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Characterization of Signals from Multiscale Edges 
Stephane Mallat and Sifen Zhong 

Abstract-A multiscale Canny edge detection is equivalent to 
finding the local maxima of a wavelet transform. We study the 
properties of multiscale edges through the wavelet theory. For 
pattern recognition, one often needs to discriminate different 
types of edges. We show that the evolution of wavelet local 
maxima across scales characterize the local shape of irregular 
structures. Numerical descriptors of edge types are derived. The 
completeness of a multiscale edge representation is also studied. 
We describe an algorithm that reconstructs a close approximation 
of 1-D and 2-D signals from their multiscale edges. For images, 
the reconstruction errors are below our visual sensitivity. As an 
application, we implement a compact image coding algorithm that 
selects important edges and compresses the image data by factors 
over 30. 

Index Terms-Edge detection, feature extraction, level cross- 
ings, multiscale wavelets. 

I. INTROJXJCTION 

P OINTS OF SHARP variations are often among the most 
important features for analyzing the properties of transient 

signals or images. In images, they are generally located at the 
boundaries of important image structures. In order to detect 
the contours of small structures as well as the boundaries 
of larger objects, several researchers in computer vision have 
introduced the concept of multiscale edge detection [18], [23], 
[25]. The scale defines the size of the neighborhood where 
the signal changes are computed. The wavelet transform is 
closely related to multiscale edge detection and can provide a 
deeper understanding of these algorithms. We concentrate on 
the Canny edge detector [2], which is equivalent to finding the 
local maxima of a wavelet transform modulus. 

There are many different types of sharp variation points 
in images. Edges created by occlusions, shadows, highlights, 
roofs, textures, etc. have very different local intensity profiles. 
To label more precisely an edge that has been detected, it 
is necessary to analyze its local properties. In mathematics, 
singularities are generally characterized by their Lipschitz 
exponents. The wavelet theory proves that these Lipschitz 
exponents can be computed from the evolution across scales of 
the wavelet transform modulus maxima. We derive a numerical 
procedure to measure these exponents. If an edge is smooth, 
we can also estimate how smooth it is from the decay of the 
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wavelet transform maxima across scales. Lipschitz exponents 

and smoothing factors are numerical descriptors that allow us 
to discriminate the intensity profiles of different types of edges. 

An important open problem in computer vision is to under- 
stand how much information is carried by multiscale edges 
and how stable a multiscale edge representation is. This issue 
is important in pattern recognition, where one needs to know 
whether some interesting information is lost when representing 
a pattern with edges. We study the reconstruction of 1-D and 
2-D signals from multiscale edges detected by the wavelet 
transform modulus maxima. It has been conjectured [16], 
[18] that multiscale edges characterize uniquely 1-D and 2-D 

signals, but recently, Meyer [21] has found counterexamples to 
these conjectures. In spite of these counterexamples, we show 
that one can reconstruct a close approximation of the original 
signal from multiscale edges. The reconstruction algorithm 
is based on alternate projections. We prove its convergence 
and derive a lower bound for the convergence rate. Numerical 
results are given both for 1-D and 2-D signals. The differences 
between the original and reconstructed images are not visible 
on a high-quality video monitor. 

The ability to reconstruct images from multiscale edges 
has many applications in signal processing. It allows us to 
process the image information with edge-based algorithms. 
We describe a compact image coding algorithm that keeps 
only the “important” edges. The image that is recovered from 
these main features has lost some small details but is visually 
of good quality. Examples with compression ratio over 30 
are shown. Another application to the removal of noises from 
signals is described in [17]. 

The article is organized as follows. Section II relates mul- 
tiscale edge detection to the wavelet transform. It shows 
that a Canny edge detector is equivalent to finding the local 
maxima of a wavelet transform modulus. Until Section VI, 
we concentrate on 1-D signals. Section III-A reviews the 
wavelet transform properties that are important for under- 

standing multiscale edges. The wavelet transform is first 
defined over functions of continuous variables, and Section 
III-B explains how to discretize this model. The numerical 
implementation of fast wavelet transform algorithms is given 
in Appendix B. Section IV explains how to characterize 

different types of sharp signal variations from the evolution 
across scales of the wavelet transform maxima. Section V 
studies the reconstruction of signals from multiscale edges. We 
review some previous results and explain how to formalize 
the reconstruction problem within the wavelet framework. 
The reconstruction algorithm is described in Section V-B, 
and numerical results are presented in Section V-C. A 2-D 
extension of the wavelet transform is given in Section VI-A, 
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and its discrete version is explained in Section VI-B. Fast 2- By definition, the functions r/?(x) and G’(Z) can be consid- 
D wavelet algorithms are given in Appendix D. Section VII ered to be wavelets because their integral is equal to 0 
differentiates the edges of an image from the evolution across 
scales of the wavelet modulus maxima. The reconstruction of 
images from multiscale edges is explained in Section VIII-A, J 

-r $“(~)dz = 0 and J +03 $b(z)dz = 0. --oc 
and numerical examples are shown in Section VIII-B. Section In this paper, we denote 
IX describes an application to compact image coding. 

Notation: L’(R) denotes the Hilbert space of measurable, 
square-integrable 1-D functions f(x). For f E L2(R) and 

E*(x) = ;,,;, 

g E L2(R), the inner product of f(x) with g(z) is written: which is the dilation by a scaling factor s of any function t(z). 

(s(x); f(x)) = J’” g(z)f(x)dz. 
A wavelet transform is computed by convolving the signal 
with a dilated wavelet. The wavelet transform of f(x) at the 

-02 scale s and position 2, computed with respect to the wavelet 

The norm of f(x) E L2 (R) is given by 

c-Cm 

$P(z), is defined by 

V.f(x) = f * 44(x). (4 

Ml2 = / -- lfb412dx. 
-m 

The wavelet transform of f(z) with respect to Gb(x) is 

We denote the convolution of two functions f(x) E L2(R) 
%x4 = f * Ta4. (3) 

and g(z) E L2(R) by We derive that 

The Fourier transform of f(x) E L’(R) is written f^(w) and 
is defined by 

f(w) = /r f(x)e-“““dx. 

L2(R2) is the Hilbert space of measurable, square-integrable 
2-D functions f(~, y). The norm of f(~. y) E L’(R) is given 

by 

II.M = s’1 J’I’ v(z> y)~~dzdy. 
-m -c-z 

The Fourier transform of f(x, y) E L2(R2) is written 

f(w,, wY) a?d is defined by 

+m +m f^(wz+Jy) = J J f (x. y)e- i(wnx+W~Y)dxdy, -m --3o 
II. MULTISCALE EDGE DETECTION 

Most multiscale edge detectors smooth the signal at various 
scales and detect sharp variation points from their first- or 
second-order derivative. The extrema of the first derivative 
correspond to the zero crossings of the second derivative and 
to the inflection points of the smoothed signal. This section 
explains how these multiscale edge detection algorithms are 
related to the wavelet transform. 

We call a smoothing function any function Q(x) whose 
integral is equal to 1 and that converges to 0 at infinity. For 
example, one can choose 0(x) equal to a Gaussian. We suppose 
that S(Z) is twice differentiable and define, respectively, $,a(~> 
and g’(x) as the first- and second-order derivative of B(Z) 

d20(x) 
and tib(~) = x. (1) 

W:f(x) = f * (sz)(x) = .~g(f * Q,)(Z) and (4) 

W,bf(x) = f * (<52g)(x) = s2$(f * e,)(x). (5) 

The wavelet transforms w,“f(~) and W,bf(x) are, respec- 
tively, the first and second derivative of the signal smoothed 
at the scale s. The local extrema of Wzf(~) thus correspond 
to the zero crossings of W,bf(~) and to the inflection points of 
f * 0,(x). In the particular case where 6’(x) is a Gaussian, the 
zero-crossing detection is equivalent to a Marr-Hildreth [19] 
edge detection, whereas the extrema detection corresponds to 
a Canny [2] edge detection. When the scale s is large, the 
convolution with 0,(x) removes small signal fluctuations; we 
therefore only detect the sharp variations of large structures. 

Detecting zero crossings or local extrema are similar pro- 
cedures, but the local extrema approach has some important 
advantages. An inflection point of f * Q,(x) can either be 
a maximum or a minimum of the absolute value of its first 
derivative. The maxima of the absolute value of the first 
derivative are sharp variation points of f * 0,(x), whereas 
the minima correspond to slow variations. With a second 
derivative operator, it is difficult to distinguish these two types 
of zero crossings. On the contrary, with a first-order derivative, 
we easily select the sharp variation points by detecting only 
the local maxima of I Wf f (z) I. In addition, zero crossings give 
position information but do not differentiate small amplitude 
fluctuations from important discontinuities. When detecting 
local maxima, we can also record the values of Wff(~) at 
the maxima locations, which measure the derivative at the 
inflection points. Section IV explains how to characterize 
different types of sharp variation points from the evolution 
across scales of W;f(x) at the modulus maxima locations. 

The Canny edge detector is easily extended in two dimen- 

sions. We denote by 
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the dilation by s of any 2-D function {(z, y). We use the 
term 2-D smoothing function to describe any function 0(x, y) 
whose integral over x and y is equal to 1 and converges to 0 
at infinity. The image f(z, y) is smoothed at different scales s 
by a convolution with es(x, y). We then compute the gradient 

vector V ( f * 0,) (x, y ). The direction of the gradient vector at a 
point (20, yu) indicates the direction in the image plane (2, y) 
along which the directional derivative of f(z, y) has the largest 
absolute value. Edges are defined as points (~0, ya) where the 
modulus of the gradient vector is maximum in the direction 
towards which the gradient vector points in the image plane. 
Edge points are inflection points of the surface f *8, (2, y). Let 
us relate this edge detection to a 2-D wavelet transform. We 
define two wavelet functions $‘(z, y) and ti2(x, y) such that 

$J’(x, y) = v and $J,“(z, y) = y. (6) 

Let $Q(x,Y) = @J’(:, t) and $J~(x,Y) = $b2(z, f). Let 
f(x, y) E L2(R2). Th e wavelet transform of f(z, y) at the 
scale s has two components defined by 

Kff(x, Y) = f*$i(x, Y) and J+‘if(x, Y) = f*+?(x,~). (7) 

Similarly to (4), one can easily prove that 

Hence, edge points can be located from the two components 
W,‘j(x, y) and Wjf(x, y) of the wavelet transform. 

III. DYADIC WAVELETTRANSFORM IN ONE DIMENSION 

A. General Properties 

For most purposes, the wavelet model is not required to 
keep a continuous scale parameter s. To allow fast numerical 
implementations, we impose that the scale varies only along 
the dyadic sequence (2j)jCz. We review the main properties 

of a dyadic wavelet transform and explain under what con- 
dition it is complete and stable. For thorough presentations 
of the wavelet transform, refer to the mathematical books 
of Meyer [20] and Daubechies [5] or to signal processing 
oriented reviews [15], [22]. The wavelet model has first been 
formalized by Grossmann and Morlet [lo]. A wavelet is a 
function $J(x) whose average is zero. We denote by Gsj(z) 
the dilation of $(x) by a factor 2j 

1 x 
$93 (x) = -$( 7). 

23 23 

The wavelet transform of f(x) at the scale 2j and at the 
position x is defined by the convolution product 

w23 f(x) = f * $2, (XL (9) 

We refer to the dyadic wavelet transform as the sequence of 
functions 

Wf = w23 f(X))jCZ 

and W is the dyadic wavelet transform operator. 

