
of optimality. A mathematical structure is defined followed by an analysis
of the mapping, based on this structure. The convergence of the mapping
is considered both in the general formulation and for a particular
example. Some popular techniques are shown to be special cases of this
general mapping.

Index Terms— Iterative methods, resolution enhancement, signal
restoration.

I. INTRODUCTION

In any data collection system, e.g., a camera, there is inevitable
degradation of the actual data or image. The effect of this degradation
is usually modeled by a distorting function. Typically, this distorting
function is singular; as a result, direct methods, such as inverse
filtering, tend to yield unstable estimates. In such cases, iterative
methods have been effectively used for obtaining a stable solution.
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In this correspondence, we are concerned with iterative schemes for
restoring degraded data and offer a criterion of optimality based on
information theory. We also present a generalized mapping function
for optimal iterative signal restoration based on this criterion.

The distortion process is modeled by the linear scheme

u = h � z + n (1)

where

� convolution operation;
u acquired data vector of lengthK corresponding toK samples

of the original dataz;
h distorting function;
n additive noise.

Typically, the noise is assumed to be a zero-mean Gaussian process.
More sophisticated models [17] can, of course, be expected to lead
to better restoration methods, but the associated complexity has
discouraged their widespread use.

In most problems of interest, such as defocus, the distortion
function/matrix is singular, i.e., an inverse does not exist. Direct
solutions are notoriously sensitive to small variations inu or in
z. Problems exhibiting this characteristic are popularly termed as
ill-posed problems. Regularization theory [2] offers a method of
overcoming the problem of ill posedness. The basic philosophy of
this approach consists of finding a related well-posed problem whose
solution is a sufficiently good approximation of the solution to the
ill-posed problem [11]. The well-posed problem, by definition, has
a stable solution.

Karayiannis and Venetsenapoulos [11] suggested the stabilizing-
functional approach for generating the regularization operator [2]. In
the same paper, they provide a detailed study of the use of quadratic
stabilizing functionals. Noonan and Marcus [9] and Noonanet al.
[10] explored the use of the mutual information measure (MIM),
which is a nonquadratic functional from information theory, as the
stabilizing functional. Based on this, Noonan and Achour [8], [14]
proposed some new mapping functions for iterative restoration. In this
correspondence, we discuss in detail a generalized mapping function,
derived using the MIM, and show that some recently proposed
optimum algorithms are special cases of the generalized mapping
function (GMF).

A. Assumptions

All signals are assumed to be nonnegative. Thus, the set of feasible
solutions is limited tofzjz � 0g. z is a vector of lengthK
corresponding toK samples. We also assume thatz is bandlimited.
These characteristics are preserved through the iteration process by
the use of a projection operatorN to ensure consistency witha priori
information. The effect ofN on the convergence of the algorithm is
discussed in Section II-B.

B. Background

The GMF is obtained by using the stabilizing-functional approach
with the MIM as the stabilizing functional. This is achieved by the
constrained minimization of the MIM functional with a mean squared
error constraint based on the noise variance, i.e.,Minimize


(u; z) =

u z

Pu; z(u; z) ln
Pu=z

u

z
Pu(u)
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