(10) 

Let us study the completeness and stability of a dyadic 
wavelet transform. The Fourier transform of N’zjf(x) is 

I&> f(w) = &&(2L). (11) 

By imposing that there exists two strictly positive constants 
Al and Br such that 

we ensure that the whole frequency axis is covered by dilations 

of &w, by (29jcz so that f(w), and thus, f(z) can be re- 
covered from its dyadic wavelet transform. The reconstructing 
wavelet x(x) is any function whose Fourier transform satisfies 

E ?j(2jw)2(2jw) = 1. (13) 
j=-a3 

If property (12) is valid, there exists an infinite number of func- 
tions k(w) that satisfy (13). The function f(x) is recovered 
from its dyadic wavelet transform with the summation 

f(x) = E w23.f * x2.1(2). (14) 

j=-00 

This equation is proved by computing its Fourier transform 
and inserting (11) and (13). With the Parseval theorem, we 
derive from (11) and (12) a norm equivalence relation 

A~llfll~ 5 E II~2~f(~)ll~ I Mfl12~ (15) 
j=-, 

This proves that the dyadic wavelet transform is not only 
complete but stable as well. If 2 is closer to 1, it will be 
more stable. 

A dyadic wavelet transform is more than complete; it is 
redundant. Any sequence (gj(x))jEz, with gj(x) E L2(R), is 
not necessarily the dyadic wavelet transform of some function 
in L2(R). We denote by W-l the operator defined by 

~-Ygj(x))j,z = E L7.i * X2J (XL (16) 
j=-00 

The reconstruction formula (14) shows that (gj(z)jCz) is the 
dyadic wavelet transform of some function in L2(R), if and 
only if 

qw-1(d4)l& = bi(Xc))j~Z~ (17) 

If we replace the operators W and W-l by their expression 
given in (9) and (16), we obtain 

Vj E 2 E gl * Kl,j(x) = gj(x), with (18) 
1=-w 

Kl,j(X> = X2’ * $2J (XL (19) 

These equations are known as reproducing kernel equations. 
The energy of the kernel Kl,j(z) measures the redundancy of 
the wavelet transform at, the scales 2j and 2’. 
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Fig. 1. (a) This wavelet is a quadratic spline of compact support that is 
continuously differentiable. It is defined in Appendix A, and it is the derivative 
of the cubic spline function O(s) shown in (b). 

Fig. l(a) is a quadratic spline wavelet of compact support, 
which is further defined in Appendix A. It is the derivative of 
the smoothing function Q(x) shown in Fig. l(b). Fig. 2(a) is 
the plot of a discrete signal of 256 samples. Fig. 2(b) shows its 
discrete dyadic wavelet transform computed on nine scales. At 
each scale 23, we compute a uniform sampling of the wavelet 
transform that we denote IV;, f. The next section explains 
how to discretize the continuous wavelet model and solve 
border problems. Fast algorithms to compute the wavelet and 
the inverse wavelet transform are described in Appendix B. 
The reader not interested in numerical issues might want to 
skip Section III-B. Since our wavelet is the derivative of a 
smoothing function, (4) proves that Wz”,f is proportional to 
the derivative of the original signal smoothed at the scale 23. 
Fig. 2(c) gives the locations and values of the local maxima 
of the dyadic wavelet transform modulus, as in a Canny 
edge detection. At each scale 2j, each modulus maximum is 
represented by a Dirac that has the same location and whose 
amplitude is equal to the value of W2,f(~). The modulus 
maxima detection is an adaptive sampling that finds the signal 
sharp variation points. 

B. Discrete Wavelet Transform 

In numerical applications, the input signal is measured at 
a finite resolution; therefore, we cannot compute the wavelet 
transform at an arbitrary fine scale. Let us normalize the finest 
scale to 1. In order to model this scale limitation, we introduce 
a real function $(z) whose Fourier transform is an aggregation 
of &2jw) and g(2jw) at scales 2j larger than 1 

lJ(w)12 = E 4(2”w)~(2jw). (20) 
j=l 

We suppose here that the reconstructing wavelet x(w) is such 
that &w)k(w) is a positive, real, even function. One can prove 
that property (13) implies that the integral of 4(x) is equal to 
1 and, hence, that it is a smoothing function. Let S23 be the 
smoothing operator defined by 

Sz,f(~) = f*&,(~) with &Z(X) = iO($). (21) 

If the scale 23 is larger, the more details of f(x) are removed 
bv S,, For anv scale 2J > 1, (20) yields 

2’ Ail 
1 

23 A* 
A 

24 AA 
1 A - Y , 

2s 
A A 

I 1 

2r I 

2s 

29 

Cc) 

Fig. 2. (a) Signal of 2,X samples; (b) discrete dyadic wavelet transform of 
signal (a) computed on nine scales. At each scale 2J, we plot the signal 14;” f, 
which also has 256 samples; (c) modulus maxima of the dyadic wavelet 
transform shown in (b). Each Dirac indicates the position and amplitude of 
a modulus maximum. 

lJ(w)l2 - 1&2”w)l = -5q2~w)~(2jw). (22) 
j=l 

One can derive from this equation that the higher frequencies 
of Srf(~), which have disappeared in S~J~(X), can be re- 
covered from the dyadic wavelet transform (II’s, f(~))r,~< J 

between the scales 2l and 2J. 
We suppose that the original signal is a discrete sequence 

D = (d&z of finite energy. If there exists two constants 

Cr > 0 and C2 > 0 such that J(w) satisfies 

VW E R, Cl 5 c l&w + 27~741~ 2 C, (23) 
n=-CC 
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then one can prove prove [18] that there exists a function 

f(x) E L2(R) (not unique) such that 

Vn E 2, &f(n) = d,. (24) 

The input signal can thus be rewritten D = (S,~(TL)),,~. 
For a particular class of wavelets defined in Appendix A, the 
discrete signal D = (S~f(n)),~z allows us to compute a 
uniform sampling of the wavelet transform of f(x) at any 
scale larger than 1. Let us denote 

w2d, f = P2-1 .f(n + ~1)~~~ and St3 f = (SD f(n + u)jnEZ 
(25) 

where w is a sampling shift that depends only on r/~(x). For 
any coarse scale 2J, the sequence of discrete signals 

is called the discrete dyadic wavelet transform of D = 

(SlfW,,z. The coarse signal S$ provides the signal com- 
ponents below the scale 2’. A fast discrete wavelet transform 
algorithm and its inverse are described in Appendix B. 

In practice, the original discrete signal D has a finite 
number N of nonzero values: D = (dn)l<n<N. To solve 
the border problems, we use the same periodrkaiion technique 
as in a cosine transform. We suppose that our signal has a 
period of 2N samples, and we extend it with a symmetry 
for N < n < 2N: d, = dlN+l+. By periodizing the 
signal with a symmetry, we avoid creating a discontinuity 
at the borders. The discrete wavelet coefficients are also 2N 
periodic. If the wavelet is antisymmetrical with respect to 0, 
as in Fig. l(a), the wavelet coefficients are antisymmetrical at 
the borders. For the class of wavelets defined in Appendix 
A, one can also prove that when the scale is as large as 
the period (2 J = ZN), SgJf is constant and equal to the 
mean value of the original signal D. We thus decompose any 
signal of N samples over J = log,(N) + 1 scales. Appendix 
B describes a fast discrete wavelet transform algorithm that 
requires 0( N log(N)) operations. The fast inverse wavelet 
transform also requires 0( N log(N)) operations. 

From the discrete wavelet transform, at each scale 2j, 
we detect the modulus maxima by finding the points where 
]IVajf(n + w)] is larger than its two closest neighbor values 
and strictly larger than at least one of them. We record the 
abscissa n+w and the value II’,, f(n+w) at the corresponding 
locations. 

IV. ANALYSIS OF THE MULTISCALE INFORMATION 

One signal sharp variation produces modulus maxima at 
different scales 2j. We know that the value of a modulus 
maximum at a scale 2j measures the derivative of the signal 
smoothed at the scale 2j, but it is not clear how to combine 
these different values to characterize the signal variation. The 
wavelet theory gives an answer to this question by showing 
that the evolution across scales of the wavelet transform 
depends on the local Lipschitz regularity of the signal. This 
section explains what a Lipschitz exponent is and how this 
exponent is computed from the wavelet transform maxima. 

Fig. 3. (a) Four sharp variation points of this signal have a different Lipschitz 
regularity au and smoothing variance CJ 2, These values are given, respectively, 
by (a0 = 0.0 = 3) , (no = 0.0 = 0) , (cyn = -1.0 = 0), and 
(ao = -1.0 = 4); (b) behavior of the modulus maxima across scales 
depends on the Lipschitz regularity cyn and the smoothing factor 6. 

A more detailed mathematical and numerical analysis of this 
topic can be found in [17]. When the signal is not singular, 
we show that one can still measure how smooth the signal is 
by estimating the decay of the wavelet maxima across scales. 

Definition 1: Let 0 5 (Y 5 1. A function f(x) is uniformly 
Lipschitz (Y over an interval ]a, b[ if and only if there exists a 
constant K such that for any (xa, 21) ~]a, b[2 

If(xo) - f(xdl 5 Klzo - 211~. (27) 

We refer to the Lipschitz uniform regularity of f(x) as the up- 
per bound (~0 of all a such that f(x) is uniformly Lipschitz a. 

If f(x) is differentiable at x0, then it is Lipschitz cx = 1. 
If the uniform Lipschitz regularity QO is larger, the singularity 
at xa will be more “regular.” If f(x) is discontinuous but 
bounded in the neighborhood of x0, its uniform Lipschitz 
regularity in the neighborhood of 20 is 0. Theorem 1 proves 
that the Lipschitz exponent of a function can be measured from 
the evolution across scales of the absolute value of the wavelet 
transform. We suppose that the wavelet $(x) is continuously 
differentiable and has a decay at infinity that is O(h). 

Theorem 1: Let 0 < (Y < 1. A function f(x) is uniformly 
Lipschitz CL over ]a, b[ if and only if there exists a constant 
K > 0 such that for all x ~]a, b[, the wavelet transform 
satisfies 

lW23f(x)I I J-C+)“. (28) 

The proof of this theorem can be found in [20]. From (28), 
we derive that 

1~2 IW23fC~)l I log,(K) + G. P-9 

If the uniform Lipschitz regularity is positive, (28) implies 
that the amplitude of the wavelet transform modulus maxima 
should decrease when the scale decreases. On the contrary, 
the singularity at the abscissa 3 of Fig. 3(b) produces wavelet 
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transform maxima that increase when the scale decreases. 
Such singularities can be described with negative Lipschitz 
exponents, which means that they are more singular than 
discontinuities. The signal is then viewed as a tempered 
distribution. At the abscissa 3 of Fig. 3(b), this distribution 
is locally equal to a Dirac. The reader might want to consult 
Folland [7] for a quick presentation of the mathematical 
theory of distributions. The wavelet transform of tempered 
distributions is well defined if the wavelet $J(x) is smooth 
enough [17]. For example, if $(x) is continuous, the wavelet 
transform of a Dirac S(X) is given by 

w,, h(2) = 6 * $23 (x) = +2-i (x). (30) 

To extend Lipschitz exponents to distributions, we say that 
a distribution has a uniform Lipschitz regularity equal to cy 
on ]u, b[ if and only if its primitive has a uniform Lipschitz 
regularity equal to cr + 1 on ]a, b[. For example, the primitive 
of a Dirac centered at ~0 is a function that is bounded and 
has a discontinuity at 20 (step edge). The uniform Lipschitz 
regularity of the primitive of this Dirac is thus equal to 0 in 
the neighborhood of zo. Hence, a Dirac centered at zu has a 
uniformly Lipschitz regularity equal to - 1 in the neighborhood 
of ~0. One can prove that Theorem 1 is also valid for negative 
Lipschitz exponents. Let QO < 1 be a real number that may be 
negative. A tempered distribution f(x) has a uniform Lipschitz 
regularity equal to o. over ]a, b[ if and only if for any cy < aa 
there exists K such that 

Since the Lipschitz regularity of a Dirac is -1, this result 
implies that the maxima values of III’,, S(X) 1 increase propor- 
tionally to the scale 2j. This can indeed be verified in Fig. 

3(b). 
In practice, we can only process discrete signals that ap- 

proximate the original function at a finite resolution, which 
we normalize to 1. Strictly speaking, it is not meaningful to 
speak about singularities, discontinuities, or Diracs. In fact, we 
cannot compute the wavelet transform at scales finer than 1 and 
thus cannot verify (31) at scales smaller than 1. Even though 
we are limited by the resolution of measurements, we can 
still use the mathematical tools that differentiate singularities. 
Suppose that the approximation of f(x) at the resolution 1 is 
given by a set of samples (fn),EZ, with fn- = 0 for n < rr,a 
and fn. = 1 for n > 7~0, like at abscissa 2 of Fig. 3(a). 
At resolution 1, f(x) behaves as if it has a discontinuity at 
n. = 710, although f(z) might be continuous at no with a 
continuous sharp transition at that point, which is not visible 
at this resolution. The characterization of singularities from 
the decay of the wavelet transform gives a precise meaning to 
this “discontinuity at the resolution 1.” We measure the decay 
of the wavelet transform up to the finer scale available, and 
the Lipschitz regularity is computed by finding the coefficient 
QO such that K(2 ) j ao approximates at best the decay of 

IlV,, f(x) 1 over a given range of scales larger than 1. In 
Fig. 3(b), in the neighborhood of z = 2, the maxima values 
of JWz3f(~)I remain constant over a large range of scales. 

to 0 at that point, which means that this singularity is a 
discontinuity. In the edge detection procedure described in 
Section II, we only keep the local maxima of the wavelet 
transform modulus. It has been proved [17] that if a signal 
is singular at a point ~0, there exists a sequence of wavelet 
transform modulus maxima that converge to ~0 when the 
scale decreases. Hence, we detect all the singularities from 
the positions of the wavelet transform modulus maxima. 
Moreover, the decay of the wavelet transform is bounded by 
the decay of these modulus maxima, and we can thus measure 
the local uniform Lipschitz regularity from this decay. 

A signal is often not singular in the neighborhood of 
local sharp variations. An example is the smooth edge at the 
abscissa 1 of Fig. 3(a). It is generally important to estimate 
the smoothness of the signal variation in such cases. We 
model a smooth variation at 50 as a singularity convolved 
with a Gaussian of variance g2. Since the Gaussian is the 
Green’s function of the heat equation, one can prove that rs2 is 
proportional to the time it would take to create a singularity at 
the point ~0 if we apply a backward heat equation to the signal. 
Let us explain how to measure the smoothing component 0 as 
well as the Lipschitz regularity of the underlined singularity. 
We suppose that locally, the signal f(x) is equal to the 
convolution of a function h(z), which has a singularity at 
~0, with a Gaussian of variance o2 

f(x) = h * g,(x) with go(x) = &- exp(-$). (32) 
7Tcr 

We also suppose that h(z) has a uniform Lipschitz regularity 
equal to a0 in a neighborhood of ~0. If the wavelet $(x) is 
the derivative of a smoothing function 0(x), (4) proves that 
the wavelet transform of f(x) can be written 

W23f(Z) = 2j-j(l*821)(2) =2’&*%*&)(T). (33) 

Let us suppose that the function O(X) is close to a Gaussian 
function in the sense that 

821 * gcr(rc) = Q,,(X) with SO = dm. (34) 

Equation (33) can thus be rewritten 

where IV,, h(z) is the wavelet transform of h(z) at the scale SO 

This equation proves that the wavelet transform at the scale 
2j of a singularity smoothed by a Gaussian of variance c2 is 
equal to the wavelet transform of the nonsmoothed singularity 
h(z) at the scale so = dm. Equation (28) of Theorem 

1 ‘proves that the Lipschitz regularity is the upper bound of 
the set of (u that satisfy 

IW2-‘h(5)1 I K(29a. (36) 

This result is valid for any scale s > 0. Hence, QO is the upper 
bound of the set of cy such that there exists K that satisfy 

Equation (31) implies that the Lipschitz regularity aa 1s equal 
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for any scale s > 0 and any :I: in the corresponding neighbor- 
hood of -CO. By inserting this inequality in (35). we obtain 

17//‘2,f(:r)l < K2Jso”-1. with so = Vm. (37) 

This equation is satisfied at all points .I’ if and only if it is 
satisfied at the locations of all the local maxima of Im’., f(.l.) I. 
If the signal is multiplied by a constant X, then K is also 
multiplied by X, but (T and 00 are not affected. On the contrary, 
if the signal is smoothed by a Gaussian of variance cri (and 
integral l), then K and aa are not affected, but 0’ becomes 
c? + 0;. This shows clearly that the parameters ~2, (T, and 
K describe different properties of the sharp variation that 
occurs at ~0. Fig. 3 gives the examples of a step edge and a 
Dirac smoothed by Gaussians of different variances. The decay 
of the maxima are clearly affected by the different Lipschitz 
exponents as well as the variance of the Gaussian smoothing. 

Let us explain how to compute numerically the Lipschitz 
regularity (~0 and the smoothing scale (T from the evolution 
of the wavelet transform modulus maxima across scales. If 
we detect the modulus maxima at all scales s, instead of just 
dyadic scales 2j, their position would define a smooth curve 
in the scale-space plane (s. x). These curves have been called 
“finger prints” by Witkin [25]. We say that a modulus maxima 
at the scale 23 propagates to a maxima at the coarser scale 
2j + 1 if and only if both maxima belong to the same maxima 
curve in the scale-space plane (s.z). In Fig. 3, there is one 

sequence of maxima that belongs to the same maxima curve 
and converges to the position of the discontinuity at :r = 2. For 
the Dirac at abscissa 3, there are two such sequences. Each one 
gives information, respectively, on the left and the right part of 
the Dirac singularity. In order to find which maxima propagate 
to the next scale, one should compute the wavelet transform 
on a dense sequence of scales. However, with a simple ad- 
hoc algorithm, one can still estimate which maxima propagate 

to the next scale by looking at their value and position with 
respect to other maxima at the next scale. The propagation 
algorithm supposes that a modulus maximum propagates from 
a scale 2j to a coarser scale 23 + 1 if it has a large amplitude 
and if its position is close to a maximum at the scale 2J + 1 
that has the same sign. This algorithm is not exact but saves 
computations since we do not need to compute the wavelet 
transform at any other scale. The Lipschitz regularity as well 

as the smoothing variance u* of a sharp variation point are 
then computed from the evolution of the modulus maxima 
that propagate across scales. Let us suppose that we have a 
sequence of modulus maxima that propagate from the scale 
2’ up to the scale 2l and converge to the abscissa .~‘a. Let 
‘Lo be the value of the wavelet transform at the maximum 
location at the scale 2J, and let us also suppose that in a given 
neighborhood of 50, the wavelet transform modulus is smaller 
than nj. This means that the signal change at -CO is the sharpest 
variation in this neighborhood. We compute the three values 
K, U, and QO so that the inequality of (37) is as close as 
possible to an equality for each maximum (I~. These values 

are obtained by minimizing 

00 1 
2 

- 
log2 ICI,, 1 - log,(K) - j - 2 log, ( a2 + 29 

(38) 

This is done with a steepest gradient descent algorithm. The 
value K gives the amplitude of the sharp variation. When 
computing the values of c and (Y from the evolution of the 
maxima across scales in Fig. 3, we have a numerical error 
of less than lo%, which is mainly due to the fact that the 
wavelet we use is not the derivative of a Gaussian but is only 
an approximation. In this case, O(:r) is the cubic spline shown 
in Fig. l(b). When the variance o2 increases, the measurement 
of oa becomes more unstable because the smoothing removes 
the fine scale components that characterize reliably (~0. For 
singularities of fractal textures such as in the right part of Fig. 
2(a), this analysis is not valid because singularities are not 
isolated, and none of the singularities dominate the others in 
a given neighborhood. The behavior of the wavelet transform 
modulus maxima of nonisolated singularities is studied in more 
detail in [17]. 

V. SIGNAL RECONSTRUCTION FROM MULTISCALE EDGES 

Section IV shows that one can get a precise description 
of the signal sharp variation points from the evolution of 
the wavelet transform modulus maxima across scales. An 
important question is to understand whether the whole signal 
information is embedded into these modulus maxima. Is it 
possible to have a stable signal reconstruction only from the 
modulus maxima information at the dyadic scales 23? The next 
section reviews briefly some results on the reconstruction of 
signals from zero crossings and multiscale edges. Section V-B 
describes an algorithm that reconstructs a close approximation 
of the original signal from the wavelet transform modulus 
maxima. Numerical results are presented in Section V-C. 

A. Previous Results 

The reconstruction of signals from multiscale edges has 
mainly been studied in the zero-crossing framework. We saw 

in Section II that if the wavelet is given by r/jb(x) = w, 
multiscale edges are detected from the zero crossings of the 
wavelet transform wjf(~-). The most basic result concerning 
the reconstruction of signals from the zero crossing is the 
Logan theorem [14]. However, as it is explained in [18], the 
hypotheses of the Logan theorem are not appropriate to study 
the reconstruction of signals from multiscale edges. The Logan 

theorem has been generalized by several authors [4], [24], 
[28]; Refer to a review by Hummel and Moniot [ll] for more 
details. 

If the smoothing function Q(X) is a Gaussian, the properties 
of the wavelet transform zero crossings are more easily un- 
derstood because T/titf(:~~) can be interpreted as the solution 
of a heat diffusion process at time t = s2 [12]. With this 
approach, Hummel and Moniot [ll], as well as Yuille and 
Poggio [27], have proved some completeness properties under 
restrictive conditions, like supposing that f(x) is a polynomial 
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(291. In general, there are known counterexamples that prove 
that the positions of the zero crossings of IVff(x) do not 
characterize uniquely the function f(x). For example, the 
wavelet transforms of sin(z) and sin(z) + 3 sin(2le) have the 
same zero crossings at all scales s > 0. Meyer [21] found a 
large family of such counterexamples. 

To obtain a complete and stable zero-crossing representa- 
tion, Mallat [16] conjectured that it is sufficient to record the 
zero-crossing positions of IVlJS(2) at all dyadic scales 2jf, 
as well as the integral values 

between any pair of consecutive zero crossings (Zig j Z, + 1). 
This conjecture was motivated by a reconstruction algorithm 
that is able to recover a close approximation of the original 
signal from these zero crossings and integral values [18]. We 
proved in Section II that the zero crossings of I+$ f(x) occur 
at the extrema points of the wavelet transform W.-J, f(~), which 

are defined with respect to the wavelet qP(z) = F. From 
(4), (5), and (39), we derive that 

en = W&f(& + 1) - W2”Jf(Z,L). (40) 

To record the zero-crossing positions and integral values of 
WiJf(x) is th ere ore f equivalent to recording the positions 
where IV& f(x) has local extrema and the value of WtJ f(x) 
at the corresponding locations. Meyer [21] proved that the 
completeness of this representation depends on the choice of 
the smoothing function Q(X) but that the conjecture is not 
valid in general. Let 

f()(x;) = { $” + cos(2)) ~t~lgg. (41) 

For the wavelet shown in Fig. l(a), Meyer [21] found a 
noncountable family of functions 

&F(x) = fo(x) + xt(:r:) 

such that at all scales 2J, W2JfC(x), and W2,f~(z) have the 
same extrema (positions and values). The functions ~~(3:) 
are small high-frequency perturbations, which are implicitly 
defined by constraint equations that guarantee that the local 
extrema of W,, fa(~) are not modified. It seems that in order 
to maintain the local extrema of W,, fu(z) unchanged, the 
perturbations xc(x) must remain small, which would explain 
the quality of the signal reconstructions obtained in [16], 
but this has not been proved. For another wavelet defined 
by +“(,r) = = with Q(X) = fa(~c), Meyer proved that 
any function ofd:ompact support is uniquely characterized by 
the zero crossings and integral values of its dyadic wavelet 
transform. This characterization is, however, not stable at high 
frequencies. The numerical precision of reconstructions is, 
thus, not improved with this other wavelet. A discrete analysis 
of the completeness conjecture was done independently by 
Berman [l], who found numerical examples that contradict 
the completeness conjecture. 

We explained in Section II that for a wavelet equal to the 
first derivative of a smoothing function, the local minima of the 

wavelet transform modulus correspond to slow variation points 
of the signal. Hence, among all the wavelet transform extrema, 
we detect only the points where the wavelet transform modulus 
is locally maximum. For the quadratic wavelet of Fig. l(a), 
since the wavelet transform local extrema do not provide a 
complete signal representation, the subset of modulus maxima 
is certainly not complete either. The next section describes 
an algorithm that still recovers a precise approximation of the 
original signals from these modulus maxima. 

B. Reconstruction Algorithm 

Let f(z) E L2(R) and (W21 f(~))~~~ be its dyadic wavelet 
transform. We describe an algorithm that reconstructs an 
approximation of (W,,~(:IZ)),,~, given the positions of the 
local maxima of IW,, f(:r)] and the values of W2,f(z) at 
these locations. For this purpose, we characterize the set 
of functions h(~:) such that at each scale 23, the modulus 
maxima of W2, h(z) are the same as the modulus maxima of 
W2,f(x). We suppose that the wavelet $(x) is differentiable 
in the sense of Sobolev. Since r/t;, f(~) is obtained through a 
convolution with $02J (x), it is also differentiable in the sense 
of Sobolev, and it has, at most, a countable number of modulus 
maxima. Let (x~~),~z be the abscissa where IW21f(x)1 is 
locally maximum. The maxima constraints on W,,h(z) can 
be decomposed in two conditions. 

1. At each scale 2J, for each local maximum located at x$,, 
w,, h(x3,) = W2,f(:c:‘,). 

2. At each scale 2J, the local maxima of 1 W,, h(x)\ are 
located at the abscissa (:~i~)~~z. 

Let us first analyze the condition 1. The value of W,, f(x) at 
any -%‘e can be written as an inner product in L'(R). Indeed 

+CC 
w,, f(Q) = f * $2, (X,]) = 

1% 
f(5)&, (~a - z)&. thus 

W2,f(.q)) = (f(:~~),7),,(.cg - xz)). (42) 

Condition 1 is, thus, equivalent to 

(f(‘lL), $2, (x”, - 7L)) = (h(u), $2, (x’, - ‘71)). (43) 

Let U be the closure in L2(R) of the space of functions that 
are linear combinations of functions in the family 

{yi,,J (XI”, - “)}(j.,,i&~ (44) 

One can easily prove that the functions h(:c) that satisfy (43) 
for all abscissa (:r”,)(j,n)EZ’ are the functions whose orthog- 

onal projection on U is equal to the orthogonal projection of 
f(~:) on II. Let 0 be the orthogonal complement of U in 
L2(R), which means that the space 0 is orthogonal to U and 
that 

08U=L2(R). (45) 

The functions that satisfy (43) for all abscissa (~~~)(j,7?)EZ’ 
can therefore be written 

h(z) = f(:r) + {I(Z) with g(:c) E 0. (46) 

This defines an affine space that we denote f + 0. If U = 
L'(R), then 0 = {0}, which implies that h(z) must be equal 



718 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 14, NO. 7, JULY 1992 

to f(x). In general, this is not the case; therefore, (43) does 
not characterize uniquely f(x). 

Condition 2 is more difficult to analyze because it is not 
convex. In order to solve this problem numerically, we approx- 
imate condition 2 with a convex constraint. Condition 2 defines 
the value of the wavelet transform at the points (x”,)(j,n)EZL. 
Instead of imposing that the local maxima of lV,,h(z) are 
located at these points, we impose that I W2, /L(Z)]* is as small 
as possible on average. This generally creates local modulus 
maxima at the positions (z~)(~,~)~zL. The number of modulus 
maxima of W21f(~) depends on how much this function 
oscillates. To have as few modulus maxima as possible outside 

the abscissa (zj,)~~,,)~~~, we also minimize the energy of 
the derivative of w&h(z). Since these conditions must be 
imposed at all scales 2j, we minimize globally 

lllw = 1 W2J fwj,, Iy 

+D= 
=c( 11 w,, hII + 22jll 

j=-x 
q+*). (47) 

The weight 2*3 expresses that the relative smoothness of 
W,,f(cc) increases with the scale 2j. Let g’(x) be the 
derivative of q(x). If there exist two constants A2 > 0 and 
B2 such that for all w E R 

A2 < E 17j(2jw)12 + E [7j1(23w)12 5 B2 (48) 

then for any h(z) E L2(R) 

A211hl12 I IllhIll I B2llf~ll*. (49) 

Hence, 111 111 is a norm over L2(R), which is equivalent to 
the classical L’(R) norm. We prove that (48) implies (49) by 
observing that 

2j “w~,~(“) = f * +;, (x1 

As for the norm equivalence equation (15) we then prove the 
implication by applying the Parseval theorem to each L2(R) 
norm component of the norm defined by (47). Equation (48) 
is valid for any dyadic wavelet g(2) that satisfies (12) and is 
smooth enough. For example, there exist two such constant A2 
and Bz for the wavelet shown in Fig. l(a). By replacing condi- 
tion 2 by the minimization of ]l]hl/, we define a problem that has 
a unique solution. Indeed, condition 1 imposes that h(z) must 
belong to the closed affine space f + 0, and the minimization 
of a norm over such a closed convex has a unique solution. 

Although there exists a unique element of f + 0 whose 
norm 111 111 is minimum, the computation of this function might 
not be stable. If the two constants .4:, and B2 of (48) are 
equal, the norm (11 111 . p p t is ro or ional to the classical L2(R) 
norm. The solution of the minimization problem is therefore 
the orthogonal projection of f(x) over U. The frame theory 
proves [6] that one can make a stable computation of the 
orthogonal projection of f(x) onto U from the inner products 
((f(x). $2-I (z$ - z)))(~,~)~~~ if and only if the family of 

functions fi,rL2, ($ - Z) 
> 

is a frame of U. The 
(j.n)EZL 

factor fi normalizes the L*(R) norm of each function in 

the family. By definition, such a family is a frame of U [6] 
if and only if there exist two constants A3 > 0 and B3 such 
that for any function y E U 

A~IIYII~ 5 c 2’lbb). v2~ Cd - 4)12 I B~ll~ll*. (51) 
n.jEZ’ 

When the two constants .42 and B2 of (48) are different, the 
norm 111 111 is not equal but is equivalent to the classical L*(R) 
norm. In this case, the stability also depends on whether the 
family of wavelets is a frame of U. The closer to 0 the value 
of L?--43 

83+-b ’ the more stable the computations. Outside of a few 
particular cases, it is difficult to prove analytically whether a 

given family of wavelets (fili,,, (Lc”, - XJ)) is or is 
(3,n)EZ2 

not a frame of the space U that it generates because the points 
Z$ are not uniformly distributed. 

Let us now describe an algorithm that computes the solu- 
tion of our minimization problem. Instead of computing the 
solution itself, we reconstruct its wavelet transform with an 
algorithm based on alternate projections. Let K be the space I ~ 
of all sequences of functions (giZ’)jEz such that 

l(gj(.r’)),,zi2 = E (iigjii* + 22ill%[[2) < +x. (52) 
j=-x 

The norm I I defines a Hilbert structure over K. Let V be the 
space of all dyadic wavelet transforms of functions in L2(R). 
Equation (49) proves that V is included in K. Let r be the 
affine space of sequences of functions (g3(z))jEz E K such 

that for any index j and all maxima positions ~3, 

One can prove that r is closed in K. The dyadic wavelet trans- 
forms that satisfy condition 1 are the sequences of functions 
that belong to 

A = vnr. 

We must therefore find the element of A whose norm I ] is 

minimum. This is done by alternating projections on V and I?. 
Equation (17) shows that any dyadic wavelet transform is 

invariant under the operator 

Pv = wow-i. (53) 

For any sequence X = (gj(z))lEz E K, it is clear that 
PvX E V; therefore, PV is a projector on V. We saw in 
(19) that this operator is characterized by the kernels 

One can easily prove that the projector PV is self-adjoint 
and therefore orthogonal if and only if the kernels Kl,j(z) are 
symmetrical functions. This is the case if the wavelet $(lc) 
is symmetrical or antisymmetrical. For the wavelet shown 
in Fig. l(a), the orthogonal projection on the space V is 
thus implemented by applying the operator W-r followed 
by the operator W. The fast discrete implementation of these 
operators is given in Appendix B. Appendix E characterizes 
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the projection on the affine set I, which is orthogonal with 
respect to the norm I 1. We prove that this operator Pr 
is implemented by adding piecewise exponential curves to 
each function of the sequence that we project on I. Let 
P = PVoPr be alternate projections on both spaces. Let 

Pen) be 7~ iterations over the operator P. Since r is an affine 
space and V a Hilbert space, a classical result on alternate 
projections [26] proves that for any sequence of functions 

x = (Yj(z>>jEZ ’ K 

lirn P(‘“)X = PAX. 
11-+‘2C (54) 

Alternate projections on I and V converge strongly to the 
orthogonal projection on A. If X is the zero element of K, 
which means that gj(z) = 0 for all j E 2, the alternate 
projections converge to the element of A, which is the closest 
to zero, and thus whose norm I / is minimum. This is 
illustrated by Fig. 4. This iterative algorithm can be related to 
techniques based on frame operators for reconstructing signals 
from irregular samplings [9]. 

If the minimization problem is unstable, the conver- 
gence of the alternate projections is extremely slow. 
We saw that the numerical stability depends on whether 

(fig,, (G - 4) (,,j)EZr is a frame of U. Appendix F 

proves that if 
( 

fir/&, (z$ - Z) (lL j)EZL is a frame of U 
> ( 

and if there exists a constant 0 < D <_ 1 such that at all scales 
23 the distances between any two consecutive maxima satisfy 

then the convergence is exponential. Moreover, there exists a 
constant R such that for any X E K 

P(“)X - PAX < R(1 - Ek)G - 
2B2 

(55) 

where the A3 is the frame bound defined in (51) and B2 the 
norm equivalence bound defined in (48). This equation gives 
a lower bound for the convergence rate and shows how it 
decreases when the frame bound A3 goes to zero. 

When the original wavelet transform W2, f(x) has an abrupt 
transition, the minimization of I I can yield a smoother 
solution W2, h(z), which oscillates slightly at the location 
where W,, f(x) has this sharp change. These oscillations are 
similar to a Gibbs phenomenon. Appendix E explains how 
to modify the alternate projections in order to suppress these 

oscillations. Numerical experiments show that this oscillation 
removal does not perturbate the convergence of the algorithm. 

C. Numerical Reconstruction of 1 -D Signals 
from Local Maxima 

There are several open issues behind the reconstruction 
algorithm that we described. From the results of Meyer’s 
work [21], we know that, in general, we cannot reconstruct 
exactly a function from the modulus maxima of its wavelet 
transform. Our algorithm approximates this inverse problem 
by replacing the maxima constraint by the minimization of a 
norm that yields a unique solution. We thus do not converge 

Fig. 4. Approximation of the wavelet transform of f(s) is reconstructed by 
alternating orthogonal projections on an affine space r and on the space V of 
all dyadic wavelet transforms. The projections begin from the zero element 
and converge to its orthogonal projection on r n V. 

toward the wavelet transform of the original signal but toward 
some other wavelet transform that we hope to be close to 
the original one. We also explained that the computation of 
the solution might be unstable, in which case, the alternate 

projections converge very slowly. It is therefore important to 
measure how far we are from the convergence point after a 
given number of iterations. 

If the original signal has N samples, we record the positions 
and values of the modulus maxima at all scales 2j for 
1 5 3 5 log,(N) + 1. We also keep the average value 

of the original discrete signal, which characterizes SgJ f for 
J = log,(N) + 1, as explained in Section III-B. Equation (53) 
proves that we can compute the projection PV by implement- 

ing W-l followed by W. With the fast algorithms described in 
Appendix B, this requires a total of O(N log,(N)) operations. 
Appendix E proves that the implementation of Pr also 
requires O(Nlog,(N)) p t o era ions. The projection operator 

that suppresses the wavelet transform oscillations is computed 
with the same complexity. Hence, each iteration on P involves 
0( N log2 (N)) operations. 

The rms signal-to-noise ratio (SNR) of the reconstruction is 
measured in decibels. At the scale 23 for 1 5 j < 6, Fig. 6(a) 
gives the value of the SNR for the reconstruction of W,“,f, 
after 71 iterations on the operator P, with 1 < n 5 100. At all 
scales, the error decreases quickly during the first 20 iterations 
and then decays much more slowly. For a fixed number of 
iterations on P, the SNR increases when the scale increases. 
This proves that the remaining error is rather concentrated 
at fine scales, like in the counterexamples of Meyer [21]. 
After n iterations, we can reconstruct a signal by applying 
the inverse wavelet transform operator on the reconstructed 
wavelet transform. Fig. 6(b) shows the increase of the SNR, 
which is computed with respect to the original signal. This 
SNR is an aggregation of the wavelet transform SNR at all 
scales. The signal in Fig. 5(b) is reconstructed by applying 
the inverse wavelet operator on the reconstructed wavelet 
transform after 20 iterations. In this case, the SNR is 34.6 
db. The remaining error after n iterations has two components. 
The first one is the distance between the reconstructed wavelet 
transform and the wavelet transform to which we converge. 
The other one is the distance between the wavelet transform to 
which we converge and the wavelet transform of the original 
signal. We saw that the convergence rate of the algorithm 

is related to the frame properties of the family of wavelets 
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Fig. 5. (a) Original signal; (b) signal reconstructed with 20 iterations from 
the modulus maxima shown in Fig. 2(c). 

defined by the maxima positions. In numerical computations, 
there is a finite number of maxima; therefore, the family of 
wavelets that generates U is finite. A finite family of vectors is 
always a frame, but the frame bound A3 can be very small. The 
lower bound of the convergence rate given by (5.5) can thus 
also be very small. Fig. 7 is the SNR of the reconstructed signal 
computed with respect to the signal to which we converge. 
Instead of measuring the error with respect to the original 
signal as in Fig. 6(b), the error is measured with respect 
to the signal to which we converge. After 30 iterations, the 
slope of the SNR curve is constant, which proves that the 
convergence is exponential, but the convergence rate is slow. 
In Fig. 6(b) and Fig. 7, the increase of the SNR slows down 
after approximately 20 iterations. At this point, the distance 
between the reconstructed signal and the signal to which we 
converge is of the same order as the distance between the 
original signal and the signal to which we converge. Increasing 
the number of iterations slowly reduces the distance with 
respect to the point to which we converge but does not largely 
decrease the distance with respect to the original signal. This 
is why the SNR in Fig. 7 continues to increase slowly, whereas 
the SNR in Fig. 6(b) reaches a maximum on the order of 38 db. 

We made extensive numerical tests including reconstruc- 
tions of special functions such as sinusoidal waves, Gaussians, 
step edges, Diracs, fractals, and the counter example of Meyer 
given by (41). In all these examples, the SNR has the same 
type of behavior as in Figs. 6 and 7. In most cases, after 30 
iterations, the relative increase of precision that is obtained 
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Fig. 6. (a) SNR for the reconstruction of the wavelet transform Ii;4 f as a 
function of the number of iterations on the operator P. Each curve is labeled 
by the scale 2J for 1 5 j 5 G; (b) SNR of the reconstructed signal computed 
with respect to the ortginal signal as a function of the number of iterations 
on the operator P. 

by increasing the number of iterations is negligible. Since 
each iteration requires O(N log(N)) operations, these recon- 
structions do not require extensive computations and can be 
done in real time. The reconstructed functions are not equal 
to the original signal but are numerically close. They have no 
spurious oscillations and the same types of sharp variations. 
Qualitatively, the reconstructed signals are thus very similar 
to the original one, and the errors are hardly noticeable by 
comparing the graphs, as shown by Fig. 5. We have no 
upper bound on the error due to the distance between the 
signal to which we converge and the original signal. This is 
an open mathematical problem, but the numerical precision 
of this reconstruction algorithm is sufficient for many signal 
processing applications. 

VI. WAVELET TRANSFORM OF IMAGES 

We explained in Section II that in two dimensions, a mul- 
tiscale edge detection can be reformalized through a wavelet 
transform defined with respect to two wavelets $‘(z, y) and 
$* (x. y ). The second part of this article extends our 1 -D results 
for image processing applications. 

A. General Properties 

We denote that $i, (x. y) = &$l( $-: 5) and that 
$z,, (CC. y) = &I/)*( 5. 5). The wavelet transform of a 

function f(~. y) E L*(R*) at the scale 2j has two components 

defined by 

lviJ f(:r. y) = f * @iJ (z. y) and W$ f(x. Y) = f * &,(X>Y). 
(56) 
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Fig. 7. SNR of the reconstructed signal computed with respect to the signal to 
which we converge as a function of the number of iterations on the operator P. 

We refer to the 2-D dyadic wavelet transform of f (x, y) as 
the set of functions ’ 

Wf = (w:,f(x,Y),w~~f(x,Y))jEZ. (57) 

Let G1(wZ,wr,) and G”( w,, wy) be the Fourier transforms of 
$l(~, y) and $J*(x, y). The Fourier transforms of WiJ f(z, y) 
and WiJ f(z, y) are, respectively, given by 

@2f(%~y) = f”(w,,wy)~l(2jw2,2jw,), (58) 

r/i/,Jf(%,qJ = f^( wz,wy)p(2h&, 2”w,). (59) 

To ensure that a dyadic wavelet transform is a complete 
and stable representation of f(z, y), we impose that the 2-D 
Fourier plane is covered by the dyadic dilations of 4’ (w,, wY) 

and G*(w,, wY). This means that there exist two strictly 
positive constants A4 and B4 such that 

v(wz,wy) E R2, 

(60) 

Let x’(z, y) and X*(X, y) be two functions whose Fourier 
transform satisfy 

+ ~*(2&, 2k1,)~~(2k~~, 23w,) = 1. 
) 

(61) 

There is an infinite number of choices for x1(x, y) and 
x2(x, y). We can derive from (58), (59), and (61) that f(~, y) 
is reconstructed from its dyadic wavelet transform with 

f(.%Y) = E (W,‘,f*x;&>Y)+W;Jf*X;3hY)). 
j=-00 

(62) 
A 2-D dyadic wavelet transform is more than complete; it is 
redundant. Any sequence of functions (gj(x, y), gi(x, ~))~~z 

is not necessarily the dyadic wavelet transform of some 
functions in L2(R2). We denote by W-l the operator defined 

by 

w-l (sj1(x, Y)> &x1 Y)),,, 

+C= 

= c (9,1*X~3(x,Y)+9~*X22~(x,Y)). (63) 

The sequence (g:(x, y),gz(x, Y))~~~ is a dyadic wavelet 

transform if and only if 

W(w-l (g,1(x; Y), g,“(x, Y))jtz) = (931(x’ Y),g3(2, Y)) jtz' 

In Section II, we explained that multiscale sharp variation 

points can be obtained from a dyadic wavelet transform if 

(64) 

$‘(z, y) = y and $*(x, y) = y. (65) 

Equation (8) proves that the wavelet transform can be rewritten 

The two components of the wavelet transform are proportional 

to the two components of the gradient vector ?(f *&,)(a~, y). 
This appears clearly in Fig. 8, which shows the 2-D wavelet 
transform of the image of a circle. At each scale 2j, the 
modulus of the gradient vector is proportional to 

(67) 

The angle of the gradient vector with the horizontal direction 
is given by 

&O f(x, Y) = awrnent (w,', f(x, Y) + i%fJ f(x) ~1). (68) 

Like in the Canny algorithm [2], the sharp variation points 
of f * 0~~ (2, y) are the points (xi y), where the modulus 
Ma, f(z, y) has a local maxima in the direction of the gradient 
given by A23f(x, y). We record the position of each of 
these modulus maxima as well the values of the modulus 
Ma,f(x, y) and the angle A,,f(z, y) at the corresponding 
locations. 

The circle image at the top of Fig. 8 has 128 by 128 pixels. 
The first two columns of Fig. 8 give the discrete wavelet 
transform Wtidf and Wi;;“f for 1 5 j 5 8. The next 
section explains how to define such a discrete dyadic wavelet 
transform and how to solve border problems. The reader that is 
not interested by numerical implementations can skip Section 
VI-B. The discrete modulus images Mi, f and angle images 
A$ f are shown along the next two columns. Along the border 
of the circle, the angle value turns from 0 to 27r, and the 
modulus has a maximum amplitude. When the scale 2j is 
larger than 26, we see that the circle is deformed due to the 
image periodization that we use for border computations. The 
position of the modulus maxima at all scales is given in the last 
column on the right. The original Lena image is shown at the 
top left of Fig. 12 and has 256 by 256 pixels. The first column 
of Fig. 9 displays its discrete modulus images MiJf, and the 
second column gives the position of the modulus maxima for 
1 5 j 2 9. At fine scales, there are many maxima created 
by the image noise. At these locations, the modulus value 
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that computes the discrete dyadic wavelet transform 

Images are finite 2-D discrete signals D = (dn,7rL)cn,mjEN2 
of N by N pixels. We solve border problems such as those 
in a 2-D cosine transform. We suppose that the image is 
symmetrical with respect to each of its border and has a period 
of 2N by 2N pixels. For J = log,(N) + 1, one can prove that 
S.$ f is constant and equal to the average of the original image 
D. Figs. 8 and 9 give two examples of wavelet transforms 
computed over log,(N) + 1 scales. The numerical complexity 
of the fast discrete wavelet transform is O(N* log(N)). The 
reconstruction of the original image from its discrete wavelet 
transform is also performed with O(N* log(N)) operations. 
The discrete modulus images M$ f and angle images Ai, f 
are computed with (67) and (68). The modulus maxima are the 
points of the modulus images M$f that are larger than the 
two neighbors whose positions are in the direction indicated 
by the angle value of A$ f at the corresponding location. 

VII. CHARACTERIZATION OF IMAGE EDGES 

Sharp variations of 2-D signals are often not isolated but 
belong to curves in the image plane. Along these curves, 
the image intensity can be singular in one direction while 
varying smoothly in the perpendicular direction. It is well 
known that such curves are more meaningful than edge points 
by themselves because they generally are the boundaries of 
the image structures. For discrete images, we reorganize the 
maxima representation into chains of local maxima to recover 
these edge curves. As in one dimension, we then characterize 
the properties of edges from the modulus maxima evolution 
across scales. 

At a scale 2j, the wavelet modulus maxima detect the 
sharp variation points of f * 02, (CC, Y). Some of these modulus 
maxima define smooth curves in the image plane along which 
the profile of the image intensity varies smoothly. At any point 
along a maxima curve, G(f * dZ3 )(x, y) is perpendicular to 
the tangent of the edge curve. We thus chain two adjacent 
local maxima if their respective position is perpendicular to the 
direction indicated by AZ1 f (x, y). Since we want to recover 
edge curves along which the image profile varies smoothly, 
we only chain together maxima points where the modulus 
M2, f (2, y) has close values. This chaining procedure defines 
an image representation that is a set of maxima chains. Image 
edges might correspond to very different types of sharp varia- 
tions. As in one dimension, we discriminate different types of 
singularities by measuring their local Lipschitz regularity. 

Definition 2: Let 0 < a < 1. A function f(z, y) is 
uniformly Lipschitz u over an open set R of R* if and only 
if there exists a constant K such that for all (20, yo) and 

(51, ~9) in 52 

If(~co.Yo)-f(~l,Yl)l 5 ~l(Ql-~1)*+(YO-~~)*l~‘*. (73) 

The Lipschitz regularity of f(x;y) over s2 is the superior 
bound of all (Y such that f (x, y) is uniformly Lipschitz (Y. 

In two dimensions, the Lipschitz regularity is character- 
ized by the decay across scales of both lWiJ f (x, y)I and 
lW,2, f (2, y)l. The decay of these two components is bounded 
by the decay of M2Jf(x, y). Let us suppose that the two 
wavelets lcil(x, y) and $*(x, y) are continuously differentiable 
and that their decay at infinity is 0( Cl+rl);l+yZ)). 

Theorem 2: Let 0 < Q: < 1. A function f (cc:, y) is 
uniformly Lipschitz a over an open set of R* if and only 
if there exists a constant K such that for all points (x, y) of 
this open set 

Mz, f (x:, y) I K(2j)“. (74) 

This theorem is the 2-D extension of Theorem 1, and its 
proof is essentially the same [20]. The logarithm of (74) yields 

log,(M2, f(x, Y)) I log,(K) + aj. (75) 

Uniform Lipschitz exponents can thus be measured from 
the evolution across scales of log,(M,, f(z, y)). This result 
enables us to discriminate between different types of singu- 
larities. 

When the signal variations are smooth, we can measure how 
smooth they are with the same approach as in one dimension. 
Locally, we model the smooth variation of f (x, y) at (~0, Y/O) 
as the convolution of a function h(z, Y) that has a singularity 
at (20, yo) with a 2-D rotationally symmetric Gaussian of 
variance ~7* 

f (x7 y) = h*g,(x, y) with gg(x, y) = & exp(-s). 

(76) 

We suppose that the uniform Lipschitz regularity of h(rc, y) in 
a neighborhood of (~0, yo) is ~0. If the two wavelets ~l(x; y) 
and I,!J*(x, y) are the partial derivatives of a smoothing function 
0(x, y), which closely approximates a rotationally symmetric 
Gaussian, then we can estimate the variance IJ*. The wavelet 
transform modulus of f (2: Y) is defined at any scale s by 

Msf (xc, y) = dlws’f (z, y)l* + IWf (x7 y)l*. (77) 

With the same derivations as for (35), we prove that 

M23f(~~) - sg - EMs,h(rr, y) with SO = \/223a2. (78) 

Equation (74) of Theorem 2 is valid not only at dyadic scales 
23-but at all scales s > 0. For a < (~0, /1(x, y) is uniformly 
Lipschitz cy in a neighborhood of (x0, ~0). Hence, there exists 
K > 0 such that for any points (x, y) in this neighborhood 

We thus derive from (78) that 

Mz, f(x, y) 5 K2jsg-1 with so = d/2*j + cr2. (80) 

Along a maxima chain, the singularity type varies smoothly; 
therefore, the parameters K, ao, and g2 do not change much. 
We thus estimate these values for portions of chains by looking 
at the evolution of the modulus values across scales. Let us 
suppose that we have a portion of the maxima chain that 
propagates between the scales 2l and 2’. We also suppose 



I 

724 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO, 7, JULY 1992 

that in a given neighborhood, at each scale 2j, the value of 
Mzj f (z, y) is bounded by its values along this maxima chain. 
This means that the maxima chain corresponds to the sharpest 
image variation in the neighborhood. Since M2, f(s, y) is 
bounded by the maxima values, we estimate the parameters 
Q and D that satisfy (80) from the evolution across scales 
of these modulus maxima values. In theory, this should be 
done by using the absolute maximum of Mz3 f(z, y) along the 
maxima chain at each scale 2j. It is often better to regularize 
these computations by averaging the maxima modulus value 
along the corresponding portion of the chain. This is justified 
since we suppose that the singularity type does not vary greatly 
along this portion of chain. Let aj be the average value of 
M,, f(~, y). As in one dimension, we estimate the smoothing 
factor (T and the Lipschitz regularity (~0 by computing the 
values that minimize 

I 

c( 

a0 - 1 
2 

log2 lajl - lwh(W - j - 2 log@ + 229 
1 j=l 

(81) 

This algorithm associates, with each portion of maxima 
chain, three constants K, LYO, and 0 that describe the intensity 
profile of the image sharp variation along the chain. Such 
a characterization of edge types is important for pattern 
recognition. For example, we can discriminate occlusions 
from shadows by looking at whether the image intensity is 
discontinuous or is smoothly varying. For the circle image 
of Fig. 8, the wavelet transform modulus along the boundary 
remains constant across scales, which means that era = 0, 
and ~7 = 0. Indeed, the image intensity is discontinuous along 
the border, and the constant K gives the amplitude of the 
discontinuity. In general, we believe that an edge detection 
should not be viewed as a binary process that labels the image 
pixels as edge points or nonedge points but as a procedure 
that characterizes precisely the different types of image sharp 
variations. 

VIII. RECONSTRUCTION OF 
IMAGES FROM MULTISCALE EDGES 

A. Reconstruction Algorithm 

The algorithm that reconstructs images from the local max- 
ima of their wavelet transform modulus is an extension of the 
1-D algorithm described in Section V-B. Let f(z, y) E L2(R2) 
and (W,‘,f(z, y), Wz3 f(z, Y))~,, be its dyadic wavelet trans- 

form. For each scale 2j, we detect the local maxima of 
M23f(x, y) along the direction given by the angle image 
AaT f(z, y). We record the positions of the modulus maxima 

((43 Ya)),,, as well as (M23f(xcjv,y~)!A23f(x~,~~))VER. 
In two dimensions, the number of modulus maxima is no 
longer countable. From M23 f(~j,, yi) and AZJ f(xi, yi), we 
can compute W& f($, yi), W2”, f(,jv, yi), and vice versa. The 
inverse problem consists of finding the set of functions h(x, y) 
that satisfy the following two constraints: 

1. At each scale 2j and for each modulus maxima location 
(xi, yi), we have lV:,h(z$, yi) = lV,‘,f(~i, yi) and 

W,“ ,h(Xj,,$) = W,“,f(Xj,Iyi). 

2. At each scale 2j, the modulus maxima obtained from 
II’& h(~, y) and IK$ h(z, y) are located at the abscissa 

(cc Y&R. 

Let us analyze property 1. At any point (20, yu), the wavelet 
transform can be rewritten as inner products 

w:3 qxo, Yo) = LUG Y), ti;, (x0 - x, Yo - Y)), 

w;J h(xo, YO) = (f(x, Y), $2”3 (20 - 2, YO - 1~)). (82) 

Let U be the closure of the set of functions that are linear 
combinations of any function of the family 

{ 23& (XT’, - x1 y; - y), aq;, (x’, - 2, y: - y)} 
b,v)EZxR 

The factor 2j normalizes the L2(lX2) norm of each function. 
One can prove that the set of functions h(x, y) whose wavelet 
transform satisfies the condition 1 are the functions whose or- 
thogonal projection on U is equal to the orthogonal projection 
of f(x, y) on U. Let 0 be the orthogonal complement of U 
in L2(R2). This set is therefore the affine space f + 0 of 
functions that can be written 

h(x, Y) = f(x, Y) + dx, Y) with s(x, Y> E 0. (84) 

We replace condition 2 with a convex constraint that has 
a similar effect in order to solve the problem numerically. 
We do not impose that the points ((xi, yi)) Cj,v)EZxR are the 

only modulus maxima of the wavelet transform but that they 
minimize a Sobolev norm defined by 

+z2j llFl12 + 1Tl12)). (85) ( 
The minimization of this norm creates a wavelet transform 
whose horizontal and vertical components have an L2(R2) 
norm that is as small as possible. In conjunction with condition 
1, this has a tendency to create modulus maxima at the po- 
sitions (xi, yi). The partial derivative components are added 
in order to create a wavelet transform with as few spurious 
oscillations as possible. Since W2’, h(x, y) is computed by 
smoothing the signal and taking the partial derivative along x, 
it oscillates mostly along the x direction, and we use a partial 
derivative along x in (85) to minimize these oscillations. The 
transpose result is valid for Wi3 h(z, y). The weight on the 
derivative components is proportional to the scale 2j because 
the smoothness W& h(x, y) and W2”3 h(x, y) increases with the 
scale 2j. 

Let ti3(x,y) = v and ti4(x,y) = w. If there 
exist two constants A5 > 0 and Bs > 0 such that for all 

(w,,wy) E R2 

A5 5 E ((~j(2~ w,, 2jwJ2 + 17j2(2j wz,2~wyJ2)t 
j=-m 
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then for any function h(x: y) E L2(R2), the norm defined in 

(85) is equivalent to the L2 (R2) norm 

A511hl12 5 111~~1112 I B51Pl12 (87) 

Similar to (49), we prove this implication by applying the 
Parseval theorem on each L2(R2) norm component of the 
norm defined in (85). We saw that the set of functions h(x, y) 
whose wavelet transform satisfies condition 1 is the closed 
affine space f + 0. The minimization of the norm 111 111 over 
this closed convex has a unique solution whose computation 
might, however, not be stable. As in one dimension, we can 
prove that the computation of this minimum is stable if and 
only if the family of functions 
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b 

{ 2j& (XT, - 2, y: - y), aQ,2, (xj, - 2, Yi - Y,} lOA 
(),V)EZXR’ 0 20 40 60 SO 100 

(88) (b) 

is a frame of the space U that they generate. The factor 2j 
normalizes the L2(R2) norm of the functions in this family. 

Fig. 10. (a) SNR when reconstructing the wavelet transform components 

The frame condition expresses the equivalence of the L2(n2) 
‘t’;;d.f and W;;df f rom the modulus maxima of the Lena image shown in 
Fig. 9. The abscissa gives the number of iterations on the operator I’. Each 

norm of any function in U and the sum square of the inner curve is labeled by the scale 21 for 1 5 j < 6; (b) SNR of the reconstructed 

products of this function with each function of the family (88). 
Lena images computed with respect to the original image as a function of the 
number of iterations on the operator P. 

To compute the solution of our minimization problem, 
we use an alternate projection algorithm just as in one di- 
mension. Let K the space of all sequences of the function 

(gj(x, y), gj”(x, y) such that 

the orthogonal projection of X onto A = I? rl V. Hence, if we 
begin the iteration from the zero element of K, the algorithm 
converges strongly to the element of A whose norm ( 1 is 
minimum. 

where the norm 1 1 is defined by expression (85). 
We define the set r‘ of all sequences of functions 

(Y:(x>Y)>g:(x’Y))jtz E K such thai for any index j and 

all maxima position (21: y/2) 

The set F is an affine space that is closed in K. Let V be the 
space of dyadic wavelet transforms of all functions in L2 ( R2). 
Equation (87) proves that V c K. The sequences of functions 
that satisfy condition 1 are the elements of K that belong to 

R=VI-llT 

To reconstruct the element of F n V that minimizes the norm 
1 1, we alternate projections on I? and V that are orthogonal 
with respect to the norm 1 I. As in one dimension, one can 
prove that the orthogonal projection on V is the operator 
Pv = WOW-~ that was defined by (64). The orthogonal 
projections Pr on F are defined in Appendix E. For a discrete 
image of N2 pixels, the implementations of both PV and 
Pr require O(N2 log,(N)) operations. Let P = PVoPr 
be the alternate projection on both sets. Since F is an affine 
space and V a vector space, for any initial sequence X = 
(gj(x: y),gs(x, y)) j~z, ,l:,Pin)X converges strongly to 

B. Numerical Reconstruction of Images from Multiscale Edges 

We study the error of the reconstruction algorithm as a 
function of the number of iterations on the operator P. At 
each scale 2j, the SNR integrates the error on the horizontal 
and the vertical components of the wavelet transform. Fig. 
10(a) gives the evolution of the SNR when reconstructing 
the wavelet transform of the Lena image from the modulus 
maxima shown in the Fig. 9. After rt iterations, we reconstruct 
an image by applying the inverse wavelet transform operator 
on the reconstructed wavelet transform. Fig. 10(b) is the SNR 
of the reconstructed images, computed with respect to the 
original one, as a function of the number of iterations on the 
operator P. The graphs of Fig. 10 are very similar to the 
graphs of Fig. 6 that show the reconstruction SNR for a l- 
D signal. The increase is fast during the first 20 iterations 
and then slows down. After a given number of iterations, 
Fig. 10(a) shows that the error is mostly concentrated at fine 
scales. This error has two components. The first one is the 
distance to the wavelet transform to which we converge, and 
the other one is the distance between the point to which we 
converge and the wavelet transform of the original image. 
As in one dimension, the convergence is exponential, but the 
convergence rate is very slow. After 20 iterations, the distance 
between the reconstructed image and the image to which we 
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described a compact image coding procedure that selects the 
important visual information before coding. The compression 
rates are between 30 and 40 in the examples that are shown, but 
most of the light image textures are not coded. A double layer 
coding based on multiscale edges and textures has recently 
been developed by Froment and Mallat [8]. 

APPENDIX A 

A PARTICULAR CLASS OF 1-D WAVELETS 

This appendix defines a class of wavelets that can be used 
for a fast implementation of discrete algorithms. We first define 
the smoothing function c$(x) introduced in Section III-B, and 
then, we build the wavelet $J(x) and the reconstructing wavelet 
X(Z), which are associated with 4(x). 

We impose that the Fourier transform of the smoothing 
function +(z) defined by (20) can be written as an infinite 
product 

(90) 

TABLE1 
FINITE IMPULSE RESPONSE OF THE FILTERS H, G, I<, AND L 

CORRESPOND TO THE QUADRATIC SPLINE WAVELET OF FIG. 

n H G K L 

-3 0.0078125 O.CW78125 

-2 0.054685 0.046875 

-1 0.125 0.171875 0.1171875 

0 0.375 -2.0 -0.171875 0.65625 

I 0.375 2.0 -0.054685 0.1171875 

2 0.125 -0.OCt78125 0.046875 

3 O.OU78125 

THAT 

l(a) 

family of 27r periodic functions H(w), G(w), and K(w) that 
satisfy these constraints is given by 

H(w) = ei”~~(cos(w/2))2”+‘, (97) 

G(w) = 4iei”/2 sin(w/2), (98) 

jqw) = 1 - M412 
G(w) ’ 

(99) 

p=l 
From (90) and (93), we derive 

where H(w) is a 27r periodic differentiable function such that 

IH( + ]H(w + r)12 5 1 and ]H(O)] = 1. (91) 
&w) = (“‘ny ) 2n+1, 

(100) 

One can prove [15] that the conditions (91) are sufficient 
so that (90) defines a smoothing function c$(x), which is 

&w) = iw (siny ) 2n+2. 
(101) 

in L2(R). The parameter w is the sampling shift that was 
introduced in Section III-B. It is adjusted in order so that c$(x) The Fourier transform e(w) of the primitive is therefore 

is symmetrical with respect to 0. Equation (90) implies that 

J(2w) = e-i”“H(w)ci(w). (92) 
(102) 

We define a wavelet ~(ZIJ) whose Fourier transform d(w) is In the example of Fig. 1, we chose 2n + 1 = 3. In order to 
given by have a wavelet antisymmetrical with respect to 0 and $(x) 

&2w) = e-i”“‘G(w)&w) (93) 
symmetrical with respect to 0, the shifting constant w of (92) 
is equal to l/2. Equations (101) prove that $J(x) is a quadratic 

where G(w) is a 27r periodic function. Equation (22) for J = 1 spline with compact support, whereas t?(x) is a cubic spline 
^ ^ 

proves that 4(w), f(w), and 4(w) must satisfy whose integral is equal to 1. The 2~ periodic function H(w), 
G(w), and K(w) can be viewed as the transfer function of 

4WM24 = liW12 - liP412. (94) discrete filters with finite impulse response. The corresponding 
impulse responses are given in Table I. These filters are used 

Let us impose that k(w) can be written in fast wavelet transform computations. 

);‘(2w) = 2”“K(w)&w) (95) 

where K(w) is a 27r periodic function. If we insert (92) and 
(95) into (94), we obtain 

IH(w + G(w)K(w) = 1. (96) 

One can prove that (96) is sufficient to define K(w) such that 
g(w) is the Fourier transform of a reconstructing wavelet that 
satisfies (13). 

We want a wavelet $(x) equal to the first-order derivative of 

a smoothing function e(x). This implies that G(w) must have 
a zero of order 1 at w = 0. Since 14(O)\ = 1, (93) yields that 
G(w) must have a zero of order 1 at w = 0. We choose H(w) 
in order to obtain a wavelet $J(x), which is antisymmetrical, 
as regular as possible, and has a small compact support. A 

APPENDIX B 
FAST WAVELET ALGORITHMSFOR 1-D SIGNALS 

This appendix describes an algorithm for computing a 
discrete wavelet transform and the inverse algorithm that 
reconstructs the original signal from its wavelet transform. We 
suppose that the wavelet $( x is characterized by the three ) 
discrete filters H, G, and K described in Appendix A. We 
denote HP, G,, and Kp the discrete filters obtained by putting 
2P- 1 zeros between each of the coefficients of the filters H, G, 
and K. The transfer function of these filters is, respec_tively, 
H(2pw), G(2pw), and K(2Pw). We also denote by HP the 
filter whose transfer function is the complex conjugates of 
H(2Pw): H(2pw). We denote by A * B the convolution of 
two discrete signals A and B. 
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The following algorithm computes the discrete wavelet 
transform of the discrete signal S,df. At each scale 2j, it 
decomposes S.$ f into S2j + ldf and W2j + ldf. 
j=o 
while (j < J) 

TABLE II 
NORMALIZATION COEFFICIENTS X, FOR THE QUADRATIC 

WAVELET OF FIG. l(a). FOR j > 5, A, = 1. 

W,“,+lf = $. S&f * Gj 
d Szj+l f = S2j f * Hi 

j =j+1 
end of while. 

j kj 1 1.50 

2 1.12 

M 
3 1.03 

4 1.01 

5 1.00 

The proof of this algorithm is based on the properties of 
the wavelet $(x) described in Appendix A. At each scale 
2i, we divide the values of the samples of S,d, f * Gj by Xj 
to obtain accurate measures of Lipschitz exponents from the 
wavelet maxima. Due to discretization, the wavelet modulus 
maxima of a step edge do not have the same amplitude at all 
scales as they should in a continuous model. The constants 
Xj compensate for this discrete effect. The values of Xj that 
correspond to the filters of Table I are given in Table II. 
The border problems are treated by making symmetry and a 
periodization of (Srf(n))l<n<N, as explained in Section III- 

- -. 
B. The convolutions must take mto account this periodization. 
The complexity of this discrete wavelet transform algorithm 
is O(N log(N)), and the complexity constant is proportional 
to the number of nonzero coefficients in the impulse response 
of the filters H and G. 

@(x, Y) = O(~)WOPY) and 02(x, Y) = ~~oPs)Q(Y). 

The fast discrete wavelet algorithm does not allow us to 
have @(xc, y) = e2(xc,y). However, the functions @(x, y) 
and 02(x, y) are numerically close enough so that they can 
be considered to be equal to a single function 19(x, y) in a 
first approximation. Equations (103) and (104) imply that the 
Fourier transform of the two wavelets G’(z, y) and $J~(x,Y) 
are given by 

@(2w,, 2w,) = e-i”“EG(wZ)&(wZ)&(w,) and 

$J~(~w,, 2w,) = ~o(w~)e-i”“~G(wy)~~(w~). (106) 

One can define the smoothing function 4(x:, y) of Section VI-B 
as 

The inverse wavelet transform algorithm reconstructs Stf 
from the discrete dyadic wavelet transform. At each scale 2j, 
it reconstructs Sgj -rf from S& f and Wlj f. The complexity 
of this reconstruction algorithm is also O(N log(N)). 
j=J 
while (j > 0) 

4(T Y) = 4o(~Mo(Y). 

S;j-lf = Ai . W$f * Kj-l + S;, f * fij-l 
j=j-1 

end of while. 

APPENDIX C 
A PARTICULAR CLASS OF 2-D DYADIC WAVELETS 

In this appendix, we characterize the 2-D wavelets used 
for numerical computations. In order to compute the wavelet 
transform with a minimum amount of operations, we choose 
two wavelets $J’(z, y) and $~~(a,y) that can be written as 
separable products of functions of the z and y variables. 
Let $(x) be a wavelet that belongs to the class described 
in Appendix A and whose Fourier transform is defined by 

Let us now define >il (w,, wY) and >i2 (w,, wY) such that 

g1(2w,, 2w,) = eiwwz K(w~)L(wy>~(w~)~(wy), 

g2(2w,, 2w,) = eiww y K(w,)L(w,)&w,)&w,) 

where the functions K(w) and L(w) are 27r periodic and satisfy 

G(w)K(w) + lH(w)12 = 1, (107) 

L(w) = 1 + IW412 
2 . (108) 

One can prove that i1 (wZ, w,) and k2 (We, wY) are the Fourier 
transform of reconstructing wavelets that satisfy (61). As 
in Appendix A, we choose G(w) = 4iei”12sin(w/2) to 
approximate a derivative. The 2-D wavelets used in the 
computations of this article are derived from the 1-D quadratic 
spline wavelet shown in Fig. 1. The values of the discrete 
filters H, G, K, and L are given in Table I. 

^ ^ 
$(2w) = e-ZW”G(w)+a(w) with &(w) 

APPENDIX D 
FAST WAVELET ALGORITHMS FOR 2-D SIGNALS 

=e --iww ‘n” H(2-Pw). 

p=l 

(103) 

We define 

@CT Y) = $(~Y@o(~Y) and $2(x7 Y) = WO(~~:)$J(Y). 

(104) 

Since +(z) = y, these two wavelets can be rewritten 

We describe two fast algorithms to implement the wavelet 
transform and the inverse wavelet transform in two dimen- 
sions. We suppose that the two wavelets Q1(x, y) and $J~(z, y) 
are characterized by the three discrete filters H, G, K, and L 
mentioned in Appendix C. We use the same notations as in 
Appendix B, and L, is the discrete filter obtained by putting 
2P - 1 zeros between consecutive coefficients of the filter L. 
We also denote by D the Dirac filter whose impulse response 
is equal to 1 at 0 and 0 otherwise. We denote by A * (H, L) the 
separable convolution of the rows and columns, respectively, 
of the image A with the 1-D filters H and L. 

$~‘(z,y) = v and qb2(xc,y) = T, with 
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The following algorithm computes the 2-D discrete wavelet 
transform of an image Sf f. At each scale 2j, the algorithm 

decomposes S,d, f into S$+l f , Wi;_dl f, and Wl;$l f. 
j=o 
while $5 < J) 

1 d Wz,+lf = ,.Sz,f * (Gi,D) 
W;;:, f = +.S,d, f * (D,Gj) 

S,d,+if = &f * (Hj,H,) 
j=j+1 

end of while. 
The proof of this algorithm is based on the properties of 

the wavelets $J”(z, y) and ti2(x, y) described in Appendix C. 
If the original image (Sr f (n,m))t,,,)Ez2 has N2 nonzero 

pixels, the complexity of the algorithm is O(N2 log(N)). As 
explained in Section VI-B, border problems are solved by 
making a symmetry of the image with respect to each of its 
borders and a periodization. The separable convolutions must 
take into account this border procedure. 

As in the 1-D case, the reconstruction algorithm computes 
S,“f by reconstructing at each scale 2j the signal S2d,-r f 
from S,d, f, Wij, df, and W.&, df. The complexity of this 
reconstruction algorithm is also O(N2 log(N)). 
j=J 
while (j > 0) 

S&l f = Xi . Wiidf * (Kj-1, Lj-1) + Xi . Wtidf * 

(Li-1, Ki-1) + S$ f * (fij-1, fii-1) 
j=j-1 

end of while. 

APPENDIX E 

PROJECTION OPERATOR ON I? 

In this appendix, we characterize the orthogonal projection 
on r in one and two dimensions and explain how to suppress 
oscillations for 1-D reconstructions. We first study the 1-D 
case. The operator Pr transforms any sequence (gj(z))jcz E 

K into the closest sequence (hj(~))~,, E r with respect to 

the norm ] I. Let ej(Z) = hi(x)-gj(z). Each function hi(x) 
is chosen so that 

is minimum. To 
each component 

E II .lI 
j=-, 

El 2 + 2q~~~2 

minimize this sum, we minimize separately 

(109) 

Let 20 and 51 be the abscissa of two consecutive modulus 
maxima of Wf23(z). Since (hj(X))jcz E r, we have 

{ 

fj(XO) = W2J f ($0) - Sj(XO) 

cj(Zl) = Wz, f (Xl) - gj(Zl). wo 

Between the abscissa x0 and ~1, the minimization of (109) is 
equivalent to the minimization of 

J( .:’ lEj(X)12 + 22i~~~2)&. (111) 

The Euler equation associated with this minimization is 

&) _ pd2Ejo = 0 
dx2 ’ 

for 2 ~1x0, x1 [. The constraints (110) are the border conditions 
of this membrane equation. The solution is 

cj(x) = cye2-‘= + pem2-jz (113) 

where the constants a and p are adjusted to satisfy equations 
(110). 

In numerical computations, Wg f is a uniform sampling of 
W2j f (x) at the rate 1 and has a total of N samples. At each 
scale 2j, the operator Pr modifies a discrete signal g; = 

(%(4)l<,<N - - by adding a discrete signal E: = (ej(n)),,,<N 
that is computed from (113) between two consecutive modulus 
maxima. This requires .0(N) computations. Since there are at 
most log,(N) + 1 scales, the total number of computations to 
implement Pr is O(N log2(N)). 

We know that the modulus maxima of the original wavelet 
transform are only located at the positions xi. We can thus 
also impose sign constraints in order to suppress any spurious 
oscillation in the reconstructed wavelet transform. This is done 
by imposing that the solution belongs to an appropriate convex 
set Y. Let sign(x) be the sign of the real number x. Let Y be 
the set of sequences (gj(x))icz E K such that for any pair of 

consecutive maxima positions (xi, xi,,) and z E [xi, z~,,] 

i 

sidgj (xl) 
= sign(x3,) if sign(xj,) = sign(xj,+l) 

sign( +$q 

= sign(xj,+, - xj,) if sign(x:3,) # sign(xi+,). 

The set Y is a closed convex and (W2j f)jcz E Y. Instead 
of minimizing ] ] over r II V as explained in Section V- 
B, we can minimize it over Y fl I fl V. We thus alternate 

projections on Y, r, and V. To compute the orthogonal 
projection on the convex Y, we need to solve an elastic 
membrane problem under constraints. This can be done with an 
iterative algorithm that is computationally intensive. Instead, 
we implement a simpler projector Py on Y, which is not 
orthogonal with respect to the norm ] ]. Let (gi(x))iGz E K 

and Py(gi(x))iEz = (hj(~))~,,. For each index j, hi(x) is 

obtained by clipping the oscillations of gi (x). If the original 
signal has N samples, at each scale 2j, the discrete implemen- 
tation of the clipping procedure requires O(N) computations. 
There are, at most, log,(N) + 1 scales; therefore, the total 
number of computations to implement Py is O(N log,(N)). 
Since this projector Py is not orthogonal, the iteration on 
the alternate projections operator P = PVoProPy is not 
guaranteed to converge. Numerical experiments show that in 
most cases, after a few iterations, we stay inside Y, even after 
projections on r and V. Hence, the operator Py acts as the 
identity operator, and P can be rewritten P = PVoPr. The 
analysis of Section V-B proves that we are then guaranteed to 
converge strongly to an element in Y n r n V. 

In two dimensions, the operator Pr transforms a sequence 

(Sjl(x, Y),g3(x, Y))j~z E K into the closest sequence 

(q(x, Y)> qx> Y)& E r. Let (E;(x,Y), $(x,Y))~~~ 
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be such that for any j E 2, $(z, y) = gs(x, y) - 
hf(z, y), and e;(s, y) = gf(x, y) - hz(x, y). The sequence 

(hjl(x, y), hj2(x, Y))~~~ is chosen so that 

Let Maj,, = PrW2~dXc))jcz = PrX and ej(x) = 
hi(x) - Wzjg(x). By definition 

lx - PrXI’ = I(ei(x))i,~~2 

(114) = ltj(x)12dx + 22i/‘i+’ IF12dx . 
6x 

is minimum. The constraints on 6: (x, y) and ej2(x, y) are inde- 
pendent. The minimization of (114) is obtained by minimizing 
each component 

(115) 

and 

(116) 

for all integers j E 2. Let us concentrate on the minimization 
of (115). Let (x0, y) and (xl, y) be two consecutive modulus 
maxima position at a fixed y. The function ei(z, y) must 
satisfy 

{ 

ci(xO,Y) = w,',f(x07Y) -gjl(xO,Y/) 

~jl(xl,Y)=W:jf(Z1,Y)-ggjl(xllY) 
(117) 

The minimization of (115) subject to these constraints -is 
obtained by minimizing 

J( 
I1 (E;(x,y)12 + z2j dx. (118) m3 

For y fixed, we obtain a 1-D minimization problem, which is 
identical to the minimization of expression (111). The solution 
is a sum of two exponentials as in (113). This analysis shows 
that the solution of the 2-D minimization problem is obtained 
by fixing the parameter y for $(x:, y) and computing the 
1-D solution along the x variable between two consecutive 
modulus maxima. The same analysis can be performed on 
the other component e:(x, y). The discrete implementation is, 
thus, a straightforward extension of the 1-D algorithm that 
is applied along the rows and columns of the images that 
belong to the sequence that we project on I. One can verify 
that if the original image has N2 pixels, the implementation of 
Pr requires O(N2 log(N)) computations. In two dimensions, 
we do not introduce any sign constraint as it is done in 1-D 
reconstructions. 

APPENDIX F 

CONVERGENCE RATE OF THE ALTERNATE PROJECTIONS 

We prove that if &Z&j (pi - x) 
> 

is a frame of 

U, then the alternate projection converg~~~&rentially, and 
we give a lower bound of the convergence rate. Let X = 
(W2jg(x))jGz E V and ~j(xh) = W2, f(zi) - Wzjg(xi) be 
the error at each modulus maxima location. We first prove that 
there exists a constant Cr > 0 such that 

IX - PrXj2 2 Cl C 2jlfj(4)12. (119) 

(120) 

We saw in Appendix E that Ed satisfies the differential 
equation (112); therefore, by integrating by parts, we obtain 

IX-PrX12 

d~i(d+l) 22i’i(xj,+,, dx dci(xi) 
- 22$(x3,)--- 

dx 

(121) 

We know that the function ej (x) is the sum of two exponentials 
given by (113) between any two consecutive modulus maxima 
located at xj, and x”,+r. If we replace the constants (Y and ,0 

with their values specified by cj(xj,) and ej(xi+,), with a few 
algebraic manipulations, we derive that 

d~i(d+l> 
22i’j(x:+1) dx 

dq (xj, ) 
- 22iEj(X3,)T > 

$Ad+, )I2 + Jej(x~)12)Min(2-j(x~+r - xi), 1.). 

(122) 

The derivative at xi+r is the left derivative, whereas the 
derivative at x, is the right derivative. Since we suppose that 
there exists a constant D > 0 such that 2-jlxA - x’,-rI > 
D 5 1, we obtain 

IX - PrX12 2 f C 2’lcj(Xjn)(2 (123) 
(n,i)EZ2 

which proves (119) for Cr = f. 
Let us now prove that there exists a constant Ca such that 

for any X = (W2jg(X))jcz E V 

IX -PAX/’ 5 C2 C 2ilfj(Xjn)J2. (124) 
(wi)EZ2 

Let U and 0 be the spaces defined in Section V-B. The 
function g(x) can be decomposed into 

s(x) = 91(x) + 92(x) (125) 

with gr(x) E U and ga(x) E 0. The original function f(z) 
can also be decomposed into 

f(x) = fl(X> + fi(X) (126) 

with fl(x) E U and f2(x) E 0. Let us now define the function 

h(x) = fl(X) + g2(x). (127) 

Since h(x) = f (x)+u(x), with U(X) E 0, we know from (46) 
that h(x) satisfies constraint 1 and, thus, that W2,h E IT. We 
also have h(x)-g(x) = fl(x)-gl(x) E U. Since we suppose 
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that v%I,!I,, (z$ - J;) 
( > (n..l)EZ’ 

is a frame of U, (53) implies 

that 

llh(:c)-g(Lrll* 5 2 c 2JI(h(z)--g(a.).j?*~(Il.i,--1:))12. 

(n.j)EZ’ 
(128) 

Since (W.,~(Z))~~~ E l?, we have W’*,/h(x;,) = M’*,f(3.3,), 
and thus 

(h(X)-g(X). 7/l*.? (X’,-2;)) = W*l f(Xj,)-VV*Jg(Z{,) = Ej(ZJn). 

(129) 
From the norm equivalence of (49), we can also derive that 

I lwZJ h(z))j,Z - (wZ?,y(“))jtaI* I ‘2ll’(.J’) - Y(x)I1*’ 

(130) 
Since the projector PA is orthogonal and (W2J h(z)),,, E ,A 

(w2Jg('c))j~JZ - pni~*&&z~* 

I (w2Jg('c))j~Z - (w*‘w4*. (131) 

Equations (128t(131) imply that 

[91 

(101 

< - 

This proves 

lL"J 

(w2Jg(z))jcZZ - A( ' w2JYiJi)j~Z~2 v41 

9 c 23ltj(:$J2. (132) ‘251 
3 (n,j)EZ? WI 

(120) for C2 = 2. From (123) and (132), we 
then derive that 

[271 

Ix - PrX12 2 f&Y - P&Y1? 
[281 

(133) 
[291 

This inequality gives a lower bound for the “angle” between 
the affine space r and the space V. Let P = PVoPr be 
the alternate projection on both spaces. A classical result on 
alternate projections [26] enables us to derive that for any 
element X E K, there exists a constant R such that 

PAX - p(“)X < R(1 - k!? r1/2 - 
2B2 ) 

(134) 

This proves that the algorithm converges exponentially with a 
convergence rate larger than (1 - s)-l/*. 
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